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ABSTRAK  
 

 

 

Penyelakuan daripada penyesaran polimer di dalam reserbor merupakan suatu 
teknik yang penting dalam kejuruteraan petroleum yang digunakan untuk 
meramalkan kesan pengeluaran minyak. Pemodelan aliran polimer menembusi media 
berliang kerap diterbitkan oleh  pendekatan skala makroskopik. Untuk mendapat 
gambaran aliran polimer yang lebih baik, suatu model skala liang (skala meso) 
digunakan dalam tesis ini untuk menentukan sifat makroskopik. Tujuan penyelidikan 
ini adalah untuk mengembangkan model-model Frisch-Hasslacher-Pomeau (FHP) III 
dari kekisi gas automata kepada menyelakukan aliran polimer dan minyak secara 
mikroskopik untuk mengkaji sifat-sifat makroskopik bagi fenomena penjerapan, 
pembentukan gel dan penyesaran polimer. Pada penyelakuan aliran satu fasa, suatu 
cadangan peraturan perlanggaran daripada interaksi antara polimer dan benda pepejal 
untuk proses-proses penjerapan dan pembentukan gel telah dibuat. Hubungkait 
antara pelbagai sifat makroskopik, seperti penumpuan polimer, keliangan, panjang 
permukaan, lebar liang telah pun diperoleh. Pada amnya, penyelakuan-penyelakuan 
kekisi gas automata bersetuju dengan baik dengan kajian-kajian sebelumnya, dengan 
perbezaan antara mereka adalah berjulat dari 2.0% hingga 17.4%. Pada penyelakuan 
aliran dua fasa, mekanisme penyesaran untuk pelbagai nisbah mobiliti dan kadar 
penjerapan telah dianggarkan. Perubahan ketepuan dalam liang hujung-mati semasa 
penyesaran telah pun dianalisis. Hasil-hasil penyelakuan dua-fasa bersetuju dengan 
baik dengan hasil-hasil penyelidikan makmal, dengan perbezaan daripada seluruh 
parameter adalah berjulat dari 3.1% hingga 18.4%. Masa pengiraan adalah suatu 
faktor penting yang mempengaruhi kebolehlaksanaan penerapan model skala meso 
dalam penyelakuan media berliang yang bersaiz besar. Disebabkan sifat kekisi gas 
automata, penyelakuan boleh dilaksanakan menggunakan  komputer-komputer selari 
secara efektif. Penggunaan komputer-komputer selari boleh mengurangkan masalah 
masa pengiraan. Dalam tesis ini, suatu teknik pengiraan selari dicadangkan untuk 
melarikan penyelakuan kekisi gas automata. Sistem gugusan dan komputer-komputer 
berdiri sendiri telah digunakan untuk menyelakukan media berliang aliran 
bersambung dan tak-bersambung, berturut-turut. Hasil penyelakuan-penyelakuan 
selari bersetuju dengan baik kepada hasil penyelakuan-penyelakuan tunggal, dengan 
perbezaan maksimum dari seluruh parameter adalah 3.93%. Masa pengiraan telah 
pun dikurangkan oleh suatu faktor yang berjulat dari 1.9083 hingga 14.3411. 
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ABSTRACT  
 

 

 

The simulation of polymer displacement in a reservoir is one of the important 
techniques in petroleum engineering that is used to predict the performance of oil 
production. Modeling of polymer flow through a porous medium is often derived by 
a macroscopic scale approach. In order to gain better insight of the polymer flow, a 
pore scale (mesoscale) model is applied in this thesis to determine the macroscopic 
properties. The objectives of this research are to develop the Frisch-Hasslacher-
Pomeau (FHP) III models of lattice gas automata to simulate microscopic polymer 
and oil flow for the study of macroscopic properties of adsorption, gelation and 
polymer displacement phenomena. In the single-phase flow simulation, collision 
rules of interactions between polymer and solid material for adsorption and gelation 
processes were proposed. Correlations between various macroscopic properties such 
as polymer concentration, porosity, surface length, pore width were obtained. In 
general, the lattice gas automata simulations were in good agreement with previous 
studies, where the differences between them were between 2.0% to 17.4%. In the 
two-phase flow simulation, the displacement mechanism for various mobility ratio 
and adsorption rate was estimated. The change of saturation in dead-end pores during 
the displacement was analyzed. The results of the two-phase flow simulations were 
in good agreement with those of laboratory experiments, where differences of all 
parameters were between 3.1% to 18.4%. The computation time is a crucial factor 
influencing the feasibility of a mesoscale model application in simulating large 
porous media. Due to the nature of lattice gas automata, the simulation can run using 
parallel computers effectively. The use of parallel computers is able to reduce the 
computation time problem. In this thesis, a parallel computation technique has been 
proposed to run the lattice gas automata simulation. A cluster system and standalone 
computers were used to simulate communicating and non-communicating flow in 
porous media, respectively. The results of the parallel simulations were in good 
agreement with those of single simulations, where maximum difference of all 
parameters was 3.93%. The computation time was reduced by a factor that ranged 
from 1.9083 to 14.3411. 

 

 
 
 
 
 
 
 
 
 
 



 vii

 
 
 
 
 

TABLE OF CONTENT 

 

 

 

CHAPTER     TITLE        PAGE 

 

 TITLE PAGE          i

 DECLARATION         ii 

  DEDICATION        iii 

 ACKNOWLEDGEMENTS        iv 

  ABSTRAK          v 

 ABSTRACT         vi 

 TABLE OF CONTENT                 vii 

 LIST OF TABLES                  xii 

 LIST OF FIGURES                 xiv 

 LIST OF SYMBOLS                            xxi 

  LIST OF APPENDICES             xxvii 

 

 

 1  INTRODUCTION         1 

  1.1 Background         1 

 1.2  Statement of Problem        4 

 1.3 Objectives of the Research       4 

 1.4 Scope of Work         5 

  1.5 Summary         6 

 

 

2 THEORY       7 

  2.1 Introduction         7 

 2.2 Types of Lattice        7 

 2.3 Collision Rules        9 



 viii

  2.4 Evolution of Particles      11 

  2.5 Equations of the Lattice Gas Automata Method  13 

   2.5.1 Propagation and Collision Operators   13 

   2.5.2 Microscopic Properties    15 

   2.5.3 Coarse Graining     16 

   2.5.4 Macroscopic Properties    17 

   2.5.5 Pressure      18 

   2.5.6 Viscosity      19 

   2.5.7 Porosity      19 

   2.5.8 Pressure Gradient     21 

   2.5.9 Velocity      22 

   2.5.10 Flow Rate      23 

   2.5.11 Permeability      23 

2.6 Initial Conditions      24 

2.7 Boundary Conditions      25 

2.8 Derivation of Navier-Stokes Equation from Lattice 
 Gas Automata       28 

2.9 Binary Fluid Model      33 

   2.9.1 Colour Model      34 

   2.9.2 Colour-Field Model     34 

   2.9.3 Measurement of Surface Tension   35 

2.10 Reservoir Rock      36 

   2.10.1 Porosity      36 

   2.10.2 Saturation      37 

   2.10.3 Permeability      38 

   2.10.4 Relative Permeability     40 

2.11 Polymer       42 

   2.11.1 Adsorption      43 

   2.11.2 Gelation      47 

2.11.3 Measurements of Adsorption and Gelation  48 

   2.11.4 Polymer Properties     51 

   2.11.5 Polymer Displacement in Oil Reservoir  53 

  2.12 Summary       56 

 3 LITERATURE REVIEW      57 



 ix

  3.1 Introduction       57 

  3.2 Polymer Adsorption in Porous Media   57 

  3.3 Polymer Gelation in Porous Media    58 

  3.4 Immiscible Displacement Model    60 

  3.5 Parallel Computation for Lattice Boltzmann   64 

  3.6 Steady State Period      65 

  3.7 Relative Permeability      67 
  3.8 Summary       68 

 

 

 4  THE DEVELOPMENT OF LATTICE GAS  

  AUTOMATA        70 

  4.1 Introduction       70 

  4.2 Modeling of Adsorption     70 

  4.3 Modeling of Gelation       72 

  4.4 Procedure of Simulator for Single-Phase Flow  74 

4.5 Modeling of Polymer Displacement    75 

   4.5.1 Viscosity      77 

   4.5.2 Saturation      78 

   4.5.3 Velocity      79 

   4.5.4 Relative Permeability     80 

   4.5.5 Fractional Flow     81 

   4.5.6 Displacement Efficiency    82 

  4.6 Procedure of Simulator for Two-Phase Flow   82 

  4.7 Summary       84 

 

 
 5 VALIDATION OF LATTICE GAS AUTOMATA  

  MODELS         85 

 

  5.1 Introduction       85 



 x

  5.2 Laboratory Experiments     85 

   5.2.1 Polymer Adsorption in Continuous System  86 

   5.2.2 Polymer Displacement               87 

  5.3 Simulation Procedures     89 

   5.3.1 Polymer Adsorption in Continuous System  89 

   5.3.2 Polymer Adsorption in Batch System   91 

   5.3.3 Polymer Gelation     92 

   5.3.4 Polymer Displacement               92 

  5.4 Matching between the Experimental and Simula- 

   tion Results       94 

   5.4.1 Polymer Adsorption in Continuous System  94 

   5.4.2 Polymer Adsorption in Batch System   97 

   5.4.3 Polymer Gelation               100 

   5.4.4 Polymer Displacement             101 

5.5 Summary                104 

 

 

 6 SIMULATION OF ADSORPTION AND GELATION           105 

  6.1 Introduction                105 

  6.2 Velocity                105 

  6.3 Effects of Porosity and Surface Length on Ad- 

   sorption Process               106 

  6.4 Effects of Adsorption on Permeability and Velo- 
   city                 110 

  6.5 Polymer Adsorption in Batch System             113 

  6.6 Effects of Porosity, Surface Length and Pore  

   Width on Gelation Process              115 

  6.7 Effects of Gelation on Permeability and Flow  

   Rate                 119 

  6.8 Summary                           123 

 

 

 7 SIMULATION OF POLYMER DISPLACEMENT           124 

  7.1 Introduction                124 

  7.2 Relative Permeability               124 



 xi

  7.3 Mobility Ratio                127 

  7.4 Adsorption                131 

  7.5 Dead-End Pore               133 

  7.6 Summary                138 

 

 

 8 PARALLEL COMPUTATION              140 

  8.1 Introduction                140 

  8.2 Hardware and Software              140 

  8.3 Additional Collision Rules for Communicating  

   Model                 142 

  8.4 Formulations                144 

  8.5 Simulation Runs               147 

   8.5.1 Non-Communicating Flow System            148 

   8.5.2 Communicating Flow System             154 

    8.5.2.1 Liquid Flow in Porous Media            154 

    8.5.2.2 Polymer Adsorption              161 

    8.5.2.3 Polymer Gelation              164 

    8.5.2.4 Polymer Displacement                       167 

  8.6 Summary                171 

 

 

 9 CONCLUSIONS AND RECOMMENDATIONS            173 

  9.1 Conclusions                 173 

  9.2 Recommendations for Future Work             174 

 

REFERENCES                  175 

APPENDICES   A - J        185 - 264 
 

 



 xii

 
 
 
 
 

LIST OF TABLES 

 

 

 

TABLE NO.    TITLE         PAGE 

 

2.1 Equations of velocity vectors for square and hexagonal lattice 
 shapes                     9 

2.2 Bottle test gel strength codes (Sydansk, 1988)             51 

3.1 Constants used in simulation studies of polyacrylamide/redox  
 and biopolymer/Cr(III) systems (Khachatoorians, 2004)            59 

5.1 Summary of experimental results of adsorption in a continuous  
 system                      95 

5.2 Correlations between polymer concentration and probability 
 factor Ppg                101 

5.3 Summary of experimental results of polymer displacement          101 

6.1 Properties of the porous media             108 

6.2 Constants of the Langmuir and Freundlich equations          114 

6.3 Data of LGA porous media              116 

7.1 Viscosity data of polymer displacement simulation           128 

8.1 Specification of the computer types             141 

8.2 Simulation results of rock liquid properties for non-communica- 
 ting flow                  149 

8.3 Speedup and efficiency of computer types             153 

8.4 Average porosity for various division of porous medium           155 

8.5 Average velocity for various division of porous medium          156 

8.6 Average permeability for various division of porous medium         157 

8.7 Speedup and efficiency of cluster system using computer type D              159 

8.8 Simulation results of rock and liquid properties for polymer ad- 
 sorption                  162 

8.9 Speedup and efficiency of cluster system for polymer adsorpti- 
 on simulation                 163 

8.10 Simulation results of rock and liquid properties for polymer ge- 
 lation                 165 



 xiii

8.11 Speedup and efficiency of cluster system for polymer gelation  
 simulation                166 

8.12 Simulation results of rock and liquid properties for polymer dis- 
 placement                 168 

8.13 Speedup and efficiency for polymer displacement simulation                   169 

A.1 Lookup tables of collision rules             187 

B.1 Development of lattice gas automata             189 

D.1 Conversion factors between cgs units and LGA units                     194 

E.1 Absorbance level of xanthan              197 

E.2 Data and results of experiment             199 

F.1 Experiment data of commercial xanthan            201 

F.2 Experiment data of xanthan from raw tapioca           201 

F.3 Experiment data of xanthan from tapioca            202 

F.4 Experiment data of xanthan from rice                       202 

F.5 Experiment data of xanthan from sago            203 

F.6 Adsorption of commercial xanthan             203 

F.7 Adsorption of xanthan from raw tapioca             204 

F.8 Adsorption of xanthan from tapioca              204 

F.9 Adsorption of xanthan from rice             205 

F.10 Adsorption of xanthan from sago             205 

H.1 Experiment data of polymer displacement            214 

H.2 Experimental results of pore volume injected, produced oil  
  and displacement efficiency during polymer flooding                     215 

H.3 Properties of xanthan solution with concentration 400 ppm          216 

 
 

 

 

 

 

 

 

 

 
 
 
 



 xiv

 
 
 
 
 

LIST OF FIGURES 

 

 

 

NO. FIGURE     TITLE        PAGE 
 

2.1 Square grid of a 2-dimensional lattice                           8 

2.2 Hexagonal grid of a 2-dimensional lattice                8 

2.3 A set of collision rules for the FHP model (Buick, 1997)            10 

2.4 Evolution of particles on an area of hexagonal lattice from time 
 t to time t+1. The red arrows represent moving particles and  
 rest particles are represented by the yellow circles             12 

2.5 Coarse graining process. The small red arrows represent moving 
 particles, rest particles are represented by the yellow circles, and 
 the large black arrow represents resultant vector of particles in a  
 region                   17 

2.6 Illustration of solid and void sites in LGA porous media            20 

2.7 Illustration of solid, isolated void, and connected void sites in    
 LGA porous media                 21 

2.8 Average velocity vector of the entire lattice region. The small red 
 arrows represent moving particles, rest particles are represented 
 by the yellow circles, and the large arrow represents resultant ve- 
 locity vector                  23 

2.9 Flow passes through obstacles between boundary plates            25 

2.10 No-slip boundary conditions at vertical and horizontal boundaries           26 

2.11 Free-slip boundary conditions                27 

2.12 Periodic boundary conditions. (a) Four particles impinge the 
 boundaries at time step t. (b) The particles are reintroduced at 
 corresponding positions at the opposite boundaries with the same 
 velocity at time step t+1                27 

2.13 Parallel flow in linear beds                39 

2.14 Series flow in linear beds                40 

2.15 Profile of relative permeability                 42 

2.16 Polymer adsorption at a solid-liquid interface (Sorbie, 1991)           44 
 



 xv

2.17 Curve of isothermal adsorption               45 

2.18 The BET model (Adamson, 1976)               45 

2.19 Illustration of polymer solution rheology              52 

2.20 The determination of flood front saturation              55 

3.1 One-dimensional waterflood example (Jiao, 1996)             62 

3.2 Saturation contours at 720 days in a five-spot waterflood with  
 unfavorable mobility ratio for (a) a diagonal grid and (b) a pa- 
 rallel grid (Jiao, 1996)                 63 

3.3 Comparison of oil recovery curves computed for diagonal and             
 parallel five-spot grids as pore volumes injected (Jiao, 1996)           63 

3.4 Communication pattern of 2 X 2 processors (Cherba, 2002)            66 

3.5 Velocity as a function of time step (Waite, 1998)             66 

4.1 Collision rules for polymer adsorption process             71 

4.2 Collision rules for polymer gelation process               73 

4.3 Flow chart of the simulator for single-phase  flow             76 

4.4 Illustration of oil particles in void sites that are being displaced 
  by injected polymer solution in lattice gas automata porous media           78 

4.5 Flow chart of the simulator for two-phase flow             83 

5.1 The schematic of the continuous system apparatus             86 

5.2 The schematic of the polymer displacement experiment appa- 
 ratus                   88 

5.3 Polymer adsorption in continuous system. (a) Initial condition of 
 the system. (b) Adsorption process has taken place. Black areas  
 represent solid, red areas represent polymer solution, and yellow 
 dots represent adsorbed polymer               90 

5.4 Polymer adsorption in batch system. (a) Initial condition of the 
 system. (b) Adsorption process has taken place. Black areas re- 
 present solid, white areas represent void areas, arrows represent  
 moving particles, and yellow layers represent adsorbed polymer            91 

5.5 Polymer gelation in porous media. (a) Initial condition of a po- 
 rous medium. (b) Gelation process has taken place. Black areas  
 represent solid, red areas represent polymer solution, and yellow 
  areas represent gel                 93 

5.6 Relationship between concentration and absorbed xanthan            94 

5.7 Adsorption in LGA porous medium for concentration of com- 
 mercial xanthan is 1000 ppm                    96 

5.8 Relationships between polymer concentration and probability 
 factor Ppa                  97 



 xvi

5.9 Simulation of polymer adsorption for the batch experiment after 
  5000 seconds.  The concentration of polymer is 200 ppm            98 

5.10 Cumulative number of adsorbed polymer particles on simulati- 
 on of batch experiment for 3 hours               99 

5.11 Comparisons of experiment and LGA simulation of adsorbed 
 xanthan molecules for batch system               99 

5.12 Arbitrary porous medium to represent sandpack A. Black areas  
 represent solid, red areas represent polymer and yellow areas re- 
 present gel                 100 

5.13 Injected pore volume vs. displacement efficiency for validation         102 

5.14 LGA porous medium for validation. Black areas represent solid, 
  purple areas represent polymer, red areas represent oil, and  
 yellow dots represent adsorbed polymer            102 

5.15 Relative permeability curves for validation            103 

6.1 Comparison of velocity profile of plane Couette flow                     106 

6.2 Polymer adsorption in the porous medium 1 after ten days. 
 Concentration of polymer is 2457 ppm            107 

6.3 Polymer adsorption in the porous medium 2 after ten days.   
 Concentration of polymer is 2457 ppm            107 

6.4 Polymer adsorption in the porous medium 3 after ten days.   
 Concentration of polymer is 2457 ppm            108 

6.5 Polymer adsorption in the porous medium 4 after ten days.   
 Concentration of polymer is 2457 ppm            108 

6.6 Effect of polymer concentration to number of adsorbed polymer  
 particles in the porous medium 1 during 20 days           109 

6.7 Number of adsorbed polymer particles as a function of time in  
 the four porous media for concentration 23962 ppm during 20 
 days                 110 

6.8 The effect of polymer concentration to fluid velocity reduction  
 in the porous medium 3 during 20 days            111 

6.9 The effect of polymer concentration to permeability reduction 
 in the porous medium 3 during 20 days            112 

6.10 Reduction of ratio permeability due to adsorption process          113 

6.11 Comparisons of theoretical and LGA simulation curves of  
 adsorbed xanthan molecules for batch experiment           114 

6.12 Gelation in porous medium A. Black areas represent solid, 
 red areas represent polymer, and yellow areas represent gel          115 

6.13 Gelation in Porous medium B              115 

6.14 Gelation in porous medium C              116 

6.15 Gelation in Porous medium D              116 



 xvii

6.16 Effect of porosity, surface length (Ls) and pore width (wp) on ge- 
 lation process in the four porous media for xanthan concentra- 
 tion 6483 ppm during 1500 minutes             117 

6.17 Effect of porosity and surface length (Ls) on gelation process in 
 the four porous media for xanthan concentration 1523 ppm du- 
 ring 1500 minutes               118 

6.18 Effect of pore width (wp) on gelation process for various xan- 
 than concentrations               119 

6.19 Final permeability of porous medium A for various concentra- 
 tions of   polyacrylamide and xanthan             120 

6.20 Final permeability of porous media for various xanthan concen- 
 trations                 120 

6.21 Flow rate of fluid for various xanthan concentrations after gela- 
 tion process                121 

6.22 Reduction of permeability ratio due to gelation process          122 

7.1 Simulation of polymer displacement on a 5 cm by 2 cm porous 
 medium after 200 seconds. Black areas represent solid, red areas 
 represent oil, purple areas represent polymer solution, purple 
  dots represent water and yellow dots represent adsorbed polymer         125 

7.2 Comparisons of relative permeability curves among simulation 
 results and unsteady-state correlations            126 

7.3 Comparisons of relative permeability curves among simulation 
 results, imbibition process and standstone correlations          126 

7.4 Porous medium for investigating the effect of mobility ratio            128 

7.5 Effect of mobility ratio on relative permeability            129 

7.6 Effect of mobility ratio on displacement efficiency             130 

7.7 Effect of mobility ratio on fractional flow            130 

7.8 Effect of adsorption on relative permeability            132 

7.9 Effect of adsorption on displacement efficiency              132 

7.10 Polymer displacement in porous media with various neck width  
 sizes of dead-end pore after 260 seconds. Black areas represent  
 solid, purple areas represent polymer, and red areas represent oil         134 

 7.11   Polymer displacement in porous media with various areas of  
 dead-end pore body after 260 seconds             135 

7.12   Polymer displacement in porous media with various neck positi-  
 ons of dead-end pores after 260 seconds            136 

7.13 Dead-end pore pressure as a function of time and various neck  
 width sizes of dead-end pore              136 

7.14 Dead-end pore pressure as a function of time and various dead- 
 end pore areas                137 

7.15 Polymer saturation in dead-end pore as a function of time and 



 xviii

 the distance of neck of dead-end pore from the left side          138 

8.1 Flow diagram of cluster system             142 

8.2 Propagations of particles cross the borderline            143 

8.3 Porous medium with non-communicating flow. Black areas re- 
 present solid material and purple areas represent liquid          148 

8.4 Average velocity of non-communicating flow system             150 

8.5 Average permeability results for liquid flow in porous medium 
 with non-communicating channels             151 

8.6 Computation time for various computer types              151 

8.7 Computation time for various numbers of processors           152 

8.8 Fluid flow in a 10 cm x 8 cm porous medium. Black areas re- 
 present solid material and purple areas represent liquid          154 

8.9 Average velocity results for various divisions of a porous medi- 
 um                 155 
8.10 Average permeability results for various division of a porous  
 medium                   157 

8.11 Computation time for various numbers of processors                     158 

8.12 Speedup for various numbers of processors            159 

8.13 Communication pattern based on the algorithm           160 

8.14 Polymer flow with adsorption process in a 5 cm by 4 cm porous 
 medium after 2000 seconds. Black areas represent solid, red  
 areas represent polymer solution, and yellow dots represent 
 adsorbed polymer                 161 

8.15 Computation time of various numbers of processors for poly- 
 mer adsorption in porous media with communicating flow          163 

8.16 Polymer flow with gelation process in a 5.5 cm by 4 cm porous  
 medium. Black areas represent solid, red areas represent poly- 
 mer solution, and yellow areas represent gel            164 

8.17 Computation time of various numbers of processors for poly- 
 mer gelation in porous media with communicating flow          166 

8.18 Polymer displacement in a 5 cm by 4 cm porous medium. Black  
 regions represent solid materials; red regions represent displa- 
 ced oil; purple regions represent displacing polymer solution,  
 and yellow dots represent adsorbed polymer particles on solid  
 surface                 167 

8.19 Comparisons of displacement efficiency for porous medium 
 with communicating flow                 169 

8.20 Computation time of various computer numbers for polymer  
displacement in porous media with communicating flow           170 



 xix

C.1 Plane Couette flow               191 

C.2 Plane Couette flow in case plates move in opposite direction         191 

F.1 Relationship between concentration and absorbed polymer for 
 commercial xanthan               201 

F.2 Relationship between concentration and absorbed polymer for 
 xanthan from raw tapioca              202 

F.3 Relationship between concentration and absorbed polymer for  
 xanthan from tapioca               203 

F.4 Relationship between concentration and absorbed polymer for  
 xanthan from rice               204 

F.5 Relationship between concentration and absorbed polymer for  
 xanthan from sago               205 

F.6 LGA porous medium for commercial xanthan with concentrati- 
 on of 1000 ppm               206 

F.7 LGA porous medium for commercial xanthan with concentrati- 
 on of 3000 ppm               206 

F.8 LGA porous medium for commercial xanthan with concentrati- 
 on of 5000 ppm               207 

F.9 LGA porous medium for xanthan from raw tapioca with con- 
 centration of 1000 ppm              207 

F.10 LGA porous medium for xanthan from raw tapioca with con- 
 centration of 3000 ppm              207 

F.11 LGA porous medium for xanthan from raw tapioca with con- 
 centration of 5000 ppm              208 

F.12 LGA porous medium for xanthan from tapioca with concen- 
 tration of 1000 ppm               208 

F.13 LGA porous medium for xanthan from tapioca with concen- 
 tration of 3000 ppm               208 

F.14 LGA porous medium for xanthan from tapioca with concen- 
 tration of 5000 ppm               209 

F.15 LGA porous medium for xanthan from rice with concentration 
 of 1000 ppm                209 

F.16 LGA porous medium for xanthan from rice with concentration 
 of 3000 ppm                209 

F.17 LGA porous medium for xanthan from rice with concentration 
 of 5000 ppm                210 

F.18 LGA porous medium for xanthan from sago with concentration 
 of 1000 ppm                210 
 



 xx

F.19 LGA porous medium for xanthan from sago with concentration 
 of 3000 ppm                210 

F.20 LGA porous medium for xanthan from sago with concentration 
 of 5000 ppm                211 

G.1 Arbitrary porous medium to represent sandpack A           212 

G.2 Arbitrary porous medium to represent sandpack B           212 

G.3 Arbitrary porous medium to represent sandpack C           213 

G.4 Arbitrary porous medium to represent sandpack D           213 

H.1 Flow curve of a xanthan solution used in polymer displacement 
  in sand pack                217 

I.1 Flow diagram for parallel simulation             220 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xxi

 
 
 
 
 

LIST OF SYMBOLS 

 

 

 

A –   surface area  

Bo –   oil formation volume factor 

Boi –   oil formation volume factor at start of project 

C  –   concentration (ppm) 

c –   particle velocity 

C’ –   collision operator 

Ca(ref) –  injected polymer concentration (Chapter 4) 

Ce(r,t) –   colour density 

Cf  –   polymer concentration after adsorption, (ppm) 

Cfa –  factor by which the retained polymer deposit compacts when  
   deposited 

Ci  –   initial polymer concentration (ppm) 

Cs –   speed of sound 

d  –   mean density per link 

Deff  –   displacement efficiency, % 

dg –   diameter of grain 

do  –   the mean oil density per link 

Dp  –   polymer retention factor 

dp  –   the mean polymer density per link 

dσ/dt –   rate component a is removed from solution by filtration 

Ep –   side of polygon 

E(P,N) –   parallel efficiency 

F  –   non-linear filtration 

flc –   local colour flux 

fp –   fractional flow of polymer solution, fraction 

fw –   fraction flow of water, fraction 

fw
* –   fraction flow of water at flood front, fraction 



 xxii

fw1 –   fraction flow of water at oil bank, fraction 

fwp
* –   fraction flow of polymer at flood front, fraction 

G  –   absorbance 

g(ρ) –   Galilean invariance term 

H –  power law coefficient 

h –   thickness of porous medium 

ka –   absolute permeability 

karith –   arithmetic average permeability 

kf –   final permeability 

ki –   initial permeability 

Kl –  longitudinal dispersion constant 

ko –   permeability of oil 

kp –   permeability of polymer solution 

kt –   permeability at time t 

krecip –   reciprocal average permeability 

kro  –   relative permeability of oil 

krow  –   relative permeability of oil with respect to water 

kro
o  –   end point of oil relative permeability 

krp  –   relative permeability of polymer solution  

krp
o  –   end point of polymer relative permeability 

krw  –   relative permeability of water 

krw
o  –   end point of water relative permeability 

krwp  –   relative permeability of wetting phase 

kw –   permeability of water 

kx  –  permeability in x direction 

L    length of medium 

Li –   length of bed i 

Ls –   surface length  

M –   mobility ratio 

m –   momentum 

Mp –   mobility ratio of polymer flooding 

ms  –   the mass of sand particles, gr 

n –   power law exponent 

nbe –   occupation numbers of link e of blue particle 



 xxiii

Ne –   mean population of link e 

ne –   occupation numbers of link e 

Ng –   number of grain 

NM   mach number 

Noe(r,t) –   mean population of oil particles 

Np –   produced oil 

Npa –   total value of adsorbed particle 

Npe(r,t) –   mean population of polymer particles 

Npg –   total value of gelled particle 

nre –   occupation numbers of link e of red particle 

Nwe(r,t) –   mean population of water particles 

Ny –   Number of particles in y direction 

O –  origin 

P –   processors 

p –   pressure 

pc –   capillary pressure 

pinner –   the pressure inside of the bubble 

pl –   local pressure 

pouter –   the pressure outside of the bubble 

pp –   pore pressure 

Ppa –  probability factor of polymer adsorption occurrence, fraction 

Ppg –  probability factor of polymer gelation occurrence, fraction 

q –   flow rate 

Q –   amount of adsorbed polymer 

Qe –   amount of adsorbed polymer at equilibrium condition 

qo –   oil flow rate 

qt –   total flow rate 

R –   resistance factor 

Rl  –   dumping resistance 

r –   bubble radius 

r –  site  

Re –   Reynolds number 

Ra –   concentration change rate of component a chemical reactions 



 xxiv

S  –  Saturation 

S’ –   streaming (propagation) operator 

s –  in-state of a collision 

s’ –  out-state of a collision 

Sbtp –   saturation of displacing polymer at breakthrough  

Sl –   local saturation  

So –   oil saturation  

Soi –   initial oil saturation 

Sor –   residual oil saturation  

Sorw –   residual oil saturation in oil-water system 

Sp –   polymer solution saturation 

Sp2 –   polymer solution saturation in dead-end pore 

S(P,N) –   speedup 

Sw –   water saturation 

Sw
* –   water saturation at flood front 

Sw1 –   water saturation at oil bank 

Swc –   connate water saturation 

Swi –   initial water saturation 

s(r) –   site 

scv(r) –   connected void site 

siv(r) –   isolated void site 

ss(r) –   solid site  

sv(r) –   void site 

t –   time 

tD  –   dimensionless time 

tdis  –   displacement time 

T(P,N) –   time required for a given algorithm to solve problem of size N  
   on P processors 

u –   flow rate per unit area 

V –   volume  

v –   velocity 

vD –   Darcy velocity 

vD
* –   velocity of polymer front 

vl –   local velocity 

Vp –   pore volume 



 xxv

W –   work  

w –   reservoir width  

wp –   reservoir width  

X  –   length of lattice in x direction 

xD  –   dimensionless distance 

Y  –   width of lattice in y direction 

Za –   rate of concentration change of component “a” due to  
   chemical reaction  

 

 

Greek 

 

∆e  –   collision function for link e 

ε –   evolution operator 

φ –   porosity 

φabs  –   absolute porosity 

φeff  –   effective porosity 

φIPV  –   porosity that is not accessible to polymer 

φo –  initial unclogged porosity 

γ –   shear rate 

η –  true density 

λl –   local mobility 

λo –   mobility of oil 

λp –   mobility of polymer 

µ –   dynamic viscosity 

µa –   apparent viscosity 

µo –   oil viscosity  

µp –   viscosity of polymer solution 

µpN –   viscosity in the lower Newtonian region 

µw –   water viscosity  

µ∞ –   viscosity at very high shear rates 

ν –   kinematic viscosity 

Παβ –   momentum flux tensor 



 xxvi

ρ  –   bulk density 

σ –   surface tension 

τ –  shear stress 

τr –  shear stress at intersection of the lines extrapolated from the  
   Newtonian and the power law region 

ξr,t  –  a time and site dependent Boolean variable 

Ω –   collision function 

∫x  –  the average change in the x component of momentum at a  
   single point on the boundary x = 0 

 

 

Subscripts and Superscripts 

 

a  –   component a 

e –   link 

f –   final 

g –   grain 

i –   initial 

j –   grid location  

l –   local 

n –   current time level  

o –   oil 

p –   polymer 

t –   total 

w –   water 

x –   x direction 

y –   y direction 

* –   normalized value 

 

 



 xxvii

 
 
 
 
 

LIST OF APPENDICES 

 

 

 

 APPENDIX   TITLE        PAGE 

 

A  COLLISION RULES OF FHP-III            185 

B  DEVELOPMENT HISTORY OF LATTICE GAS 
  AUTOMATA               189 

C  PLANE COUETTE FLOW             190 

D  CONVERSION CORRELATIONS           192 

E  EXPERIMENTS OF ADSORPTION IN BATCH  

  SYSTEM AND GELATION             196 

F  EXPERIMENTAL AND SIMULATION RESULTS 

  OF POLYMER ADSORPTION             200 

G  SIMULATION RESULTS OF POLYMER GELA- 
  TION                  212 

H  EXPERIMENTAL AND SIMULATION RESULTS 

  OF POLYMER DISPLACEMENT           214 

I  PARALLEL VIRTUAL MACHINE           219 

J  PAPERS               262 

 
 

 

 

 

 

 

 

 



 
 
 
 
 

CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

This chapter presents the background of simulation of polymer flow in porous 

media and the applications of lattice gas automata method in the first section. The 

background brings out and concludes statements of problem for conducting the 

research ideas that are written in the second section. The objectives of the research 

are based on the problem statement, whereas the scope of work is planned to achieve 

the objectives. They are described in the next two sections. In the last section, a 

preview of the chapters in this thesis is presented. 

 

 

 

1.1 Background 

 

Polymer injection into reservoir rock is one of extensively used methods in 

enhancing oil recovery (Chauveteau and Sorbie, 1991). Many aspects of polymer 

injection have been simulated for a long period of time. Two phenomena that usually 

happened during polymer injection were adsorption and gelation. These phenomena 

played important roles, because they affected several rock and fluid properties. 

 

The presence of the adsorbed or gelled polymer layers reduces the cross 

sectional area in pore throats. Since the pore size becomes closer to macromolecular 

length, the fluid flow in the medium is more difficult than at original condition. This 

means that the permeability of the rock reduces. The change of the permeability 

reduces the mobility of any fluid. On the other hand, adsorption and gelation reduce 

the density and viscosity of polymer solution because part of polymer particles is 
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linked and excluded from solution. The change of the viscosity affects the relative 

permeability, while the combination of permeability and polymer viscosity 

reductions affects the mobility ratio of a polymer displacement. Finally, the change 

of mobility ratio results in the change of the displacement efficiency (Zaitoun and 

Kohler, 1987; Ghazali and Willhite, 1985; Chauveteau and Sorbie, 1991). 

 

Previous researchers (Liu, 2002; Khachatoorians, 2004) developed polymer 

flow in porous media models to study the phenomena of adsorption and gelation. 

However, the models were developed using macroscale approach. Several 

macroscale models were also developed for polymer displacement simulation 

(Bondor et al, 1972; Todd and Chase, 1979; Mattax and Dalton, 1990; Lecourtier et 

al, 1992; Dakhlia, 1995; Wu, 1996; Shirif, 1998). The models usually assume that 

the levels of adsorption and gelation are same everywhere. In addition, the polymer 

front is assumed to be like a piston. In reality, the polymer front is not flat and the 

thickness of adsorption and gelation are not the same. The distribution and rate of 

adsorption and gelation processes are affected by local properties of a site in porous 

media such as pore size and mineralogy. An appropriate way to overcome these 

difficulties is the application of mesoscale model instead of macroscale model. The 

mesoscale model is able to accommodate to the realities. 

 

In macroscale approach, a porous medium system area is usually assumed to 

possess homogeneous properties, whereas, in reality a reservoir rock is consist of 

various fluid saturations and various size and shape of rock granule. The assumption 

is usually tolerated in predicting macroscale properties. However, the pertinence of 

the methods is questionable when the phenomena are very much depending on 

heterogeneity of the rock such as adsorption and gelation of polymer. It is obvious 

that the phenomena must be viewed at mesoscale. The mesoscale approach is needed 

to model the heterogeneity of the porous medium. 

 

Several molecular automaton methods based on the mesoscale approach have 

been developed. A classic comprehensive solution for the system can be obtained by 

using molecular dynamics. The method models all individual molecules. Inter-

molecule interactions are modeled to behave as a fluid. The position, velocity and 

direction of the molecules are calculated. Successive calculations of the interaction 
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would build up the macroscopic flow. Unfortunately, calculations of molecular 

dynamics become so large and spend much time even for very small system. An 

appropriate way to overcome this difficulty is the application of cellular automata 

method. The cellular automata method is discrete analogues of molecular dynamics, 

in which particles with discrete velocities populate the links of a fixed array of sites 

(Wolfram, 1986). Cellular automata method has been developed into some classes. 

One of the cellular automata methods that seems suitable for polymer injection in 

porous media is lattice gas automata (LGA) since the method has been developed for 

simulating immiscible fluids (Rothman and Keller 1988). 

 

Lattice gas automata method was introduced by Hardy et al (1973), and was 

completed by Frisch et al (1986) by introducing the hexagonal lattice to satisfy 

Navier-Stokes equation. The method was capable to model a complex system 

accurately. In 1988, Rothman applied lattice gas automata method to study the fluid 

flow in porous media.  

 

One of LGA advantages is that the method replaces floating-point calculation 

with fewer Boolean and/or table-lookup operations (Biggs and Humby, 1998). The 

boundary conditions for complex geometries can be easily implemented (Frisch et al, 

1986). In addition, the coding of fluid and solid sites is simple (Lee and Chung, 

1993). The lattice gas automata simulation can also be run using parallel computers 

(Buick, 1997). 

 

On the other hand, lattice gas automata method has some drawbacks. In LGA 

method, the density is independent of pressure. Conversely, the pressure is a function 

of the density. Consequently, the method is only applicable for incompressible fluid. 

LGA method is a pore-length scale approach (Lee and Chung, 1993). However, the 

limitation is not a problem for this research, since the fluids used were 

incompressible. 

 

It is impractical to model the whole reservoir by LGA. One cubic centimeter 

of reservoir sandstone may have 200,000 pores bodies. If an oilfield inter-well 

spacing is 100 meters, one needs about 2 x 1017 sites to simulate the porous medium, 

(Patzek, 2000). Thus, much time for simulating the large porous media is needed for 
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the LGA model. Computer with high performance is required to reduce the 

computation time problem. Nowadays, massively parallel processors (MPPs) are the 

most powerful computer in the world. However, the operating or maintenance costs 

of the MPPs are usually expensive. Parallel computation can be a potential 

alternative in accelerating the simulation rate (Al Geist et al, 1994a). Previous 

researchers recognized the necessity of parallel computation for LGA simulation 

(Frisch et al, 1986; Rothman, 1988; Chen S. et al, 1991; Starr et al, 1996). However, 

the computation time reduction for LGA using parallel computer has not been 

reported yet. 

 

 

 

1.2 Statement of Problem 

 

Based on the above mentioned background, some problems exist, that are: 

1. The adsorption and gelation should be simulated at pore scale. A mesoscale 

method is expected to gain a better insight of the microscopic phenomena than a 

macroscale method. One of the possible mesoscale methods is lattice gas 

automata. Can lattice gas automata method be used to simulate the phenomena? 

2. LGA method has been developed for modeling two-phase flow in porous media. 

As an extended application of the adsorption modeling, can the LGA method be 

applied for modeling polymer displacement? 

3. In general, a mesoscale method is time consuming if it is applied to simulate 

fluid flow in laboratory or larger scales. This may cause the method to be 

unfeasible. Can parallel computation be applied on lattice gas simulation to 

reduce the computation time? 

 

 

 

1.3  Objectives of the Research 

 

In order to solve the above-mentioned problems, the objectives of the 

research are listed as follows: 

1. To model adsorption, gelation and polymer displacement processes. 
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2. To conduct laboratory experiments for validating the models. 

3. To conduct parallel computation in simulating the models in order to reduce 

the computation time. 

4. To study the effects of porosity and surface length on polymer adsorption as 

well as the effects of polymer adsorption on rock and fluid properties. 

5. To study the effects of porosity, surface length and pore diameter on gelation 

process and the effects of polymer concentration on permeability reduction in 

the simulation of gelation. 

6. To study the effects of mobility ratio, adsorption and dead-end pore on 

polymer displacement performance, such as displacement efficiency, relative 

permeability and fractional flow. 

 

 

 

1.4  Scope of Work 

 

In order to achieve the objectives, the scope of work should be identified. The 

scope of work of the research covers: 

1. Conducting laboratory experiments on a single-phase and a two-phase flow in 

porous media. 

2. Modeling adsorption, gelation and polymer displacement in porous media. 

3. Modeling lattice gas automata for parallel computation. 

4. Writing simulators for adsorption, gelation and polymer displacement.  

5. Validating the simulators with the laboratory displacement experiments.  

6. Running parallel computation for the lattice gas automata models. 

7. Investigating and analyzing several parameters of rock and fluid during polymer 

injection process such as velocity, viscosity, and permeability. 

 

 The design of the experiments and methods used resulted in several 

limitations. The porous media used were the compacted loose sand grains 

(sandpacks) where the porosity of the media ranged from 0.31% to 0.52%. The use 

of the porous media type instead of sandstone cores was aimed to reduce the non-

accessible pores by polymer and allow the adsorption process to occur on the entire 

pore surface. This was due to the models being assumed that that all polymer 
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particles retained in porous media were caused by adsorption, while hydrodynamics 

retention and mechanical entrapment of polymer were not taken into account. 

Besides that, kerosene (a light fuel oil) was used as displaced liquid in the polymer 

displacement experiment. Several limitations were also associated with the 

adsorption and gelation processes where temperature was constant and the processes 

were irreversible during simulation. 

 

 

 

1.5 Summary 

 

Simulation of polymer flow in porous media has been developed for a long 

time especially in predicting macroscopic phenomena. Since natural porous rock 

system is generally heterogeneous, microscopic phenomena that arrange the 

macroscopic phenomena are important. The application of lattice gas automata 

method as a mesoscale approach is an alternative in simulating the phenomena 

deeper. 

 

This thesis is organized as follows: an introduction followed by the problem 

statement, the objectives and the scope of work as presented in this chapter. Chapter 

2 outlines the basic theory of the lattice gas automata along with reservoir fluid and 

polymer flow behavior. Chapter 3 reviews the previous studies that are relevant to 

this research. Chapter 4 presents the development of lattice gas automata for 

adsorption, gelation and polymer displacement. Chapter 5 discusses the validation of 

lattice gas automata models both for static and dynamic polymer solution and 

polymer displacement in porous media. Chapter 6 presents the simulation results and 

discussion of adsorption and gelation. The simulation results and discussion of 

polymer displacement are provided in Chapter 7. The development of lattice gas 

automata for parallel computation along with result and discussion are provided in 

Chapter 8. Finally, Chapter 9 concludes this study and provides the 

recommendations for further researches. 
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