PHYTOCHEMICAL AND BIOACTIVITY STUDIES OF MELASTOMA MALABATHRICUM L. AND MELASTOMA IMBRICATUM WALL.

DENY SUSANTI

UNIVERSITI TEKNOLOGI MALAYSIA

PHYTOCHEMICAL AND BIOACTIVITY STUDIES OF MELASTOMA MALABATHRICUM L. AND MELASTOMA IMBRICATUM WALL.

DENY SUSANTI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Science Universiti Teknologi Malaysia

> > DECEMBER 2006

In the memory of my dearest father, Darnis for being an endless sources of spirit To my mother, Enimar for her love, support andespecially her patience To my sister and brother, Devy and Dody for their support and always beside me To my dearest husband, Muhammad Taher for his deepest of love, support, inspiration and understanding which have been essential to the success in the completion of this work To my beloved sons, Muhammad Ghaisannaufal and Muhammad Luthfirrahman for their sacrifices, which motivated me to reach my dream. I am very sorry if their love were ignored for a while

ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim,

This work is the result of many years and the contributions of many people. I could not have done it without them.

My special thanks are due to my supervisors Prof. Dr. Hasnah M. Sirat for giving me the opportunity to work on this project and for the patience and support she has shown me over the years, Assoc. Prof. Dr. Farediah Ahmad for her advice and guidance and Dr. Rasadah M. Ali for guiding me in this interesting work.

I am highly indebted to The Ministry of Science, Technology and Innovation Malaysia for financial support in conducting the project. I would like to extend my thanks to The Chemistry Department technicians, Pn Zahratul Ain, Pn. Mek Zum, Pn. Mariam, En. Ayob, En. Azmi and En. Fuad. Thanks are also due to Sultanah Zanariah Library for enabling me to access the literatures and facilities of interlibrary loan. I am also indebted to Dr. Fadzillah Adibah binti Abdul Majid and Dr. Muhammad Taher from Bioprocess Department of UTM for facility in cytotoxicity assay, Pn. Mazura Pisar and Mr. Ong Boen Kean from Forest Reseach Institute of Malaysia for guiding me in the anti-inflammatory assay.

Many thanks are also due to Pn. Shajarahtunnur Jamil, Syahrizal, Wong Choon Ling, Ngai Mun Hong and Oh Boon Thai, the lab work was found easier with the friendship and many useful discussions.

My deepest appreciation goes to my husband, Muhammad Taher, for his love, patience and understanding. And my sons, Muhammad Ghaisannaufal and Muhammad Luthfirrahman, for their love and cheering me up during my study. I would also like to convey my thanks to my mother, sister and brother, for their love, patience and invaluable support.

ABSTRACT

Phytochemical and bioactivity studies of Melastoma malabathricum and M. *imbricatum* have been investigated. Isolation of the compounds was carried out using several chromatographic techniques. Chemical structures of isolated compounds were identified by spectroscopic methods including UV, IR, NMR (¹H, ¹³C, DEPT, COSY, HMQC and HMBC) and MS. The *n*-hexane, ethyl acetate (EtOAc) and methanol (MeOH) extracts of the leaves of *M. malabathricum* yielded three new compounds, namely 2,5,6trihydroxynaphtoic carbonic acid, methyl-2,5,6-trihydroxynaphtalene carbonate and flavonol glycoside derivative together with the known of auranamide, patriscabratine, α amyrin, quercetin, quercitrin and kaempferol-3-O-(2",6"-di-O-p-trans-coumaroyl)glucoside. The *n*-hexane extract of the roots gave betulinic acid, serrat-14-en-16-one and 2-(2'-hydroxyvinyl)-1-methyl-4-propoxyphthalate. The EtOAc extract of the flowers yielded three compounds, kaempferol-3-O-β-D-glucoside, kaempferol and naringenin. The MeOH extract of the flowers gave kaempferol-3-O-(2",6"-di-O-p-trans-coumaroyl)glucoside and kaempferol-3-O-B-D-glucoside. The EtOAc extract of the fruits afforded betulinic acid, while the *n*-hexane extract of the stems gave α -amyrin. Phytochemical studies of the EtOAc extract of the leaves of *M. imbricatum* afforded guercitrin and the MeOH extract gave hyperin and kaempferol-3-O-(2",6"-di-O-p-trans-coumaroyl)glucoside. The EtOAc extract of the roots and fruits yielded betulinic acid. The *n*-hexane of the stems gave α -amyrin. The EtOAc extract of the flowers yielded kaempferol, kaempferol-3-O-B-D-glucoside and quercitrin. Methylation and acetylation of isolated compounds gave the methyl ether and acetyl derivatives, respectively. The pure compounds and crude extracts were subjected to antimicrobial, antioxidant, antiinflammatory and cytotoxic assays. The MeOH extract of the fruits of M. malabathricum exhibited the strongest inhibition against bacteria, Bacillus subtilis, Streptococcus aureus, Pseudomonas aeruginosa and Escherichia coli with MIC values of 62.5, 62.5, 125.0 and 62.5 µg/mL, respectively, in the antimicrobial assay. The antioxidant assay was carried using FTC and DPPH (UV and ESR spectroscopic) methods. Kaempferol-3-O-(2",6"-di-*O-p-trans*-coumaroyl)glucoside, kaempferol-3-*O*-β-D-glucose, kaempferol, hyperin, quercetin and quercitrin showed strong activities with inhibition more than 90% in the FTC method. Quercetin was found to be the most active as radical scavenger in DPPH-UV and ESR method with IC₅₀ of 0.69 and 0.65 μ M, respectively. α -Amyrin and kaempferol-3-O-(2",6"-di-O-p-trans-coumaroyl)glucoside demonstrated the strongest activities in the antiinflammatory assay of TPA mouse ear oedema with IC50 of 0.11 and 0.34 mM/ear, respectively. The EtOAc extract of the leaves of *M. malabathricum* displayed high activity with the inhibition of 94.3%. Kaempferol-3-O-(2",6"-di-O-p-trans-coumaroyl)glucoside gave an IC₅₀ of 5.6 µM in the PAF anti-inflammatory assay, while the MeOH extract of the leaves of *M. imbricatum* showed moderate activity with the inhibition of 78.0%. The cytotoxicity study was carried out using MTT assay on MCF7 cell line showed that kaempferol-3-O-(2",6"-di-O-p-trans-coumaroyl)glucoside and naringenin were found to be active in inhibiting cell proliferation of MCF7 with IC₅₀ of 0.28 and 1.3 μ M, respectively.

ABSTRAK

Kajian kimia dan bioaktiviti telah dijalankan ke atas Melastoma malabathricum dan *M. imbricatum*. Pengasingan sebatian dijalankan dengan pelbagai kaedah kromatografi. Struktur sebatian tulen dikenal pasti dengan menggunakan teknik spektroskopi termasuk UL, IM, RMN (¹H, ¹³C, DEPT, COSY, HMQC dan HMBC) serta SJ. Tiga sebatian baru telah diasingkan daripada ekstrak n-heksana, etil asetat (EtOAc) dan metanol (MeOH) bagi daun M. Malabathricum, iaitu asid karbonik 2,5,6-trihidroksinaftoat, metil-2,5,6trihidroksinaftalen karbonat, terbitan flavonol glukosida dan sebatian yang sudah diketahui iaitu auranamida, patriskabratin, α -amirin, kuersetin, kuersitrin dan kaempferol-3-O-(2",6"-di-O-p-trans-kumaril)glukosida. Ekstrak n-heksana akar menghasilkan asid betulinik, serat-14-en-16-on dan asid 2-(2'-hidroksivinil)-1-metil-4-propoksiftalat. Ekstrak EtOAc bunga menghasilkan tiga sebatian, iaitu kaempferol-3-O- β -D-glukosida, kaempferol dan naringenin. Ekstrak MeOH pula menghasilkan kaempferol-3-O-(2",6"-di-*O-p-trans*-kumaril)glukosida dan kaempferol-3-*O*-β-D-glukosida. Ekstrak EtOAc bagibuah menghasilkan asid betulinik, manakala ekstrak *n*-heksana batang menghasilkan α -amirin. Kajian fitokimia ke atas ekstrak EtOAc daun *M. imbricatum* menghasilkan kuersitrin dan ekstrak MeOH menghasilkan hiperin dan kaempferol-3-O-(2",6"-di-O-p-trans-kumaril)glukosida. Ekstrak EtOAc akar dan buah menghasilkan asid betulinik. Ekstrak n-heksana batang menghasilkan α -amirin. Ekstrak EtOAc bunga menghasilkan kaempferol, kaempferol-3-O-B-D-glukosida dan kuersitrin. Pemetilan dan pengasetilan sebatian tulen menghasilkan terbitan masing-masing eter metil dan ester asetil. Kajian keaktifan biologi ke atas sebatian tulen dan ekstrak mentah dilakukan menggunakan ujian antimikrob. antioksidan, antibengkak dan sitotoksik. Ekstrak bagi MeOH buah M. malabathricum menunjukkan perencatan yang kuat terhadap bakteria Bacillus subtilis, Streptococcus aureus, Pseudomonas aeruginosa dan Escherichia coli dengan nilai MIC 62.5, 62.5, 125.0 dan 62.5 µg/mL dalam ujian antimikrob. Kajian antioksidan dengan kaedah FTC dan DPPH (spektroskopi UV dan ESR) memperlihatkan kaempferol-3-O-(2",6"-di-O-p-transkumaril)glukosida, kaempferol-3-O-β-D-glukosida, kaempferol, hiperin, kuersetin dan kuersitrin memberikan aktiviti yang kuat dengan peratus perencatan lebih daripada 90% dengan kaedah FTC. Kuersetin didapati paling aktif sebagai perangkap radikal dalam kaedah DPPH-UV dan ESR dengan nilai IC₅₀ 0.69 dan 0.65 μ M. Ujian antibengkak menggunakan kaedah TPA memperlihatkan α-amirin dan kaempferol-3-O-(2",6"-di-O-ptrans-kumaril)glukosida memberikan IC₅₀ 0.11 dan 0.34 mM/telinga. Ekstrak EtOAc daripada daun M. malabathricum memperlihatkan aktiviti yang tinggi dengan peratus perencatan 94.3%. Kajian antibengkak dengan kaedah PAF memperlihatkan kaempferol-3-O-(2",6"-di-O-p-trans-kumaril)glukosida mempunyai IC₅₀ 5.6 µM, manakala ekstrak metanol daripada daun *M. imbricatum* memperlihatkan peratus perencatan 78.0%. Kajian sitotoksik dengan kaedah MTT pada sel MCF7 memperlihatkan kaempferol-3-O-(2",6"-di-*O-p-trans*-kumaril)glukosida dan naringenin merencat pembiakan sel MCF7 dengan IC₅₀ 0.28 dan 1.3 µM.

TABLE OF CONTENTS

CHA	PTER	TITLE	PAGE
		TITLE	i
		DECLARATION	ii
		DEDICATION	iii
		ACKNOWLEDGEMENTS	iv
		ABSTRACT	V
		ABSTRAK	vi
		TABLE OF CONTENTS	vii
		LIST OF TABLES	xiv
		LIST OF FIGURES	xvi
		LIST OF SYMBOLS	xix
		LIST OF ABBREVIATIONS	XX
		LIST OF APPENDICES	xxiv
1.	INTR	ODUCTION	1
	1.1	General Introduction	1
	1.2	Drug Discovery	2
	1.3	Botany and Distribution of Melastomataceae	4
	1.4	Botany and Distribution of Genus Melastoma	5
		1.4.1 Melastoma malabathricum L	6
		1.4.2 Melastoma imbricatum Wall	7
	1.5	Chemical Investigation on Melastomataceae	8
	1.6	Chemical Investigation on Melastoma	16
	1.7	Bioactivity Investigation on Melastomataceae	21
	1.8	Background of the Research	23

	1.9	Object	tive of the Study	24
	1.10	Scope	s of the Study	24
2.	PHY	ГОСНЕ	CMICAL STUDIES ON <i>MELASTOMA</i> SPECIES	26
	2.1	The Lo	eaves of Melastoma malabathricum L	26
		2.1.1	Auranamide (81)	27
		2.1.2	Patriscabratine (82)	31
		2.1.3	α -Amyrin (73)	36
		2.1.4	2,5,6-Trihydroxynaphtalene carbonic acid (83)	37
		2.1.5	Quercitrin (76)	44
		2.1.6	Quercetin (7)	46
		2.1.7	Kaempferol-3- <i>O</i> -(2",6"-di- <i>O</i> - <i>p</i> - <i>trans</i> - coumaroyl)glucoside (87)	48
		2.1.8	Quercitrin (76)	51
		2.1.9	Methyl 2,5,6-trihydroxynaphtalene carbonate (88)	51
		2.1.10	Flavonol glycoside derivative (90)	62
	2.2	The R	oots of Melastoma malabathricum L	74
		2.2.1	2-(2'-Hydroxyvinyl)-1-methyl-4- propoxyphthalate (91)	75
		2.2.2	Serrat-14-en-16-one (92)	76
		2.2.3	Betulinic acid (93)	77
	2.3	The St	tems of Melastoma malabathricum L	78
		2.3.1	α -Amyrin (73)	78
	2.4	The Fl	owers of Melastoma malabathricum L	78
		2.4.1	Naringenin (94)	79
		2.4.2	Kaempferol (8)	81
		2.4.3	Kaempferol-3-O-glucoside (11)	82
		2.4.4	Kaempferol-3- <i>O</i> -(2",6"-di- <i>O</i> - <i>p</i> - <i>trans</i> - coumaroyl)glucoside (87)	83
	2.5	The F1	cuits of Melastoma malabathricum L	84
		2.5.1	Betulinic acid (93)	84
	2.6	The Lo	eaves of Melastoma imbricatum Wall	85
		2.6.1	Quercitrin (76)	85

	2.6.2	Kaempferol-3- <i>O</i> -(2",6"-di- <i>O</i> - <i>p</i> - <i>trans</i> - coumaroyl)glucoside (87)	86
	2.6.3	Hyperin (10)	86
2.7	The R	oots of Melastoma imbricatum Wall	88
	2.7.1	Betulinic acid (93)	88
2.8	The St	tems of Melastoma imbricatum Wall	88
	2.8.1	α -Amyrin (73)	89
2.9	The Fl	lowers of Melastoma imbricatum Wall	89
	2.9.1	Kaempferol (8)	90
	2.9.2	Quercitrin (76)	90
	2.9.3	Kaempferol-3-O-glucoside (11)	91
2.10	The Fi	ruits of Melastoma imbricatum Wall	91
	2.10.1	Betulinic acid (93)	91
BIOA	CTIVI	TY STUDIES ON MELASTOMA SPECIES	92
3.1	Antim	icrobial	92
	3.1.1	Antimicrobial Agent	93
		3.1.1.1 Selective Toxicity	93
		3.1.1.2 The Spectrum of Activity	93
		3.1.1.3 Modes of Action	94
	3.1.2	Methods for Evaluating Antimicrobial Drug	95
		3.1.3.1 Diffusion Susceptibility Test	95
		3.1.3.2 Minimum Inhibition Concentration (MIC) Test	96
		3.1.3.3 Minimum Bactericidal Concentration (MBC) Test	96
	3.1.4	Antimicrobial study on Melastoma species	97
3.2	Antio	kidant	101
	3.2.1	Mechanism of Antioxidant	103
	3.2.2	Electron Spin Resonance (ESR)	104
	3.2.3	Antioxidant Activity of Melastoma Species	106
		3.2.3.1 Ferric Thiocyanate (FTC) Method	107
		3.2.3.2 Free Radical Scavenging Activity (DPPH)	114

3.

		3.2.4.3 UV Spectrophotometry Method	115
		3.2.4.4 Electron Spin Resonance (ESR) Spectrometry Method	119
		3.2.4.5 Structure-Activity Relationships	122
3.3	Anti-i	nflammatory	123
	3.3.1	Platelet-activating Factor (PAF)	124
	3.3.2	Mechanism of Action	125
	3.3.3	Anti-inflammatory Activity of <i>Melastoma</i> Species	125
		3.3.3.1 12- <i>O</i> -tetradecanoylphorbol 13-acetate (TPA) Induced Mouse Ear Oedema	125
		3.3.3.2 Platelet Activating Factor (PAF) Receptor Binding Antagonist	129
3.4	Cytote	oxicity	130
	3.4.1	Hormones that Affect Cancer	131
	3.4.1.	1 Endometrial Cancer	131
		3.4.1.2 Ovarian Cancer	132
		3.4.1.3 Breast Cancer	132
	3.4.2	Therapeutic Agents	132
	3.4.3	MTT Assay	133
	3.4.4	Cytotoxic Effect of <i>Melastoma</i> Species on MCF7 Human Breast Cancer Cell	134
EXP	ERIME	NTAL	137
4.1	Phyto	chemicals Study	137
	4.1.1	General Experimental Procedures	137
	4.1.2	Materials	138
		4.1.2.1 Chemicals	138
		4.1.2.2 Plant Materials	138
	4.1.3	Extraction of the Leaves of <i>Melastoma</i> malabathricum L	139
		4.1.3.1 Auranamide (81)	139
		4.1.3.2 Patriscabratine (82)	140

3

4.1.3.3 α-Amyrin (**73**) 141

	4.1.3.4 2,5,6-Trihydroxynaphtalene carbonic acid (83)	142
	4.1.3.5 Quercitrin (76)	143
	4.1.3.6 Quercitrin trimethyl ether (84)	144
	4.1.3.7 Quercitrin acetate derivative (85)	144
	4.1.3.8 Quercetin (7)	145
	4.1.3.9 Quercetin tetramethyl ether (86)	146
	4.1.3.10 Kaempferol-3- <i>O</i> -(2",6"-di- <i>O</i> - <i>p</i> - <i>trans</i> -coumaroyl)glucoside (87)	147
	4.1.3.11 Quercitrin (76)	148
	4.1.3.12 Methyl 2,5,6-trihydroxy- naphtalene carbonate(88)	148
	4.1.3.13 Derivative of methyl 2,5,6- trihydroxynaphtalene carbonate (89)	148
	4.1.3.14 Flavonol glycoside derivative (90)	149
4.1.3	Extraction of the Roots of <i>Melastoma</i> malabathricum L	150
	4.1.4.1 2-(2'-Hydroxyvinyl)-1-methyl-4- propoxyphthalate (91)	150
	4.1.4.2 Serrat-14-en-16-one (92)	151
	4.1.4.3 Betulinic acid (93)	152
4.1.5	Extraction of the Stems of <i>Melastoma</i> malabathricum L	153
	4.1.5.1 α-Amyrin (73)	153
4.1.6	Extraction of the Flower of <i>Melastoma</i> malabathricum L	154
	4.1.6.1 Naringenin (94)	154
	4.1.6.2 Kaempferol (8)	155
	4.1.6.3 Kaempferol 3-O-glucoside (11)	156
	4.1.6.4 Kaempferol-3- <i>O</i> -(2",6"-di- <i>O</i> - <i>p</i> -trans- coumaroyl)glucoside (87)	157
4.1.7	Extraction of the Fruits of <i>Melastoma</i> malabathricum L	157
	4.1.7.1 Betulinic acid (93)	157
4.1.8	Extraction of the Leaves of <i>Melastoma imbricatum</i> Wall	158
	4.1.8.1 Quercitrin (76)	158

	4.1.8.2 Kaempferol-3- <i>O</i> -(2",6"-di- <i>O</i> - <i>p</i> - <i>trans</i> - coumaroyl)glucoside (87)	159
	4.1.8.3 Hyperin (10)	159
4.1.9	Extraction of the Roots of <i>Melastoma imbricatum</i> Wall	160
	4.1.9.1 Betulinic acid (93)	161
4.1.10	Extraction of the Stems of <i>Melastoma imbricatum</i> Wall	161
	4.1.10.1 α-Amyrin (73)	161
4.1.11	Extraction of the Flowers of <i>Melastoma imbricatum</i> Wall	162
	4.1.11.1 Kaempferol (8)	163
	4.1.11.2 Quercitrin (76) and Kaempferol- 3- <i>O</i> -glucoside (11)	163
4.1.12	Extraction of the Fruits of <i>Melastoma</i> <i>imbricatum</i> Wall	163
	4.1.12.1 Betulinic acid (93)	164
4.1.13	Hydrolysis of the Isolated Compounds	164
Bioac	tivity Studies	165
4.2.1	General Instrumentation	165
	4.2.2.1 Material	165
	4.2.2.1 Chemical	165
	4.2.2.2 Animal, Microorganism and Cell Culture	166
4.2.3	Antimicrobial Assay	166
	4.2.3.1 Apparatus	166
	4.2.3.2 Preparation of Agar and Broth	167
	4.2.3.3 Culturing Microbe	167
	4.2.3.4 Preparation of Agar Plate and Mc Farland Solution	167
	4.2.3.5 Sample Preparation	168
	4.2.3.6 Disc Diffusion Method	168
	4.2.3.7 Minimum Inhibition Concentration (MIC)	169
	4.2.3.8 Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC)	169

4.2

		4.2.4	Antioxid	ant	172
			4.2.4.1 I	Ferric Thiocyanate (FTC) Method	172
				Free Radical Scavenging Activity (DPPH)	174
				UV Spectrophotometry Method	174
				Electron Spin Resonance (ESR) Spectroscopy Method	177
		4.2.5	Anti-infl	ammatory	180
				12-O-tetradecanoylphorbol 13-acetate (TPA) Induced Mouse Ear Oedema	180
			4.2.5.2 \$	Sample Preparation	180
				Assay of TPA Induced	181
				Platelet Activating Factor (PAF) Receptor Binding Antagonist	182
			4.2.5.5 \$	Sample Preparation	182
			4.2.5.6 I	Preparation of Rabbit Platelets	183
				PAF Receptor Binding Antagonist Assay	183
		4.2.6	Cytotoxi	c Assay	185
		4.2.7	Statistica	ıl Analysis	185
5.	CON	CLUSI	ONS		186
	5.1	Phyto	chemical S	Studies	186
	5.2	Bioact	ivity Stud	ies	188
REF	ERENG	CES			191
APP	ENDIC	ES			204

LIST OF TABLES

TABLE]	NO.
---------	-----

TITLE

PAGE

2.1	The ¹ H, ¹³ C NMR, FGCOSY, HMQC and HMBC data for 81 (500 MHz in CDCl ₃)	30
2.2	The ¹ H, ¹³ C NMR, FGCOSY, HMQC and HMBC data of 82 (500 MHz in CDCl ₃).	34
2.3	The ¹ H, ¹³ C NMR, FGCOSY, HMQC and HMBC data for 87 (600 MHz in Acetone- d_6)	50
2.4	The ¹ H, ¹³ C NMR, HMQC and HMBC data for 88 (400 MHz in Acetone- d_6) and 89 (300 MHz, CDCl ₃)	52
2.5	The ¹ H and ¹³ C NMR, ¹ H- ¹ H COSY and HMBC of 90 (500 MHz, CD ₃ OD)	74
3.1	The antibacterial activity of <i>M. malabathricum</i> and <i>M. imbricatum</i>	100
3.2	The antifungal activity of <i>M. malabathricum</i> and <i>M. imbricatum</i>	101
3.3	Comparison of the absorbance values and percent of linoleic acid peroxidation of the extract of <i>M. malabathricum</i> and <i>M. imbricatum</i> as measured by FTC antioxidant assay	112
3.4	The absorbance values and percent of linoleic acid peroxidation of the flavonoids as measured by FTC antioxidant assay	113
3.5	The IC ₅₀ of the methanol extract from <i>M. malabathricum</i> and <i>M. imbricatum</i> by UV Spectrophotometry method	117
3.6	The IC ₅₀ of the isolated compounds from <i>M. malabathricum</i> and <i>M. imbricatum</i> by UV Spectrophotometry method	118
3.7	The IC ₅₀ of the methanol extract from <i>M. malabathricum</i> and <i>M. imbricatum</i> by ESR spectrometry method	120

3.8	The IC ₅₀ of the isolated compounds from M . malabathricum and M . imbricatum by ESR spectrometry method	120
3.9	The IC_{50} and inhibitory effect of the isolated compounds on mice ear oedema	128
3.10	IC ₅₀ and inhibitory effect of the isolated compounds on PAS assay	130
4.1	Results of minimum inhibition concentration (MIC-Bacteria)	170
4.2	Results of minimum inhibition concentration (MIC- Fungi)	171
4.3	Results of minimum bactericidal concentration (MBC)	171
4.4	Results of minimum fungicidal concentration (MFC)	172
4.5	Results of antioxidant assay for crude extracts from <i>M. malabathricum</i> by FTC method	173
4.6	Results of antioxidant assay for crude extracts from <i>M. imbricatum</i> by FTC method	173
4.7	Results of antioxidant for isolated compounds by FTC method	174
4.8	Results of antioxidant for crude extract from <i>M. malabathricum</i> by UV spectrophotometry	175
4.9	Results of antioxidant for crude extract from <i>M. imbricatum</i> by UV spectrophotometry	176
4.10	Results of antioxidant for isolated compounds by UV spectrophotometry	177
4.11	Results of antioxidant for crude extract from <i>M. malabathricum</i> by ESR spectrometry method	178
4.12	Results of antioxidant for crude extract from <i>M. imbricatum</i> by ESR spectrometry method	179
4.13	Results of antioxidant for crude extract from <i>M. malabathricum</i> by ESR spectrometry method	180
4.14	Result of anti-inflammatory assay by TPA method	182
4.15	Results of anti-inflammatory by PAF assay	184
5.1	Distribution of the phytochemical found in the different part of <i>M. malabathricum</i> and <i>M. imbricatum</i>	187

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

Melastoma malabathricum L	7
Melastoma imbricatum Wall	8
The infrared spectrum of 2,5,6-trihydroxynaphtalene carbonic acid (83) (KBr Disc)	38
The ¹ H NMR spectrum 2,5,6- trihydroxynaphtalene carbonic acid (83) (500 MHz, in CD ₃ OD)	39
The ¹³ C NMR spectrum of 2,5,6-trihydroxy- naphthalene carbonic acid (83) (125 MHz, in CD ₃ OD)	40
The DEPT spectrum of 2,5,6-trihydroxy naphthalene carbonic acid (83) (125 MHz, in CD ₃ OD)	41
The FGHMQC spectrum of 2,5,6-trihydroxy naphthalene carbonic acid (83) (500 MHz, 125 MHz, in CD ₃ OD)	42
The FGHMBC spectrum of 2,5,6-trihydroxynaphtalene carbonic acid (83) (500 MHz, 125 MHz, in CD ₃ OD)	43
The infrared spectrum of methyl 2,5,6-trihydroxy- naphthalene carbonate (88) (KBr Disc)	53
The ¹ H NMR spectrum of methyl-2,5,6-trihydroxy- naphthalene carbonate (88) (400 MHz, in Acetone- d_6)	54
The ¹³ C NMR spectrum of methyl-2,5,6-trihydroxy- naphthalene carbonate (88) (100 MHz, in Acetone- d_6)	55
The DEPT spectrum of methyl-2,5,6-trihydroxy- naphthalene carbonate (88) (100 MHz, in Acetone- d_6)	56
The FGHMQC spectrum of 2,5,6-trihydroxy- naphthalene carbonate (88) (600 MHz, 150 MHz, in Acetone- d_6)	57
The FGHMBC spectrum of methyl-2,5,6-trihydroxy- naphthalene carbonate (88) (600 MHz, 150 MHz, in Acetone- d_6)	58
	Melastoma imbricatum WallThe infrared spectrum of 2,5,6-trihydroxynaphtalene carbonic acid (83) (KBr Disc)The ¹ H NMR spectrum 2,5,6- trihydroxynaphtalene carbonic acid (83) (500 MHz, in CD ₃ OD)The ¹³ C NMR spectrum of 2,5,6-trihydroxy- naphthalene carbonic acid (83) (125 MHz, in CD ₃ OD)The DEPT spectrum of 2,5,6-trihydroxy naphthalene carbonic acid (83) (125 MHz, in CD ₃ OD)The FGHMQC spectrum of 2,5,6-trihydroxy naphthalene carbonic acid (83) (500 MHz, 125 MHz, in CD ₃ OD)The FGHMBC spectrum of 2,5,6-trihydroxy naphthalene carbonic acid (83) (500 MHz, 125 MHz, in CD ₃ OD)The infrared spectrum of 2,5,6-trihydroxynaphtalene carbonic acid (83) (500 MHz, 125 MHz, in CD ₃ OD)The infrared spectrum of methyl 2,5,6-trihydroxy- naphthalene carbonate (88) (KBr Disc)The ¹ H NMR spectrum of methyl-2,5,6-trihydroxy- naphthalene carbonate (88) (100 MHz, in Acetone-d ₆)The ¹³ C NMR spectrum of methyl-2,5,6-trihydroxy- naphthalene carbonate (88) (100 MHz, in Acetone-d ₆)The FGHMQC spectrum of 2,5,6-trihydroxy- naphthalene carbonate (88) (100 MHz, in Acetone-d ₆)The FGHMQC spectrum of 2,5,6-trihydroxy- naphthalene carbonate (88) (100 MHz, in Acetone-d ₆)The FGHMQC spectrum of 2,5,6-trihydroxy- naphthalene carbonate (88) (100 MHz, in Acetone-d ₆)The FGHMBC spectrum of methyl-2,5,6-trihydroxy- naphthalene carbonate (88) (600 MHz, 150 MHz, in Acetone-d ₆)

2.13	The infrared spectrum of methyl-2,5,6-trimethoxy- naphthalene carbonate (89) (KBr Disc)	59
2.14	The ¹ H NMR spectrum of methyl-2,5,6-trimethoxy- naphthalene carbonate (89) (300 MHz, CDCl ₃)	60
2.15	The ¹³ C NMR spectrum of methyl-2,5,6-trimethoxy- naphthalene carbonate (89) (75 MHz, in CDCl ₃)	61
2.16	The ultraviolet spectrum of flavonol glycoside derivative (90)	64
2.17	The ¹ H NMR spectrum of flavonol glycoside derivative (90) (500 MHz, in CD ₃ OD)	65
2.18	The FGCOSY spectrum of flavonol glycoside derivative (90) (500 MHz, in CD ₃ OD)	66
2.19	The ¹³ C NMR spectrum of flavonol glycoside derivative (90) (125 MHz, in CD ₃ OD)	67
2.20	The DEPT spectrum of flavonol glycoside derivative (90) (125 MHz, in CD ₃ OD)	68
2.21	The FGHMQC spectrum of flavonol glycoside derivative (90) (500 MHz, 125 MHz, in CD ₃ OD)	69
2.22	The expansion of FGHMQC spectrum of flavonol glycoside derivative (90) (500 MHz, 125 MHz, in CD ₃ OD)	70
2.23	The FGHMBC spectrum of flavonol glycoside derivative (90) (500 MHz, 125 MHz, in CD ₃ OD)	71
2.24	The expansion of the FGHMBC spectrum of flavonol glycoside derivative (90) (500 MHz, 125 MHz, in CD ₃ OD)	72
2.25	The infrared spectrum of flavonol glycoside derivative (90) (KBr Disc)	73
3.1	Antioxidants in the defense system against free radical induced oxidative damage	105
3.2	Antioxidant activity of <i>M. malabathricum</i> extract as measured by the FTC method	109
3.3	Antioxidant activity of <i>M. imbricatum</i> extract as measured by the FTC method	110
3.4	Antioxidant activity of some flavonoids from <i>M. malabathricum</i> and <i>M. imbricatum</i> as measured by the FTC method	111
3.5	C ₆ -C ₃ -C ₆ Configurations of flavonoid	112
3.6	Reaction of DPPH with an antioxidant compound	115
3.7	Scavenging activity of selected compounds by ESR spectrometry	121

3.8	Mast cell mediator and inflammation	126
3.9	Mechanism of the cleavage of MTT	134
3.10	Morphology of human breast cancer (MCF 7)	136

LIST OF SYMBOLS

$\left[\alpha\right]_{D}^{24}$	-	Specific rotation
δ	-	Chemical shift
3	-	Molar extinction coefficient
¹³ C	-	Carbon-13
°C	-	degree of Celsius
$^{1}\mathrm{H}$	-	Proton
J	-	Coupling constant in Hertz
λ	-	Wavelength
ν	-	Wavenumber

LIST OF ABBREVIATIONS

Abs.	-	absorbance
Ac ₂ O	-	acetic acid anhydride
AlCl ₃	-	aluminium chloride
BHT	-	Butylated Hydroxy Toluene
br	-	broad
CC	-	Column Chromatography
CDCl ₃	-	deuterated chloroform
CD ₃ OD	-	deuterated methanol
CHCl ₃	-	chloroform
CIMS	-	Chemical Ionization Mass Spectrometry
COSY	-	Correlation Spectroscopy
cm ⁻¹	-	reciprocal centimeter (wavenumber)
¹³ C NMR	-	carbon-13 Nuclear Magnetic Resonance
d	-	doublet
dd	-	double doublet
dt	-	double triplet
dec.	-	decomposed
DEPT	-	Distortionless Enhancement Polarization Transfer
DMEM	-	Dulbecco's Modified Eagle Medium
DMSO- d_6	-	deuterated dimethyl sulphoxide
DNA	-	deoxyribonucleic acid
DPPH	-	2,2-diphenyl-1-picrylhydrazyl
EIMS	-	Electron Impact Mass Spectrometry
EPRT	-	estrogens/progesterone replacement therapy

EtOAc	-	ethyl acetate
ESR	-	Electron Spin Resonance
EPR	-	Electronic Paramagnetic Resonance
FABMS	-	Fast Atom Bombardment Mass Spectrometry
FTC	-	Ferric Thiocyanate
g	-	gram
GC	-	Gas Chromatography
GSH	-	Glutathione peroxide
H_3BO_3	-	boric acid
HCl	-	hydrochloric acid
HEPES	-	<i>N</i> -[2-Hydroxyethyl]piperazine- <i>N</i> '-[2-ethanesulfonic acid]
HHDP	-	hexahydroxydiphenoyl
¹ H NMR	-	Proton Nuclear Magnetic Resonance
HMBC	-	Heteronuclear Multiple-Bond Connectivity
HMQC	-	Heteronuclear Multiple Quantum Coherence
HRT	-	estrogens replacement therapy
Hz	-	Hertz
IC ₅₀	-	concentration that inhibits a response by 50% relative to a
		negative control
IgE	-	immunoglobulin E
IR	-	Infrared
J	-	coupling constant
KBr	-	potassium bromide
L	-	liter
m	-	multiplet
М	-	molar concentration
M^+	-	molecular ion
MAO	-	monoamine oxidase
max	-	maximum
MBC	-	Minimum Bactericidal Concentration
MCF7	-	Human Breast Cancer cell line

МеОН	-	methanol
MFC	-	Minimum Fungicidal Concentration
MgSO ₄	-	magnesium sulphate
μg	-	microgram
MHz	-	megahertz
MIC	-	Minimum Inhibition Concentration
mL	-	milliliter
mM	-	millimolar
μΜ	-	micromolar
mp.	-	melting point
MS	-	Mass Spectra
MTT	-	3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
m/z	-	mass to charge ratio
NA	-	Nutrient Agar
NB	-	Nutrient Broth
NaOAc	-	sodium acetate
NaOMe	-	sodium methoxide
nm	-	nanometer
PAF	-	platelet activating factor
PBS	-	phosphate buffer saline
PGI1	-	prostaglandin I1
PGE2	-	prostaglandin E2
PGF2	-	prostaglandin F2
PGH	-	prostaglandin H
PHGPX	-	phospholipids hydroperoxide glutathione peroxidase
РКС	-	protein kinase C
%	-	percent
ppm	-	parts per million
PTLC	-	Preparative Thin Layer Chromatography
q	-	quartet
rel. int.	-	relative intensity

\mathbf{R}_{f}	-	retention factor
S	-	singlet
SD	-	standard deviation
sept	-	septet
SOD	-	superoxide dismustase
t	-	triplet
TLC	-	Thin Layer Chromatography
TPA	-	12-O-Tetradecanoylphorbol-13-acetate
UV	-	Ultraviolet
VLC	-	Vacuum Liquid Chromatography

LIST OF APPENDICES

APPI	ENDIX TITLE	PA	AGE
1.	The infrared spectrum of auranamide (81) (KE	Br Disc)	204
2.	The ¹ H NMR spectrum of auranamide (81) (500 MHz, in CDCl ₃)		205
3.	The FGCOSY spectrum of auranamide (81) (500 MHz, CDCl ₃)		206
4.	The expansion of the FGCOSY spectrum of au (500 MHz, CDCl ₃)	ıranamide (81)	207
5.	The ¹³ C NMR spectrum of auranamide (81) (125 MHz, in CDCl ₃)		208
6.	The FABMS spectrum of auranamide (81)		209
7.	The DEPT spectrum of auranamide (81) (125 MHz, in CDCl ₃)		210
8.	The FGHMQC spectrum of auranamide (81) (500 MHz, 125 MHz, in CDCl ₃)		211
9.	The expansion of the FGHMQC spectrum of a (81) (500 MHz, 125 MHz, in CDCl ₃)	uranamide	212
10.	The FGHMBC spectrum of auranamide (81) (500 MHz, 125 MHz, in CDCl ₃)		213
11.	The expansion of the FGHMBC spectrum of auranamide (81) (500 MHz, 125 MHz, in CDC		214
12.	The infrared spectrum of patriscabratine (82) (KBr Disc)	215
13.	The ¹ H NMR spectrum of patriscabratine (82) (500 MHz, in CDCl ₃)		216
14.	The ¹³ C NMR spectrum of patriscabratine (82) (125 MHz, in CDCl ₃))	217
15.	The EIMS spectrum of patriscabratine (82)		218
16.	The DEPT spectrum of patriscabratine (82) (125 MHz, in CDCl ₃)		219
17.	The FGCOSY spectrum of patriscabratine (82 (500 MHz, in CDCl ₃))	220

18.	The expansion of the FGCOSY spectrum of patriscabratine (82) (500 MHz, in CDCl ₃)	221
19.	The HMQC spectrum of patriscabratine (82) (500 MHz, 125 MHz, in CDCl ₃)	222
20.	The expansion of the HMQC spectrum of patriscabratine (82) (500 MHz, 125 MHz, in CDCl ₃)	223
21.	The FGHMBC spectrum of patriscabratine (82) (500 MHz, 125 MHz, in CDCl ₃)	224
22.	The expansion of the FGHMBC spectrum of patriscabratine (82) (500 MHz, 125 MHz, in CDCl ₃)	225
23.	The infrared spectrum of α -amyrin (73) (KBr Disc)	226
24.	The ¹ H NMR spectrum of α -amyrin (73) (500 MHz, in DMSO- <i>d</i> ₆)	227
25.	The mass spectrum of α -amyrin (73)	228
26.	The ¹³ C NMR spectrum of α - amyrin (73) (125 MHz, in DMSO- d_6)	229
27.	The DEPT spectrum of α -amyrin (73) (125 MHz, in DMSO- d_6)	230
28.	The infrared spectrum of quercitrin (76) (KBr Disc)	231
29.	The ultraviolet spectra of quercitrin (76)	232
30.	The ¹ H NMR spectrum of quercitrin (76) (500 MHz, in CD ₃ OD)	233
31.	The FGCOSY spectrum of quercitrin (76) (500 MHz, in CD ₃ OD)	234
32.	The ¹³ C NMR spectrum of quercitrin (76) (125 MHz, in CD ₃ OD)	235
33.	The DEPT spectrum of quercitrin (76) (125 MHz, in CD ₃ OD)	236
34.	The FGHMQC spectrum of quercitrin (76) (500 MHz, 125 MHz, in CD ₃ OD)	237
35.	The infrared spectrum of quercitrin trimethyl ether (84) (KBr Disc)	238
36.	The ¹ H NMR spectrum of quercitrin trimethyl ether (84) (300 MHz, in CDCl ₃)	239
37.	The ¹³ C spectrum of quercitrin trimethyl ether (84) (75 MHz, in CDCl ₃)	240
38.	The DEPT spectrum of quercitrin trimethyl ether (84) (75 MHz, in $CDCl_3$)	241
39.	The infrared spectrum of quercitrin acetate derivative (85) (KBr Disc)	242

40.	The ¹ H NMR spectrum of quercitrin acetate derivative (85) (300 MHz, in Acetone- d_6)	243
41.	The ultraviolet spectra of quercetin (7)	244
42.	The infrared spectrum of quercetin (7) (KBr Disc)	245
43.	The ¹ H NMR spectrum of quercetin (7) (500 MHz, in Acetone- d_6)	246
44.	The ¹³ C NMR spectrum of quercetin (7) (125 MHz, in Acetone- d_6)	247
45.	The mass spectrum of quercetin (7)	248
46.	The infrared spectrum of quercetin tetramethyl ether (86) (KBr Disc)	249
47.	The ¹ H NMR spectrum of quercetin tetramethyl ether (86) (300 MHz, in CDCl ₃)	250
48.	The infrared spectrum of kaempferol-3- <i>O</i> -(2",6"- di- <i>O-p-trans</i> -coumaroyl)glucoside (87) (KBr Disc)	251
49.	The ultraviolet spectra of kaempferol-3- <i>O</i> -(2",6"- di- <i>O-p-trans</i> -coumaroyl)glucoside (87)	252
50.	The ¹ H NMR spectrum of kaempferol-3- O -(2",6"-di- O - <i>p</i> - <i>trans</i> -coumaroyl)glucoside (87) (600 MHz, in Acetone- d_6)	253
51.	The ¹³ C NMR spectrum of kaempferol-3- O -(2",6"-di- O - <i>p</i> - <i>trans</i> -coumaroyl)glucoside (87) (150 MHz, in Acetone- d_6)	254
52.	The FGCOSY spectrum of kaempferol-3- <i>O</i> -(2",6"- di- <i>O-p-trans</i> -coumaroyl)glucoside (87) (500 MHz, in Acetone- <i>d</i> ₆)	255
53.	The FGHMQC spectrum of kaempferol-3- <i>O</i> -(2",6"- di- <i>O-p-trans</i> -coumaroyl)glucoside (87) (500 MHz, 150 MHz, in Acetone- <i>d</i> ₆)	256
54.	The mass spectrum of kaempferol-3- <i>O</i> -(2",6"-di- <i>O</i> - <i>p</i> - <i>trans</i> -coumaroyl)glucoside (87)	257
55.	The FGHMBC spectrum of kaempferol-3- <i>O</i> -(2",6"- di- <i>O-p-trans</i> -coumaroyl)glucoside (87) (500 MHz, 150 MHz, in Acetone- <i>d</i> ₆)	258
56.	The ¹ H NMR spectrum of 2-(2'-hydroxyvinyl) methyl-4-propoxyphthalate (91) (300 MHz, in CDCl ₃)	259
57.	The GC spectrum of 2-(2'-hydroxyvinyl) methyl-4-propoxyphthalate (91)	260
58.	The mass spectrum of 2-(2'-hydroxyvinyl) methyl-4-propoxyphthalate (91)	261

59.	The infrared spectrum of serrat-14-en-16-one (92) (KBr Disc)	262
60.	The ¹ H NMR spectrum of serrat-14-en-16-one (92) (400 MHz, in CDCl ₃)	263
61.	The ¹³ C NMR spectrum of serrat-14-en-16-one (92) (100 MHz, in CDCl ₃)	264
62.	The DEPT Spectrum of serrat-14-en-16-one (92) (100 MHz, in CDCl ₃)	265
63.	The infrared spectrum of betulinic acid (93) (KBr Disc)	266
64.	The ¹ H NMR spectrum of betulinic acid (93) (500 MHz, in DMSO- d_6)	267
65.	The ¹³ C NMR spectrum of betulinic acid (93) (125 MHz, in DMSO- d_6)	268
66.	The DEPT spectrum of betulinic acid (93) (125 MHz, in DMSO- d_6)	269
67.	The mass spectrum of betulinic acid (93)	270
68.	The ultraviolet spectra of naringenin (94)	271
69.	The infrared spectrum of naringenin (94) (KBr Disc)	272
70.	The ¹ H NMR spectrum of naringenin (94) (300 MHz, in Acetone- d_6)	273
71.	The COSY spectrum of naringenin (94) (300 MHz, in Acetone- d_6)	274
72.	The ¹³ C NMR spectrum of naringenin (94) (75 MHz, in Acetone- d_6)	275
73.	The mass spectrum of naringenin (94)	276
74.	The DEPT spectrum of naringenin (94) (75 MHz, in Acetone- d_6)	277
75.	The mass spectrum of kaempferol (8)	278
76.	The ultraviolet spectra of kaempferol (8)	279
77.	The infrared spectrum of kaempferol (8) (KBr Disc)	280
78.	The ¹ H NMR spectrum of kaempferol (8) (300 MHz, in Acetone- d_6)	281
79.	The COSY spectrum of kaempferol (8) (300 MHz, in Acetone- d_6)	282
80.	The ¹³ C NMR spectrum of kaempferol (8) (75 MHz, in Acetone- d_6)	283
81.	The DEPT spectrum of kaempferol (8) (75 MHz, in Acetone- d_6)	284
82.	The ultraviolet spectra of kaempferol 3-O-glucoside (11)	285

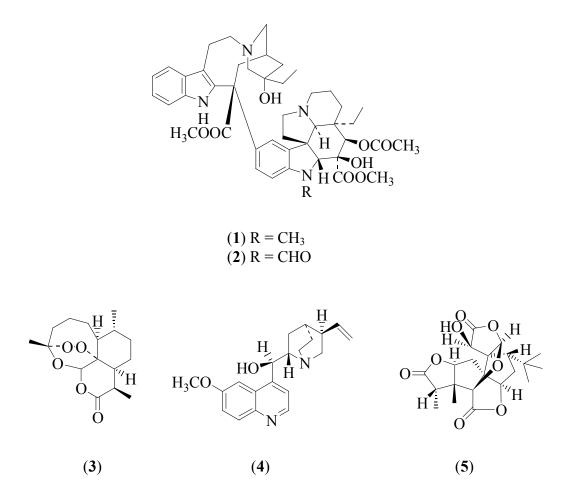
83.	The infrared spectrum of kaempferol 3- <i>O</i> -glucoside (11) (KBr Disc)	286
84.	The ¹ H NMR spectrum of kaempferol 3- <i>O</i> -glucoside (11) (300 MHz, in CD ₃ OD)	287
85.	The COSY spectrum of kaempferol 3- <i>O</i> -glucoside (11) (300 MHz, in CD ₃ OD)	288
86.	The ¹³ C NMR spectrum of kaempferol 3- <i>O</i> -glucoside (11) (75 MHz, in CD ₃ OD)	289
87.	The DEPT spectrum of kaempferol 3- <i>O</i> -glucoside (11) (75 MHz, in CD ₃ OD)	290
88.	The mass spectrum of kaempferol 3-O-glucoside (11)	291
89.	The ultraviolet spectra hyperin (10)	292
90.	The infrared spectrum of hyperin (10) (KBr Disc)	293
91.	The ¹ H NMR spectrum of hyperin (10) (600 MHz, in CD ₃ OD)	294
92.	The ¹³ C NMR spectrum of hyperin (10) (150 MHz, in CD ₃ OD)	295
93.	The mass spectrum of hyperin (10)	296

CHAPTER I

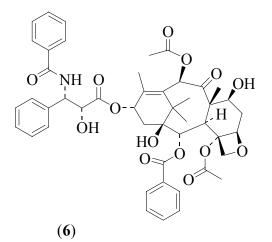
INTRODUCTION

1.1 General Introduction

Bioactive natural products have an enormous economic importance as specialty chemicals. They can be used as drugs, lead compounds, biological or pharmacological tools, feed stock products (raw materials for the production of drugs) and nutraceuticals. They are found in herbs, dietary supplements, spices and foods. Some of them are important flavours, fragrances, dyes and cosmetic, and others are used as insecticides, antifeedants, pesticides and antirodenticides [1].


Plants have been the source of medicinal agents for thousands of years, and impressive numbers of modern drugs have been isolated from natural sources, many based on their uses in traditional medicines. In fact, natural products once served as the source of all drugs. Since more than 80% of the world's population use plants as their primary source of medicinal agents, it is not surprising to find that in many countries of the world there is a well-established system of traditional medicine, whose remedies are still being compiled. In some instances, the Chinese and the Ayurvedic systems have documented the remedies of their traditional medicines and these documents are commercially available [2, 3].

1.2 Drug Discovery


A few drug discovery programmes based on plants has restarted in the late 1980's when pharmacologists, physicians and chemists started reinvestigating the active ingredients in plants used for medicinal purposes. The more recent advances in chromatographic and spectroscopic technical equipments have decreased the time taken to identify and determine the molecular structures of the active compounds in these plants. This has resulted in an increase in the number of natural products being isolated and identified every year, although very few have been developed as drugs. However, due to the novel structures of some of these active compounds, they might serve as templates or lead compounds for drugs [4].

Different approaches to drug discovery using higher plants can be distinguished: random selection followed by chemical screening, random selection followed by one or more biological assays, follow up of biological activity reports, follow up of ethnomedical (traditional medicines) uses of plants. The latter approach includes plants used in organized traditional medical system; herbalism and folklore; the use of database. The objective is the targeted isolation of new bioactive plant product, i. e. lead substances with novel structure and novel mechanisms of action [1].

Among the 45 drugs of known structures derived from the tropical rain forest species, including those that are of major important used in therapy, none is currently produced through synthesis. For example, the anticancer vinblastine (1) and vincristine (2) from *Catharanthus roseus* L. G. Don (Apocynaceae) in which (1) has been used as part of chemotherapy combination for the treatment of acute lymphoblastic leukemia and testicular teratoma since 1979's. The antiplasmodial artemisinin (3) from *Artemisia annua* L. (Compositae) as well as the anti malarial quinine (4) isolated from the bark of *Cinchona* spp (Rubiaceae). Ginkgolide A (5) was isolated from the root barks and leaves of *Ginkgo biloba* (Ginkgoaceae) have been used from the natural sources. There is evidence that ginkgolides are able to competitively inhibit the specific platelet aggregating factors to cell membranes. This type of activity could explain the use of these plants in the treatment of inflammation and for respiratory and panic disorder [4, 5].

The anti cancer drug, taxol (6) was isolated from the bark of yew trees as a result of NCI's systematic effort in collecting and screening plants for antitumor activity [4, 6]. Taxol has now been approved to be used for the treatment of ovarian and breast cancers, as well as small cell and non small cell lung cancer which include neck and head cancers [4, 7].

The commercial value of drug derived from higher plants should not be underestimated. For example, in 1980 American consumers paid about USD 8 billion for prescription of drugs derived solely from higher plants. From 1959 to 1980, drugs derived from higher plants represented a constant 25% of all new and refilled prescriptions dispensed from community pharmacies in the United State [8].

Phytochemical investigation will provide data on the chemical constituents of the plant concerned. However, many new natural compounds were isolated, characterised and published without any biological testing and their useful biological activities then remain unknown for a long time. The significance of the phytochemical work is greatly increased if the fine chemicals isolated from the plant possess certain biological activities, particularly if the activity is in line with the development of medicinal agents [9].

1.3 Botany and Distribution of Melastomataceae

The Melastoamaceae is an exclusively tropical plant family with about 4500 species; 3000 species in South America, 250 species in tropical west and east African harbour, and 250 species in Madagascar. The remaining 1000 species occur in Asia Oceania and Northern Australia with a concentration in Central Malaysia (Borneo). This family has 25 genera and 180 species in Malaysia and usually occurs in lowlands and mountains. Melastomaceae comprises a wide range of plants, such as terrestrial herbs, epiphytic shrubs, trees and woody climbers, ranging in height from 10 cm to 30-50 cm. Some of the trees are among the few plants in Malaysia that have blue flowers [11].

The botanical characters of this family are the opposite leaves, simple, generally with three prominent longitudinals veins. Flowers are small to large, clustered, regular or bilaterally symmetrical; four or five sepals, or apparently absent; four or five petals, separate, pink, purple or blue, rarely white; staments

twice as many as the petals, eight or ten, with rather thick, pink or blue stalks (rarely white) and large yellow, pink or blue anthers; ovary inferior. The fruit is a berry with many small seeds or with one large seed; in other cases capsular and opening, with dry or pulpy contents. The family is close to the Myrtales (Myrtaceae) and differs chiefly in the absence of oil-glands, so that the tissues are not aromatic [11].

The family of Melastomaceae comprises of several genera, for example *Melastoma, Huberia, Lavoisiera, Microlicia, Trembleya, Memycelon, Dissostis, Tibouchina, Heterocentron* and *Osbeckia.*

1.4 Botany and Distribution of Genus *Melastoma*

Botanic classification of Melastoma [10]:

Sub-division	: Angiospermae
Class	: Dicotyledoneae
Sub-class	: Archichlamideae
Order	: Myrtiflorae
Family	: Melastomataceae
Genus	: Melastoma

The genus of *Melastoma* is categorized as shrubs and rarely small trees, found from the Mascarene Island to Pacific. Most of the species of this genus are known as 'senduduk' and some of them can be distinguished, e.g. *M. decemfidum*, Roxb. and *M. parkense*, Ridl. as 'senduduk gajah' and *M. imbricatum*, Wall as 'senduduk rimba' [12]

Plants of *Melastoma* if repeatedly burnt or cut, and left undisturbed, will grow as small trees 12-13 ft. high, occasionally even up to 20 ft., and they may be found in the forest at the edge of the stream, on landslip or in old clearing, and they are evergreen and flowering throughout the year.

The flower lasts only one day, opening about 8 a.m. and closing in the late afternoon, the petals fall a few days later. The fruits with purple pulp in M. *malabathricum* are sweet, often eaten by the children, and thus stain the mouth like bilberries [11].

The characteristics of these genus are leaves with 3-5 longitudinal veins, tapered to each end; large flower, in terminal clusters, bilaterally symmetrical through the arrangement of the stamens; 5 sepals, usually with an epicalyx; 5 petals, pinkish, large; 10 stamens, with two kinds, 5 short stamens with yellow stalk and anthers, 5 long stamens with a straight basal part to the stalk; style pink with green stigma. Fruits as berry-like capsules, opening irregularly and disclosing a yellow, red or commonly purple pulpy mass with the tiny seeds embedded on it [11].

This genus consists of about 40 species in Madagascar, Australia and 5 species in Malaysia [11].

1.4.1 Melastoma malabathricum L

M. malabathricum L. (senduduk) is a very common herb or shrub found throughout the tropic in the moist part mostly from India, Thailand and Malaysia. The plants have been used in traditional Malay medicine for the treatment of diarrhoea, puerperal infection, dysentery, leucorrhoea, wound healing, post-partum treatment and haemorrhoids [12].

This species has at least three varieties, i.e. large, medium and small size flower with dark purple-magenta petals, light pink-magenta petals and the rare variety with white petals [11].

The characteristic of these species are leaves 0.25-2 inches wide, with stalk 0.25-0.5 inches long; flower 1-3 inches wide; calyx closely set with short chaffy,

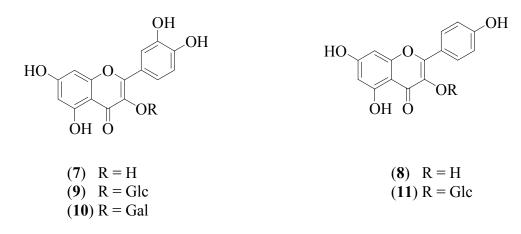
silky or silvery scale. This species spread in Madagascar, India to Australia and very common throughout Malaysia in the lowland and mountain forests, chiefly in open places and ever flowering [11].

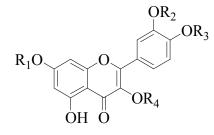
Figure 1.1 Melastoma malabathricum L

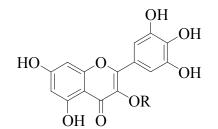
1.4.2 Melastoma imbricatum Wall

The characteristics of this species are the leaves 2-4 inches wide with stalk 0.25-2 inches long, flower 1-2 inches wide, hardly stalked, set in dense cluster; calyx set with tiny scales. Occasionally spread in the mountain and scarce in the lowlands [11].

Figure 1.2 Melastoma imbricatum Wall

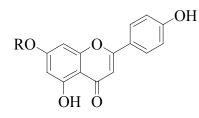

1.5 Chemical Investigation of Melastomataceae

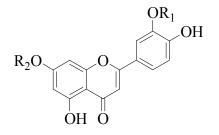

The chemistry of Melastomaceae is poorly known. The family is characterized by tannin (very common) and alkaloids (rare). Acylated anthocyanins have been found in fruits and flowers. Mimura *et al.* (2004) had carried out the distribution of foliar alkenes with the chemotaxonomic approaches on the genus of *Huberia* [13].


The reports on the distribution of foliar flavonoids of approximately 33% of the known species of *Lavoisiera* and *Trembleya*, and 15% of *Microlicia*, with the purpose of establishing affinity relationship and adding evidence towards solving delimitation problems between the genus [14].

A diverse of flavonoid structures has been found in this family, with the predominant of flavonol glycoside, mainly glucoside of quercetin (7) and kaempferol (8). The most frequent sugars are glucose and galactose, e.g. quercetin-3-*O*-glucoside (9), quercetin-3-*O*-galactoside (hyperin) (10) and kaempferol-3-*O*-glucoside (11). Glycoside of isorhamnetin (12), rhamnetin (13) and myricetin (14) were also found, although less frequently, e.g. isorhamnetin-3-*O*-galactoside (15), rhamnetin-3-*O*-

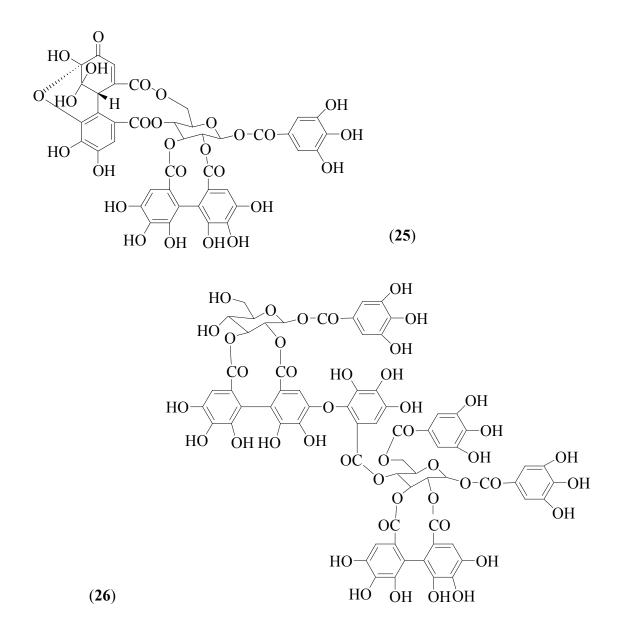
glucoside (16) and myricetin-3-*O*-galactose (17). Derivatives of apigenin (18), luteolin (19) and chrysoeriol (20) were among the flavones found in the Melastomaceae family e.g. apigenin-7-*O*-glucoside (21), luteolin-7-*O*-glucoside (22) and chrysoeriol-7-*O*-glucoside (23) [14].



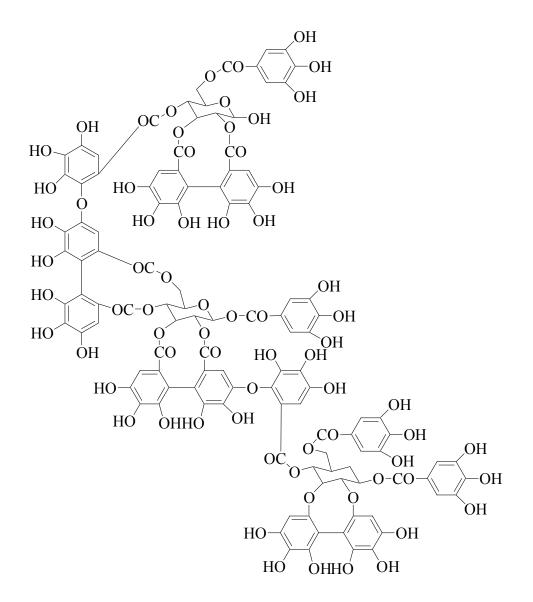


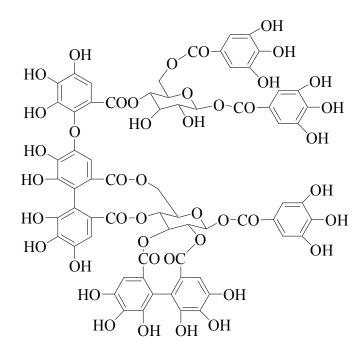
(12) $R_1, R_3 = H, R_2 = CH_3, R_4 = H$ (13) $R_1 = CH_3, R_2, R_3 = H, R_4 = H$ (15) $R_1, R_3 = H, R_2 = CH_3, R_4 = Gal$ (16) $R_1 = CH_3, R_2, R_3 = H, R_4 = Glc$

(18) R = H(21) R = Glc

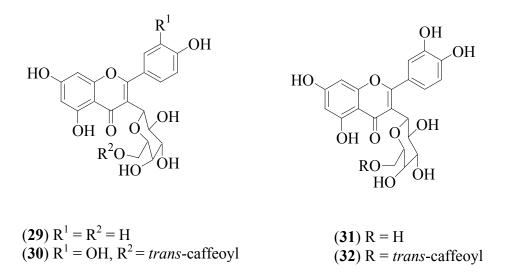


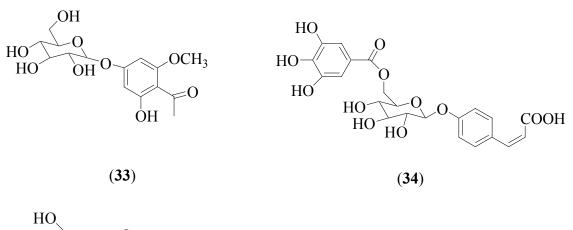
(19) $R_1 = H$, $R_2 = H$ (20) $R_1 = CH_3$, $R_2 = H$ (22) $R_1 = H$, $R_2 = Glc$ (23) $R_1 = CH_3$, $R_2 = Glc$ The chemical investigation on the aerial parts of *Memycelon umbelatum* yielded a new compound named as umbelactone (24) [15].

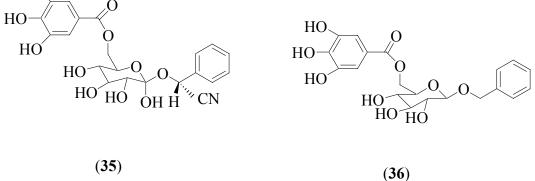



(24)

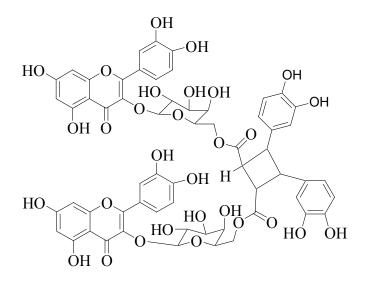
In continuing study on this family, Yoshida *et al.* (1994) [16] isolated two new polyphenols from *Bredia tuberculata* named brediatins A (25) and brediatins B (26).

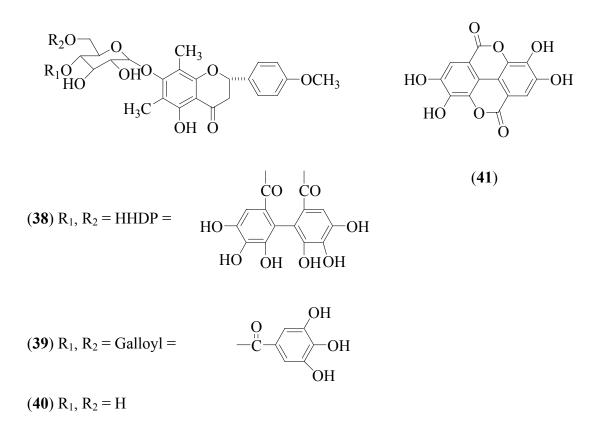

The chromatographic survey of the tannins in this family [17] revealed that *Tibouchina multiflora* is rich in tannins, particularly in oligomeric hydrolysable tannins. Two new oligomeric hydrolysable tannins named nobotanins O (27) and nobotanins P (28) were isolated from the leaf extract of *T. multiflora*.

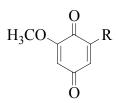



(28)

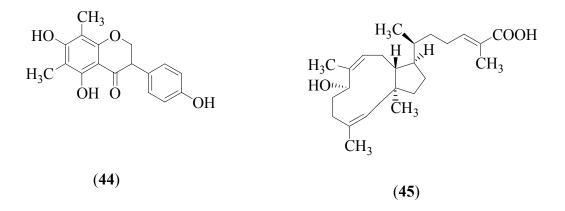
The chemical investigation on *Monochaetum multiflorum* yielded trifolin (29), hyperin (10), quercetin 3-(6'-O-caffeoyl)- β -D-galactoside (30), isoquercitrin (31), quercetin 3-(6'-O-caffeoyl)- β -D-glucopiranoside (32), 4-O- β -D-glucopyranosyl-2-O-methylphloroacetophenone (33), 4-O-(6'-O-galloyl- β -glucopranosyl)-*cis-p*-coumaric acid (34), 6'-O-galloylprunasin (35), benzyl 6'-O-galloyl- β -glucopiranoside (36) and a novel diester of tetrahydroxy- μ -truxinic acid with 2 moles of hyperin (monochaetin) (37) [18].



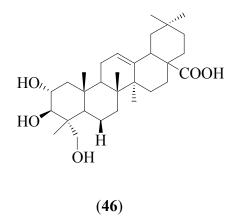

12



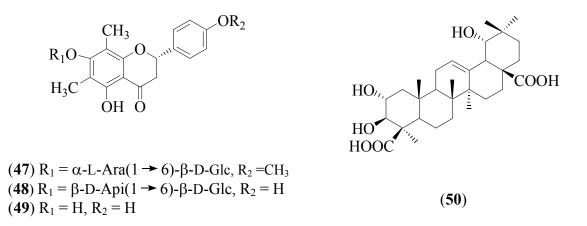
Bioassay-guided fractionation on secreted aspartic protease (SAP) on *Candida albicans* of the ethanol extract of twigs and leaves of *Miconia myriantha* yielded mattucinol-7-*O*-[4",6"-*O*-(*S*)-hexahydroxydiphenoyl]- β -D-glucopyranoside (**38**), mattucinol-7-*O*-[4",6"-di-*O*-galloyl]- β -D-glucopyranoside (**39**), mattucinol-7-*O*- β -D-glucopyranoside (**40**) and ellagic acid (**41**) [19].

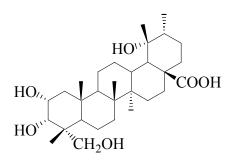


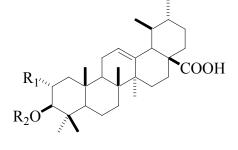
Bioactivity-directed fractionation of EtOAc extract from the leaves of *Miconia lepidota*, afforded two benzoquinones, namely 2-methoxy-6-heptyl-1,4-benzoquinone (**42**) and 2-methoxy-6-pentyl-1,4-benzoquinone (**43**) [20].



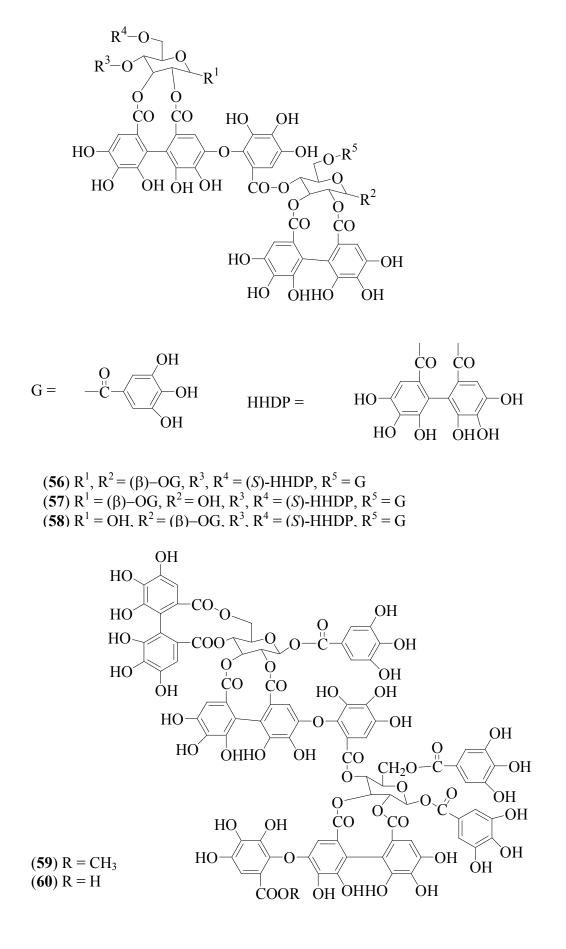
(42) $R = C_7 H_{15}$ (43) $R = C_5 H_{11}$

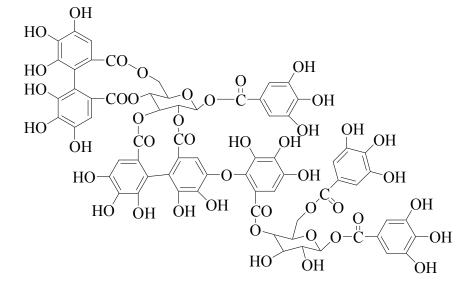

The chemical investigation of *Henriettella fascicularis* afforded 4',5,7-trihydroxy-6,8-dimethylisoflavone (44) and sesterterpenoic acid (45) [21].

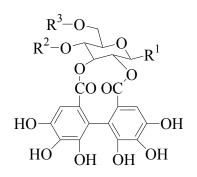

The ethanol extract of *Miconia pilgeriana* yielded a triterpene compound, which was characterized as arjunolic acid (46) [22].


Bioactivity-guided fractionation of the ethanol extract of *Miconia trailii*, yielded miconioside A (47), miconioside B (48), matteucinol (49), bartogenic acid (50), arjunolic acid (46) and myrianthic acid (51) [23].

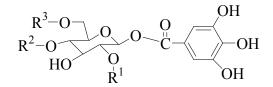
The chemical investigation of *Monochaetum vulcanicum* resulted in the isolation of 3β -acetoxy- 2α -hydroxyurs-12-en-28-oic acid (**52**), ursolic acid (**53**), 2α -hydroxy-ursolic acid (**54**) and 3-(*p*-coumaroyl)ursoli acid (**55**) [24].



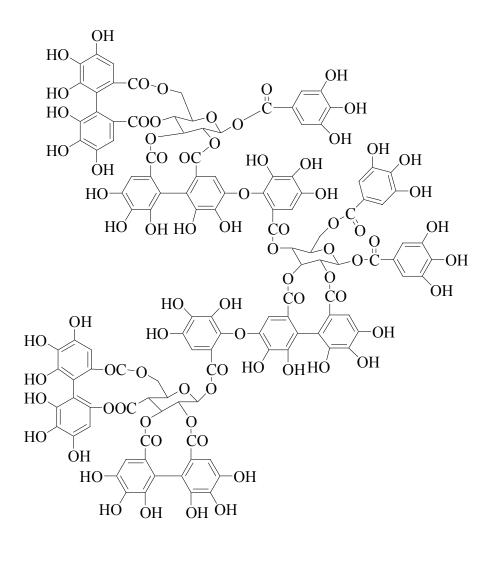

(52) $R_1 = OH, R_2 = Ac$ (53) $R_1 = R_2 = H$ (54) $R_1 = OH, R_2 = H$ (55) $R_1 = H, R_2 = p$ -coumaroyl


1.6 Chemical Investigation of *Melastoma*

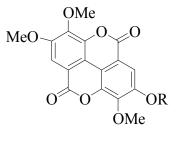
Several tannins have been isolated from the dry leaves of *M. malabathricum*. The main tannin was hydrolysable tannin oligomers named nobotanin B (**56**), which was recently found to exhibit potent *in vitro* antiviral activity against human immunodeficiency virus. The other tannins were hydrolysable tannin dimmers named malabathrins B (**57**), malabathrins C (**58**) and malabathrins D (**59**), hydrolysable tannin oligomers nobotanin G (**60**), hydrolysable tannin monomers named 1,4,6-tri-*O*-galloyl- β -D-glucoside (**61**), 1,2,4,6-tetra-*O*-galloyl- β -D-glucoside (**62**), strictinin (**63**), casuarictin (**64**), pedunculagin (**65**), nobotanin D (**66**), pterocarinin (**67**), nobotanin H (**68**) and nobotanin J (**69**) [25].



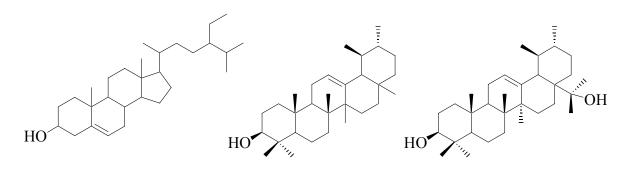
(68)



(64) $R^1 = (\beta)$ -OG, R^2 , $R^3 = (S)$ -HHDP (65) $R^1 = OH$, R^2 , $R^3 = (S)$ -HHDP (66) $R^1 = (\beta)$ -OG, $R^2 = H$, $R^3 = G$ (67) $R^1 = (\beta)$ -OG, R^2 , $R^3 = G$

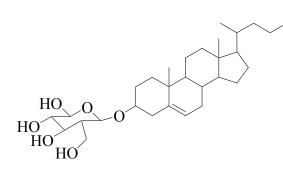


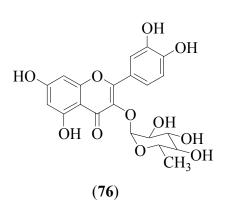
(61) $R^1 = H, R^2, R^3 = Glc$ (62) $R^1, R^2, R^3 = Glc$ (63) $R^1 = H, R^2, R^3 = (S)$ -HHDP

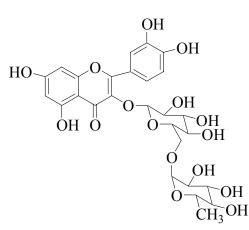


(69)

The chemical investigation of *M. polyanthum* yielded tri-*O*-methyl ellagic acid (**70**) and tri-*O*-methyl ellagic acid glucoside (**71**) [26].


(70) R = H (71) R = Glc The polyphenols named strictinin (62), casuarictin (63) and nobotanin B (56) have been reported from *M. normale* [16]. While, *M. malabathricum* with dark puple-magenta petals contains β -sitosterol (72), α -amyrin (73), uvaol (74), sitosterol 3-*O*- β -D-glucopiranoside (75), quercetin (7), quercitrin (76) and rutin (77) [27].





(75)

1.7 Bioactivity Investigation on Melastomataceae

Monoamine oxidase type B (MAO-B) activity and free radical scavenger are elevated in certain neurological disease. Four natural flavonoids, quercitrin (**76**), rutin (**77**), quercetin (**7**) and isoquercitrin (quercetin-3-*O*-glucoside) (**31**), isolated for the first time from the leaves of *M. candidum*, were found to inhibit the MAO-B. These four potent compounds, also exhibited hydroxyl radical scavenging activity. These important properties may be use for preventing some neurodegenerative disease [28].

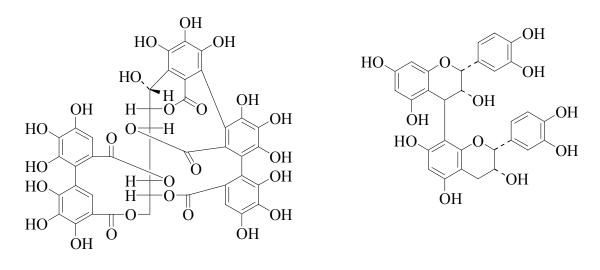
The methanol extract of *M. malabathricum* L. exhibited attractive antiviral and cytotoxic activities on murine cell lines. The biological activities of *M. malabathricum* could be attributed to the hydrolysable tannin [29].

Dissotis brazae Cogn. was tested for *in vitro* antiplasmodium activity against chloroquin-resistant (ENT36). The IC₅₀ was found to be $\leq 10\mu$ g/mL [30].

The methanol extract of various Sumatran plants were tested *in vivo* for antinematodal activity against *Bursaphelenchus xylophilus*. In this screening, the root extract of *M. malabathricum* showed strong activity [31].

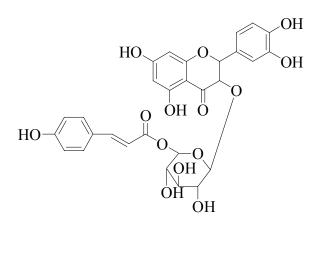
Mattucinol-7-O-[4",6"-O-(S)- hexahydroxydiphenoyl]- β -D-glucopyranoside (**38**) which was isolated from *Miconia myriantha* exhibited inhibitory effect against SAP with IC₅₀ of 8.4 μ M [22].

Bioactivity-directed fractionation of the leaves of *Miconia lepidota* in the *in vitro* antitumor cytotoxicity assay with Madison Lung Carcinoma (M109) murine cell line, showed that 2-methoxy-6-heptyl-1,4-benzoquinone (**42**) and 2-methoxy-6-pentyl-1,4-benzoquinone (**43**) were potential anticancer agent [20].


The esterogen receptor (ER) competitive binding experiments revealed higher affinity of 4',5,7-trihydroxy-6,8-dimethylisoflavone (44) for ER β than for

ER α , isolated from *Henriettella fascicularis*. In Ishikawa cells, when alkaline phosphatase was induced by treatment with estradiol, 4',5,7-trihydroxy-6,8-dimethylisoflavone (**44**) mediated a decrease in activity, suggestive of an antiestrogenic effect [21].

Fatty Acid Synthase (FAS) has been identified as a potential antifungal target. Bioactivity-guided fractionation on *Miconia pilgeriana* showed that arjunolic acid (**46**) isolated from this plant gave moderate activity against FAS (IC₅₀ 27.5 mg/mL) [22].


The antinociceptive effect of the ethanolic extract of *M. malabathricum* using acetic acid-induced abdominal writhing test and hot-plate test in mice has been done by Sulaiman *et al.* It was demonstrated that the extract (30-300 mg/kg, i.p.) strongly and dose-dependently inhibited the acetic acid-induced writhing test with an ED_{50} of 100 mg/kg i.p., suggesting that, the ethanolic extract of *M. malabathricum* is a potentially antinociceptive agent that acts at both peripheral and central levels of nerves [32].

Three active compounds, castalagin (78), procyanidin B-2 (79) and helichrysoside (80), which were isolated from the leaves of *M. candidum* possess the ability to lower blood pressure through a decrease of sympathetic tone as well as due to direct vasodilatation in SHRs (spontaneously hypertensive rat) [33].

(78)

(79)

The analgesic effects of the hexane, methylene chloride and ethanol extracts of *Miconia rubiginosa* were evaluated in mice and rats using the acetic acid-induced writhing and hot plate tests. The extracts (100, 200 and 300 mg/kg body wt.) and indomethacin (5 mg/kg body wt.) produced a significant (p < 0.05 and p < 0.01) inhibition of acetic acid-induced abdominal writhing [34].

1.8 Background of the Research

The reviews on several *Melastoma* species did not mention the work carried out on *Melastoma imbricatum* and *Melastoma malabathricum* with white petals. In fact a thorough literature search on these species did not reveal any report on the chemical constituents or their biological activities. It is believed that both plants have never been investigated before. These plants are chosen in this research because they are used prominently in Malaysian society as traditional medicine, for the treatment of diarrhea, puerperal infection, dysentry, leucorrhoea, wound healing, post-partum treatment and hemorrhoids especially for woman after child birth [12]. The *M. imbricatum* is also endemic to Malaysian forest, while *M. malabathricum* with white petals is known to grow mainly in southern part of Malaysia especially in Johor.

1.9 Objectives of the Study

The objectives of this study are to investigate the chemical constituent of two Malaysian traditional medicinal plants of Melastomataceae i.e. *M. malabathricum* L. with white petals and *M. imbricatum* and to screen the biological activities (antimicrobial, antioxidant, anti-inflammatory and cytotoxicity) of the crude extracts and the pure isolated compounds.

1.10 Scopes of the Study

In natural products research, there are two main approaches mostly conducted by many researchers including chemical investigation and bioactivity testing. Thus, these two major approaches were also carried out in investigating the Melastomaceae plants.

The first approach was the extraction, isolation and characterization of the chemical components from the whole parts of the plants. The extraction was carried out by successive soxhlet extraction using organic solvents. Isolation procedure was done by chromatographic technique such as vacuum liquid chromatography and gravity column chromatography on silica gel as well as sephadex LH-20. Characterizations of the isolated compounds were carried out by means of physical and chemical properties such as melting point, optical rotation and chemical reaction. The structures were elucidated using spectroscopic methods including ultraviolet, infrared, nuclear magnetic resonance spectroscopies and mass spectrometry.

The second approach was bioactivity screening on the extracts and pure compounds. The bioactivity assays conducted were antibacterial, antifungal, antiinflammatory, antioxidant and cytotoxicity. Antibacterial activity was tested using disc diffusion methods with four strains of bacteria i.e. *Staphylococcus aureus*, *Bacillus subtilis, Pseudomonas aeruginosa* and *Escherichia coli*. Antifungal activity was tested against *Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Microsporum gypseum, Trichophyton mentagophytes, Trichophyton rubrum, Cryptococcus neoformans,* and *Candida albicans.* Anti-inflammatory activity was carried out using 12-*O*-tetradecanoylphorbol-13-acetate (TPA) induced inflammation and platelet activating factor receptor binding antagonist on mouse ear oedema and rabbit platelet, respectively. Antioxidant assay was carried out using lipid peroxidation and radical scavenging analyzed with ultraviolet and electron spin resonance, respectively. Cytotoxic activity was conducted using cell culture of human breast cancer cells (MCF7).

REFERENCES

- Pieter, L. and Vlietinck, A. J. (2005). Bioguided Isolation of Pharmacologically Active Plant Components, Still a Valuable Strategy for the Finding of New Lead Compounds. J. Ethnopharmacol. 100(1): 57-60.
- Cordell, G. A. (1995). Changing Strategies in Natural Product Chemistry. *Phytochemistry*. 40(6): 1585-1612.
- Balandarin, M. F., Kinghorn, A. D. and Farnsworth, N. R. (1993). Plant-Derived Natural Products in Drug Discovery and Development. In: Kinghorn, A.D. and
 Farnsworth, N.R. Human Medicinal Agents from Plants. ACS Symposium Series 534: Washington. 2-12.
- Simmonds, M. S. J. and Grayer, R. J. (1999). Drug Discovery and Development. In: Walton, N.J and Brown, D.E. *Chemical from Plants Perspectives on the Plant Secondary Products*. Imperial College Press: London. 215-245.
- Farnsworth, N. R., Akerele, O., Bingel, A. S., Soejarto, D. D. and Guo, Z. (1985). Medicinal Plants in Therapy. Bull. W. H. O. 63: 965-981.
- Cragg, G. M., Boyd, M. R., Cardellina, J. H., Grever, M. R., Schepartz, S. A., Snader, K.M. and Suffness, M. (1993). In: Kinghorn, A.D. and Farnsworth, N.R Human Medicinal Agents from Plants. ACS Symposium Series 534: Washington. 80-95.
- Kingston, D. G. I. (1993). Taxol, an Exciting Anticancer Drug from Taxus brevifolia. In: Kinghorn, A.D. and Farnsworth, N.R. Human Medicinal Agents from Plants. ACS Symposium Series 534: Washington. 138-148.

- Balandrin, M. F., Klocke, J. A., Wurtele, E. S. and Bollinger, W. H. (1985). Natural Plant Chemicals: Sources of Industrial and Medicinal Material. *Science*. 228: 1154-1160.
- Meyer, B. N., Ferrifni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E. and McLaughlin, J. L. (1982). Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. *Planta Med.* 45(1), 31-34.
- Corner, E. J. H. (1965). Wayside Trees of Malaya. Malayan Nature Society: Kuala Lumpur. Vol. 1.
- 11. Whitmore, T. C. (1972). Tree Flora of Malaya. Vol. 1. Longman: Kuala Lumpur.
- 12. Burkill, I. H. (1966). A Dictionary of the Economic Products of Malay *Peninsula*. Ministry of Agriculture and Co-Operatives: Kuala Lumpur.
- Mimura, M. R. M., Salatino, A., Salatino, M. L. F. (2004). Distribution of flavonoids and the taxonomy of *Huberia* (Melastomataceae). *Biochem. Syst. Ecol.* 32(1): 27-34.
- Bomfim-Patricio, M. C., Salatino, A., Martins, A. B., Wurdack, J. J. and Salatino, M. L. F. (2001). Flavonoids of *Lavoisiera*, *Microlicia*, and *Trembleya* (Melastomataceae) and their taxonomic meaning. *Biochem. Syst. Ecol.* 29(7): 711-726.
- 15. Agarwal, S. K. and Rastogi, R. P. (1978). Umbelactone (4-hydroxymethyl-3methyl-but-2-ene-4,1-olide) New Constituent of Memycelon umbelatum. Phytochemistry, 17(9): 1663-1664.
- 16. Yoshida, T. Arioka, H., Fujita, T., Xin, M. C. and Okuda, T. (1994). Monomeric and dimeric Hydrolysable Tannins from two Melastomataceous species. *Phytochemistry*. 37(3): 863-866.

- Yoshida, T., Amakura, Y., Yokura, N., Ito, H., Isaza, J. H., Ramirez, S., Pelaez, D. P. and Renner, S. S. (1999). Oligomeric hydrolysable tannins from *Tibouchina multiflora*. *Phytochemistry*. 52(8): 1661-1666.
- Isaza, J. H., Ito, H., and Yoshida, T. (2001). A Flavonol glycoside-lignan ester and accompanying acylated glucosides from *Monochaetum multiflorum*. *Phytochemistry*. 58(2): 321-327.
- Cong Li, X., Jacob, M. R., Pasco, D. S., ElSohly, H. N., Nimrod, A. C., Walker, L. A. and Clark, A. M. (2001). Phenolic Compounds from *Miconia myriantha* Inhibiting Candida Aspartic Protease. J. Nat. Prod. 64(10): 1282-1285.
- Gunatilaka, A. A. L., Berger, J. M., Evans, R., Miller, J. S., Wisse, J. H., Neddermann, K. M., Bursuker, I. and Kingston, D. G. I. (2001). Isolation, Synthesis and Structure-Activity Relationships of Bioactive Benzoquinones from *Miconia lepidota* from Suriname Rainforest. J. Nat. Prod. 64(1): 2-5.
- Calderon A. I., Terreaux, C., Schenk, K., Pattison, P., Burdette, J. E., Pezzuto, J. M., Gupta, M. P. and Hostettmann, K. (2002). Isolation and Structure Elucidation of an Isoflavone and a Sesterterpenoic Acid from *Henriettella fascicularis*. J. Nat. Prod. 65(12): 1749-1753.
- Cong Li, X., Joshi, A. S., ElSohly, H. N., Khan, S. I., Jacob, M. R., Zhang, Z., Khan, I. A., Ferreira, D., Walker, L. A., Broedel, S. E., Raulli, R. E. and Cihlar, R. L. (2002). Fatty Acid Synthase Inhibitors from Plants: Isolation, Structure Elucidation and SAR Studies. J. Nat. Prod. 65(12): 1909-1914.
- 23. Zhang, Z., ElSohly, H. N., Cong Li, X., Khan, S. I., Broedel, S. E., Raulli, R. E., Cihlar, R. L. and Walker, L. A. (2003). Flavanone Glycoside from *Miconia trailii*, J. Nat. Prod. 66(1): 39-41.

- 24. Chaturvedula, V. S. P., Gao, Z., Jones, S. H., Feng, X., Hecht, S. M. and Kingston D. G. I. (2004). A New Ursane Triterpene from Monochaetum vulcanicum that Inhibits DNA Polymerase β Lyase. J. Nat. Prod. 67(5): 899-901.
- Yoshida, T., Nakata, F., Hosotani, K., Nitta, A. and Okuda, T. (1992). Dimeric Hydrolysable Tannins from *Melastoma malabathricum*. *Phytochemistry*. 31(8): 2829-2833.
- 26. Liu, S. R. (1986). Chemical Constituents of Melastoma polyanthum. Zhong Yao Tong Bao. 11(12): 42-43.
- 27. Nuresti, S., Baek, S. H. and Asari, A. (2003). Chemical Components of *Melastoma malabathricum. ACGC Chem. Res. Commun.* 16: 28-33.
- Mei, H. L., Rong, D. L., Lee, Y. S., Ling, L. Y., Kun, Y. Y. and Wen, C. H. (2001). Monoamine Oxidase B and Free Radical Scavenging Activities of Natural Flavonoids in Melastoma candidum D. Don. J. Agric. Food Chem. 49(11): 5551-5555.
- Lohezic-Le Devehat, F. Bakhtiar, A., Bezivin, C., Amoros, M and Boustie, J. (2002). Antiviral and Cytotoxic of Some Indonesian Plants. *Fitoterapia*. 73(5): 400-405.
- Omulokoli, E., Khan, B. and Chhabra, S. C. (1997). Antiplasmodial Activity of Four Kenyan Medicinal Plants. J. Ethnopharmacol. 56(2): 133-137.
- 31. Alen, Y., Nakajima, S., Nitoda, T., Baba, N., Kanzaki, H. and Kawazu, K. (2000). Antinematodal Activity of Some Tropical Rainforest Plants against Pinewood Nematode, Bursaphelenchus xylophylus. Z. Naturforsch. 55(3-4): 259-299.
- 32. Sulaiman, M. R., Somchit, M. N., Israf, D. A., Ahmad, Z. and Moin, S. (2004). Antinociceptive Effect of *Melastoma Malabathricum* Ethanolic Extract in Mice. *Fitoterapia*, 75(7-8): 667-672.

- 33. Tang Cheng, J., Lin Hsu, F. and Fen Chen, H. (1993). Antihypertensive Principles from the Leaves of Melastoma candidum. Planta Med. 59: 405-407
- 34. Spessoto, M. A., Ferreira, D. S., Crotti, A. E. M., Silva, M. L. A. And Cunha, W. R. (2003). Evaluation of the Analgesic Activity of Extract of *Miconia rubiginosa* (Melastomaceae). *Phytomedicine*. 10: 606-609.
- 35. Banerji, A. and Ray, R. (1981). Auranamide, a New Phenylalanine Derivative Isolated from *Piper aurantiacum* Wall. *Indian J. Chem.* 20B: 597-598
- 36. Gu, Z. B., Yang, J. G., Liu, W. Y., Li, T. Z., Qiu, Y. and Zhang, W. D. (2002). A New Alkaloid from Patrinia scabra. Chin. Chem. Lett. 13(10): 957-958.
- Mahato, S. B. and Kundu A. P. (1994). ¹³C NMR Spectra of Pentacyclic Triterpenoids-A Compilation and some Salient Feature. *Phytochemistry*. 37(6): 1517-1575.
- 38. Silverstein, R. M., Bassler, G. C. and Morril, T. C. (1991). Spectrometric Identification of Organic Compounds. John Willey and Sons Inc.: New York.
- William, D. H. and Fleming, I. (1995). Spectroscopic Methods in Organic Chemistry. 5th Ed. The McGraw-Hill Companies: London.
- Ishiguro, K., Nagata, S., Fukumoto, H., Yamaki, M., Takagi, S. and Isoi, K. (1991). A Flavonol Rhamnoside from *Hypericum japonicum*. *Phytochemistry*. 30(9): 3152-3154.
- 41. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970). The Systematic Identification of Flavonoids. Springer-Verlag: Berlin.
- Markham, K. R. (1982). Techniques of Flavonoid Identification. Academic Press Inc.: London.

- 43. Beck, P.O.D., Dijoux, M.G., Cartier, G. and Mariote, A.M. (1998). Quercitrin 3'-Sulphate from Leaves of Leea guinensis. Phytochemistry. 47(6): 1171-1173.
- 44. Slowing, K., Sollhuber, M., Carretero, E. and Villar, A. (1994). Flavonoid Glycoside from Eugenia jambos. Phytochemistry. 37(1): 255-258.
- 45. Ohmura, W, Ohara, S., Hashida, K., Aoyama, M. and Doi, S. (2002). Hydrothermolysis of Flavonoids in Relation to Steaming of Japanese Larch Wood. *Holzforschung*. 56(5): 493-497.
- Skaltsa, H., Verykokidou, E., Harvala, C., Karabourniotis, G. and Manetas, Y. (1994). UV-B Protective Potential and Flavonoid Content of Leaf Hairs of *Quercus ilex*. *Phytochemistry*. 37(4): 987-990.
- 47: Tomas-Barberan, F. A., Gil, M. I., Ferreres, F. and Tomas-Lorente, F. (1992). Flavonoid p-Coumaroyl and 8-Hydroxyflavone Allosylglucoside in Some Labiatae. *Phytochemistry*, 31(9): 3097-3102.
- 48. Harborne, J. B., Mabry, T. J. and Mabry, H. (1975). The Flavonoids I. Academic Press: New York.
- Fiorini, C., David, B., Fouraste, I. and Vercauteren, J. (1998). Acylated Kaempferol Glycoside from *Laurus nobilis* Leaves. *Phytochemistry*. 47(5): 821-825.
- 50. Tanaka, R., Tsujimoto, K. and Matsunaga, S. (1999). Two Serratane Triterpenes from the Stem Bark of *Picea jezoensis* var. *hondoensis*. *Phytochemistry*. 52(6): 1581-1585.
- 51. Ikuta, A. and Itokawa, H. (1988). Triterpenoid of *Paeonia japonica*. Callus Tissue. *Phytochemistry*. 27(9): 2813-2815.

- 52. Siddiqui, S., Hafeez, F., Begum, S. and Siddiqui, B. S. (1988). Oleanderol, A New Pentacyclic Triterpene from the Leaves of Nerium oleander. J. Nat. Prod. 51(2): 229-233
- 53. Kuo, Y. H., Lee, S. H. and Lai, J. S. (2000). Constituents of the Whole Herb of Clinoponium laxiflorum. J. Chin. Chem. Soc. 47: 241-246.
- 54. Bohm, B. A. (1998). Introduction to Flavonoids. Harwood Academic Publishers: Netherlands.
- 55. Corticchiato, M., Bernardini, A., Costa, J., Bayet, C., Saunois, A. and Voirin, B. (1995). Free Flavonoids Aglycon from *Thymus Herba Barona* and its Monoterpenoid Chemotype. *Phytochemistry*. 40(1): 115-120.
- 56: Budavari, S. (2001). The Merck Index, An Encyclopaedia of Chemicals, Drugs, and Biological. 13th ed. Merck & Co. Inc.: New Jersey.
- 57. Hadizadeh, F., Khalili, N., Hosseinzadeh, H. and Khair-Aldine, R. (2003). Kaempferol from Saffron Petals. *Iranian J. Pharm. Res*: 251-252.
- Hamzah, A. S. and Lajis, N. (1998). Chemical Constituents of Hedyotis herbacea. ASEAN Review of Biodivers. y and Environmental Conservation (ARBEC). Article II. May 1998: 1-6.
- 59. Iwashina, T., Matsumoto, S., Nishida, M. and Nakaike, T. (1995). New and Rare Flavonol Glucoside from Asplenium trichomanes-ramosum as Stable Chemotaxonomic Markers. Biochem. Syst. Ecol. 23(3): 283-290.
- 60. Nasser, A. and Singab, B. (1998). Acylated Flavonol from Ammi Majus L. Phytochemistry. 49 (7): 2177-2180.
- Lu, Y. and Foo, L. Y. (1997). Identification and Quantification of Major Polyphenols in Apple Pomace. Food Chem. 59(2): 187-194.

- 62. Rios, J.L. and Recio, M.C. (2005). Medicinal Plants and Antimicrobial Activity. J. Ethnopharmacol. 100(1-2): 80-84
- 63. Vanden Berghe, D. A. and Vlietinck, A. J. (1991). Screening Methods for Antibacterial and Antiviral agents from Higher Plants. In: K. Hostettmann (Ed.). Methods in Plant Biochemistry. Academic Press: London. 47-69
- 64. Black, J. G. (1999). Microbiology, Principles and Exploration. 4th Ed. John Wiley and Sons Inc.: New York.
- Nester, W. N., Anderson, D. G., Robert, C. V., Pearsall, N. N., Nester, M. T., Hurley, D. (2004). *Microbiology: A Human Perspective*. 4th ed. McGraw Hill Companies Inc.: America.
- 66. Hardy, S. P. (2002). Human Microbiology. Taylor and Francis: London.
- 67. Bauman, R. W. (2004). *Microbiology*. Pearson Benjamin Cumming: San Francisco.
- 68. Williams, R. A. D., Lambert, P. A. and Singleton, P. (1996). Antimicrobial Drug Action. A Medical Perspective Book. Bios Scientific Publisher: Oxford.
- 69. Williamson, G., Rhodes, M. J. C. and Parr, A. J. (1999). Disease Prevention and Plant Dietary Substance. In: Walton, N.J. and Brown, D.E. (eds). *Chemical from Plants Perspectives on the Plant Secondary Products*. Imperial College Press: London. 251-276.
- 70. Noguchi, N. and Niki, E. (1998). Chemistry of Active Oxigen Species and Antioxidant. In: Papas, A.M. (ed). Antioxidant Status, Diet, Nutrition and Health. CRC Press: Washington. 3-20.

- 71. Niki, E. (1993). Antioxidant Defense in Eukariotic Cells: An Overview. In: Poli, G., Albino, E. and Dianzani, M.U.(eds). Free radicals: From Basic Science to Medicine (Molecular and Cell Biology Update) Birkhauser Verlag: Basel. 365-373.
- 72. Wertz, J. E. and Bolton, J. R. (1972). Electron Spin Resonance. Elementary Theory and Practical Applications. McGraw-Hill Book Company: New York.
- 73. Noda, Y., Kohno, M., Mori, A. and Packer, L. (1999). Automated Electron Spin Resonance Free Radical Detector Assays for Antioxidant Activity in Natural Extract. In: Abelson, J.N. and Simon, M.I. (eds). *Methods in Enzymology*. Oxidants and Antioxidants. Part A. Academic Press: New York. 29-34.
- 74. Shi, H. (2001). Introducing Natural Antioxidants. In: Pokorny, J. Yanishlieva, N. and Gordon, M. (eds). Antioxidant in Food Practical Application. CRC Press: Washington. 147-158.
- 75. Middleton Jr. E., Kandaswami, C. and Theoharides, T. C. (2000). The Effect of Plant Flavonoids on Mamalian Cell: Implication for Inflammation, Heart Disease and Cancer. *Pharm. Rev.* 52: 673-751.
- 76. Hall, C. (2001). Sources of Natural Antioxidants; Oilseeds, Nuts, Cereals, Legumes, Animal Products and Microbial Sources. In: Pokorny, J. Yanishlieva, N. and Gordon, M. (eds). Antioxidant in Food Practical Application. CRC Press: Washington. 159-209.
- 77. Cakir, A., Mavi, A., Yildirim, A., Duru, M. E., Harmandar, M. and Kazaz, C. (2003). Isolation and Characterization of Antioxidant Phenolic Compounds from the Aerial Parts of *Hypericum hissopifolium* L. by Activity-Guided Fractionation. J. Ethnopharmacol. 87(1): 73-83.

- 78. Heijnen, C. G. M., Haenen, G. R. M. M., Van Acker, F. A. A., Van Der Vijgh, W. J. F. and Bast, A. (2000). Flavonoids as Peroxynitrite Scavengers: The Role of the Hydroxyl Groups. *Toxicology in Vitro*, 15(1): 3-6.
- 79. Heim, K. E., Tagliaferro, A. R. and Bobilya D. J. (2002). Flavonoid Antioxidants: Chemistry, Metabolism and Structure-Activity Relationship. J. Nutr. Biochem. 13(10): 572-584.
- Evans, C. A. R., Miller, N. J. and Paganga, G. (1995). Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acid. *Free Radic. Biol. Med.* 20(7): 933-956.
- Yamaguchi, T., Hitoshi, T., Matoba, T., Tero, J. (1998). HPLC method for evaluation of the free radical-scavenging activity of food by using 1,1-diphenyl-2-picrrylhydrazyl. *Biosci. Biotech. Biochem.* 62: 1201-1204
- 82. Bondet, V., Williams, W. B. and Berset, C. (1997). Kinetic and Mechanism of Antioxidant Activity using the DPPH^{*} Free Radical Method. *Lebensm. Wiss. U. Technol.* 30: 609-615.
- Yu, L. (2001). Free Radical Scavenging Properties of Conjugated Linoleic Acids. J. Agric. Food Chem. 49(7): 345?-3456.
- Cuvelier, M. E., Richard, H. and Berset, C. (1992). Comparison of Antioxidative Activity of Some Acid-phenols: Structure-activity Relationship. *Biosci. Biotech. Biochem.* 56(2): 324-330.
- 85. Dugas Jr., A. J., Castaneda-Acosta, J., Bonin, G. C., Price, K. L., Fischer, N. H., Winston, G. W. (2000). Evaluation of the Total Peroxyl Radical-Scavenging Capacity of Flavonoids: Structure-Activity Relationships. J. Nat. Prod. 63(2): 327-331.

- 86. Gallin, J. I., Goldstein, I. M. and Snyderman, R. (1992). Overview. In: Gallin, J.I., Goldstein, I.M. and Snyderman, R. Inflammation Basic Principles and Clinical Correlates. 2nd ed. Raven Press: New York, 1-4
- 87. Sell, S., Berkomer, I. and Max. E. E. (1996). *Immunology, Immunopatology and Immunity*. 5th ed. Appleton and Lange, Stamford: Connecticut.
- Hanahan, D. J. (1986). Platelet Activating Factor: A Biologically Active Phosphoglyceride. Ann. Rev. Biochem. 55: 483-509.
- Braquet, P, Touqui, L., Shen, T. Y. and Vargaftig, B. B. (1987). Perspectives in Platelet-activating Factor Research. *Pharmacol. Rev.* 39(2): 97-145.
- 90. Braquet, P. and Pleszczynski, M. R. (1987). Platelet-activating Factor and Cellular Immune responses. *Immunology Today*. 8(11): 345-352.
- 91. Goldring, W. P. D., Alexander, S. P. H., Kendall, D. A. and Pattenden, G. (2005). Novel Phomactin Analogue as PAF Receptor Ligands. *Bioorg. Med. Chem. Lett.* 15: 3263-3266.
- 92. Campbell, W. B. (1990). Lipid-derived Autocoid: Eicosanoids and Plateletactivatin Factor. In: Rall, T.W., Nies, A.S, and Taylor, P. (Eds). Goodman and Gilman's the Pharmacological Basis of Therapeutics. 8th ed. Pergamon Press: New York. 600-604
- 93. Lloret, S. and Moreno, J. J. (1995). Effects of an Anti-inflammatory Peptide (Antiflammin 2) on Cell Influx, Eicosanoid Biosynthesis and Oedema Formation by Arachidonic Acid and Tetradecanoyl Phorbol Dermal Application. *Biochem. Pharmacol.* 50(3): 347-353.
- 94. Jeenapongsa, R., Yoovathaworn, K., Sriwatanakul, K. M., Pongprayoon, U. and Sriwatanakul, K. (2003). Anti-inflammatory Activity of (E)-1-(3,4dimethoxyphenyl)butadiene from Zingiber cassumunar Roxb. J. Ethnopharmacol. 87(2-3): 143-148.

- 95. Parker, J., Daniel, L. W. and Waite, M. (1987). Evidence of Protein Kinase C Involvement in Phorbol Diester-stimulated Arachidonic Acid Release and Prostaglandin Synthesis. J. Biol. Chem. 262(11): 5385-5393.
- 96. Montrucchio, G., Alloatti, G. and Camussi, G. (2000). Role of Platelet Activating Factor in Cardiovascular Pathophysiology. *Physiol. Rev.* 80(4): 1669-1699.
- 97. Jantan, I., Kang, Y. H., Suh, D. Y. and Han, B. H. (1996). Inhibitory Effects of Malaysian Medicinal Plants on the Platelet Activating Factor (PAF) Receptor Binding. Nat. Prod. Sci. 2(2): 86-89.
- 98. Albanes, D. and Hartman, T. (1998). Antioxidants and Cancer: Evidence from Human Observational Studies and Intervention Trials. In: Papas, A.M. (ed). Antioxidant Status, Diet, Nutrition and Health. CRC Press: Washington. 497-544.
- 99. Lewis, W. H. and Lewis, M. P. F. E. (2003). Medical Botany. Plants Affecting Human Health. 2nd ed. John Wiley and Sons Inc.: New Jersey.
- Mosmann, T. (1983). Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxic Assays. J. Immunol. Methods. 65(1-2): 55-63.
- Roche. (2003). Cell Proliferation Kit I (MTT). Roche Applied Science: Germany, Cat. No. 1 465 007.
- 102. Rodgers, E. H. and Grant, M. H. (1998). The Effect of the Flavonoids, Quercetin, Myricetin and Epicatechin on the Growth and Enzyme Activities of MCF7 Human Breast Cancer Cell. Chemico-Biological Interactions. 116: 213-228.
- 103. Zavala, M. A., Perez, G. S. and Perez G. R. M. (1997). Antimicrobial Screening of Some Medicinal Plants. *Phytother. Res.* 11(5): 368-371.

- 103 Arias, M. E., Gomez, J. D., Cudmani, N. M., Vattuone, M. A. And Isla, M. I. (2004). Antibacterial Activity of Ethanolic and Aqueous Extract of Acacia aroma Gill. Ex Hook et Arn. Life Sci. 75(2): 191-202.
- 104 Kikuzaki, H. and Nakatani N. (1993). Antioxidant Effect of Some Ginger Constituents. J. Food Sci. 58(6): 1407-1410.
- 105 Tagashira, M. and Ohtake, Y. (1998) A New Antioxidative 1,3-Benzodioxole from Melissa officinalis. Planta Med. 64(6): 555-558.
- 106 Ohtani, H., Gotoh, N., Tanaka, J., Higa, T., Gyamfi, M.A. and Aniya, Y. (2000). Thonningianins A and B. New Antioxidants from the African Medicinal Herb Thonningia sanguinea. J. Nat. Prod. 63(5): 676-679.
- 107 Nik Musa'adah, M.and Rasadah, M.A. (2000). Inhibitor Effect of Solanum torvum on TPA-Induced Mouse Ear Oedema. J. Trop. Forest Prod. 6: 222-224.
- 108 Valone, F.H., Coles, E., Reinhold, V.R and Goetzl, E.J. (1982). Specific Binding of Phospholipid Platelet-Activating Factor by Human Platelet. J. Immunol. 129(4): 1637-1641.
- Yang, H. K., Sun, D. Y. and Han, B. H. (1995). Isolation and Characterization of Platelet Activating Factor Receptor Binding Antagonist from *Biota orientalis*. *Planta Med.* 61(1): 37-40.