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ABSTRACT 

 
 
 
 

 Emulsion applicability as an oil recovery agent has long been recognized in 
petroleum industry.  However, investigations of emulsion flow in porous media for 
petroleum recovery applications are scarce; particularly the flow effects have not 
been explained in detail in term of events occurring at the pore level.  Thus, this 
research was carried out to investigate the physics of emulsion flow in porous media.  
The objectives of the experiments are to study the behavior and mechanism of 
emulsion flow in porous media, to evaluate the effectiveness of emulsion as an oil 
recovery agent, and to determine the emulsion blocking processes.  In this research, 
well characterized emulsions of water-in-oil emulsion (model oil of 86.5% 
dibutylphthalate + 13.5% n-heptane, and distilled water system) and oil-in-water 
emulsion (paraffin oil, distilled water, and Triton-X100 surfactant system) were 
injected into two-dimensional etched glass micromodels.  Visualization experiments 
by using microscope on the micromodels were conducted to observe and record the 
emulsion droplet motion, captured mechanisms, and blockage processes.  The results 
demonstrate the three possible flow regimes that may occur when emulsion flow in 
porous media are mainly due to the difference of emulsion droplet size to pore throat 
ratios.  Flow phenomena of emulsion droplet formation, deformation and destruction, 
blob and rivulet were observed to be associated with less stable emulsion system.  
Other emulsion flow phenomena were the microstructures of droplets adhesion and 
entrainment from the solid surface, and droplets undergone snap-off and division 
from pore-to-pore.  The results show that the emulsion droplets were found to be 
captured at the throat and the pore body according to straining and interception 
capture mechanisms.  Also, the results indicate that wettability has a direct influence 
on the droplet capture mechanism.  Emulsion water droplet colliding with the water-
wet surface could easily adhere to the surface and formed thick water films.  On the 
other hand, emulsion water droplet contacting oil-wet surface could be displaced 
from the surface by the continuous oil phase.  Moreover, the results reveal that 
continuous emulsion injections could provide additional oil recovery, but by 
injecting smaller size emulsion slugs prior to water injection would result in 
insignificant additional oil recovery.  Microscopic mobility control was found to 
contribute to the oil recovery processes in homogeneous porous media, while 
macroscopic mobility control due to the emulsion blocking effect would contribute 
to the oil recovery processes in heterogeneous porous media.  The emulsion blockage 
process was observed to be accelerated with large ratio of emulsion droplet-to-pore 
throat, coalescence of captured droplet, low emulsion flow rate, more viscous 
emulsion droplets, and emulsion droplet wetting the solid surface.  In conclusion, 
this research characterizes the physics of emulsion flow in porous media and 
demonstrates its application as an effective oil recovery agent through emulsion 
blocking mechanisms.  The novelty is the revelation of the process for emulsion 
droplet blockage effects in porous media. 
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ABSTRAK 

 
 
 
 

 Kegunaan emulsi sebagai agen perolehan minyak sudah lama diiktiraf dalam 
industri petroleum. Walau bagaimanapun, penyiasatan tentang aliran emulsi di dalam media 
poros dalam aplikasi perolehan minyak masih berada pada tahap yang kurang sempurna; 
terutama kesan aliran emulsi yang masih tidak dijelaskan secara terperinci dari aspek 
perlakuan kejadian pada tahap liang.  Oleh itu, penyelidikan ini dijalankan untuk menyiasat 
perlakuan fizik aliran emulsi di dalam media poros.  Objektif kajian adalah untuk mengkaji 
tingkahlaku dan mekanisme aliran emulsi di dalam media poros, menilai emulsi sebagai 
agen perolehan minyak yang berkesan, dan menentukan proses penyekatan emulsi.  Dalam 
penyelidikan ini, emulsi air-dalam-minyak (sistem model minyak 86.5% dibutilfatalat + 
13.5% n-heptana, dan air suling) dan emulsi minyak-dalam-air (sistem minyak parafin, air 
suling, dan surfaktan Triton-X100) yang mempunyai ciri tertentu disuntik ke dalam 
mikromodel gelas tersurih dua dimensi.  Ujian gambaran dengan menggunakan mikroskop 
ke atas mikromodel dilakukan untuk memerhati dan merakam pergerakan titisan emulsi, 
mekanisme pemerangkapan, dan proses penyekatan.  Keputusan ujian menunjukkan bahawa 
tiga jenis regim aliran boleh berlaku terutama bila emulsi mengalir di dalam media poros 
adalah berpunca daripada perbezaan nisbah saiz titisan emulsi terhadap leher liang.  
Fenomena aliran misalnya pembentukan titisan emulsi, ubah bentuk dan pemusnahan, titisan 
besar, dan sungai titisan emulsi hanya berlaku pada sistem emulsi yang kurang stabil.  
Tingkahlaku aliran emulsi yang lain ialah terdapat mikrostruktur rekatan dan pembebasan 
titisan emulsi dari permukaan pepejal, dan titisan emulsi mengalami pemutusan dan 
pembahagian dari satu liang ke liang yang lain.  Keputusan menunjukkan bahawa titisan 
emulsi terperangkap di leher liang dan jasad liang berdasarkan mekanisme penyekatan dan 
pemintasan.  Keputusan juga mempamerkan bahawa keterbasahan mempunyai kesan 
langsung terhadap mekanisme pemerangkapan titisan.  Titisan air emulsi berlaga dengan 
permukaan basah air mudah terekat pada permukaan dan membentuk lapisan air yang tebal.  
Sebaliknya, titisan air emulsi yang berlaga dengan permukaan basah minyak dianjakkan dari 
permukaan oleh fasa minyak yang berterusan.  Selanjutnya, keputusan mendedahkan bahawa 
suntikan emulsi secara berterusan mampu menghasilkan perolehan minyak tambahan, tetapi 
suntikan slug emulsi yang kecil sebelum suntikan air tidak memberi kesan terhadap 
perolehan minyak.  Kawalan pergerakan secara mikroskopik didapati menjurus kepada 
proses perolehan minyak dalam media poros homogen, sementara kawalan pergerakan 
secara makroskopik yang disebabkan oleh kesan penyekatan emulsi menjurus kepada 
perolehan minyak dalam media poros tak homogen.  Proses penyekatan emulsi mampu 
dipercepatkan oleh nisbah titisan emulsi terhadap leher liang yang besar, penautan titisan 
yang terperangkap, kadar aliran yang rendah, titisan emulsi yang lebih likat, dan titisan 
emulsi yang membasah permukaan pepejal.  Kesimpulannya, penyelidikan ini berjaya 
mencirikan fizik aliran emulsi di dalam media poros dan menunjukkan kegunaannya sebagai 
agen perolehan minyak yang berkesan melalui mekanisme penyekatan emulsi.  Keaslian 
kajian ialah pendedahan kesan penyekatan emulsi di dalam media poros. 
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Roman Letters 
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o/w/o oil-in-water-in-oil multiple emulsion 

w/o/w water-in-oil-in-water multiple emulsion 

ppm part per million 

k permeability 

L length or distance 

p or P pressure 

q or Q flow rate 

v velocity 

r or R radius 

h height 

m matrix 

mN/m millinewton per meter 

g gravity constant 

a acceleration 

 
 
 
Greek Letters 

 

σ surface tension or interfacial tension 

θ contact angle 

υ  settling velocity 

η , µ viscosity 

ρ density 
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∆ differential 

φ porosity 

 
 
 
Subscripts 

 

o oil phase 

i initial or internal 

t total 

f fiber 

1 and 2 leading and trailing curvatures 

c capillary or continuous 

e external 

wo water-in-oil 

ow oil-in-water 

w water 

ri initial relative permeability 

sb surface solid and phase b 

sa surface solid and phase a 

ab surfaces a and b 

oi relative to oil 

 
 
 
Superscripts 

 

o degree 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1 Background 

 

Emulsion flows in porous media can take place in many instances for 

practical applications, both in petroleum or non-petroleum related processes.  

Emulsion flows through oil reservoirs are important in secondary oil recovery 

methods, such as the use of high viscosity emulsions to displace oil, the use of 

emulsion slugs as boundaries between the driven fluid (oil) and the driving fluid 

(water) in conventional water-flooding operation, the combination of a soluble-oil 

slug and a slug of emulsions, and the use of microemulsions (Uzoigwe and Marsden, 

1970).  Similar situations occur in enhanced oil recovery techniques, such as 

emulsion flow during micellar-polymer flooding and alkali-surfactant-polymer 

flooding (Gogarty, 1974; Gogarty, 1978; Jennings et al., 1974; Grude and Johnson, 

1974).  Other emulsion applications are in heavy-oil reservoirs as a blocking agent or 

mobility control agent to improve sweep efficiency (Fiori and Farouq Ali, 1989; 

McAuliffe, 1973a; Schmidt et al., 1984; Romero et al., 1996), in steam-flooding 

processes (Decker and Flock, 1988; French, 1986; Garthoffner, 1979), and in 

retarding mineral dissolution rate of matrix acidization processes (Hoefner and 

Fogler, 1985). 

 

Emulsion flows in porous media may also be encountered during produced 

water reinjection into subsurface formations (Mendez, 1999), and during chemical 

process in fixed-bed catalytic reactors involving two immiscible liquids (Trambouze, 

1990).  Flow of emulsions can also occur in the separation of emulsions by porous 
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media coalescers (fibrous or granular coalescers).  Reported applications of porous 

coalescers include the separation of water from aviation fuel (Bitten, 1970; Bitten 

and Fochtman, 1971), desalination of crude oil and bilge water treatment (Douglas 

and Elliot, 1962), separation of emulsified oil from water (Sareen et al., 1966), 

break-up of freon from water (Johnson, 1980), and oil recovery from oil spill 

emulsions on the sea surface and from refinery sludges (Anklam, 1997).  Most of the 

porous coalescer applications are for unstable and dilute emulsion systems, which the 

dispersed phase contents are usually less than 0.1 % v/v (1000 ppm).  Anklam (1997) 

was among the few people who used concentrated emulsion systems of 65 to 96% in 

his study. 

 

Having mentioned the importance of emulsion flow in porous media, this 

author is interested to study further the flow behavior of emulsion in porous media in 

petroleum reservoir applications.  The particular areas of interests are emulsion as a 

mobility control, a blocking agent and/or a plugging agent in secondary and tertiary 

waterflooding to improve swept efficiency and to increase oil recovery (Romero et 

al., 1996; Thomas and Farouq Ali, 1989).  Emulsion flows in porous media are also 

always being associated with the overall permeability impairment of the porous 

media.  Thus, this study investigates and explains the physics at pore scale level and 

pore network level behind the magnitude, extent and rate of permeability reductions 

as emulsions flow through the porous media. 

 
The physics of emulsion flows in porous media is very complicated because 

they involve a complex emulsion system and extremely complex porous media 

geometry.  Therefore, the knowledge of the nature and properties of emulsions, the 

characteristics of porous media, and the basic mechanisms involved in the flow of 

simpler fluids in porous media are important in order to understand the behavior of 

emulsion flow in porous media (Kokal et al., 1992).  Table 1.1 indicates area of 

study in the understanding of emulsion flow in porous media, both qualitative and 

quantitative aspects. 
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Table 1.1 : Area of Study in the Understanding of Both Qualitative and Quantitative 

Aspects for Emulsion Flow in Porous Media (Kokal et al., 1992). 

 
 

Area of Interest 
 

Important Parameters to Consider 
 

• Emulsion 
Characteristics 

 

• Stability 
• Quality 
• Droplet size distribution 
• Rheology 

 

• Porous Medium 
Characteristics 

 

• Average pore size 
• Pore size distribution 
• Wettability 
• Porosity 
• Permeability 
• Specific surface area 
• Chemical composition 

 

• Fluid-rock interaction 
 

• Emulsion-rock interaction 
• Simultaneous flow of emulsion 
• Bulk dispersed phase  

 

• Hydrodynamic 
 

• Flow velocity 
 

• Theoretical analysis 
 

• Taking into account all of the 
aforementioned 

 
 
 
 
1.2 Emulsion Applications in Oil Recovery 

 

Emulsion flow in porous media occurs in petroleum reservoirs during the 

production of oil from underground reservoirs containing oil, water, and gas.  

Emulsions may form naturally during simultaneous flow of oil and water in porous 

rock formations, or they may be promoted by injection of external chemicals.  In 

emulsion flooding for heavy-oil recovery, externally generated emulsions are 

injected into the reservoir.  A good review of the fundamentals and applications of 

emulsions in petroleum industry can be found in the advanced chemical series edited 

by Schramm (1992). 
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 Emulsions could be formed in the reservoir rock itself, particularly, within the 

porous rock near the well bore where the velocity gradients were very high.  

Emulsions within the porous medium are formed as a result of the presence of 

surface active-agents, either native or externally added, and shear by the movement 

of fluid through pore to the throats.  Natural emulsifiers exist in oil reservoirs from 

the following materials: asphaltic and resinous materials found in crude; asphaltenes 

found in heavy crude; oil-soluble organic acids such as napthenic acids; fatty acids or 

aromatic acids; cyclic compounds (cyclic aromatic) such as toluene, benzene, 

decalin, methylcyclohexane and cyclooctane in crude oils (Khambharatana, 1993); 

and some finely divided insoluble materials (Uzoigwe and Marsden, 1970).  These 

emulsifiers absorb at the oil-water interface and form a film that prevents the 

coalescence of the droplets in natural oil field emulsions.  The emulsifiers also 

decrease the interfacial tension of the oil and water, which plays a dominant role in 

the emulsification of these liquids in porous media (Raghavan and Marsden, 1971). 

 

Vittotos (1990) and Chen et al. (1991) have shown that in-situ emulsification 

can be formed in porous media.  Their studies have shown that during a cyclic steam 

flooding, part of the produced water flows as a single phase, and part of the water 

will flow as an emulsion with the oil.  This finding is different from the normal 

phenomena of the flow of water and oil in which the two phases are considered to be 

flowing separately.  The implication of emulsion flow in porous media is that the 

immiscible displacement should be modified to allow for the mixing of the two 

phases to flow as an emulsion.  Table 1.2 lists the differences and similarities 

between the flow of emulsion and the simultaneous flow of oil and water in a porous 

medium.  Vittotos (1990) also suggested that flow of water-in-oil emulsions in 

porous media should get more attention with the recognition that it may be an 

important factor in controlling the oil-water ratio in the production from steam 

stimulated wells. 
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Table 1.2 : Differences and Similarities between the Flow of Emulsion and the 

Simultaneous Flow of Oil and Water in a Porous Medium (Schramm ,1992; Kokal et 

al., 1992). 

 
 

Simultaneous flow of oil and water 
 

Flow of emulsions 

 
• Both oil and water occupy a 

continuous but separate flow channel 
 

• The non-wetting phase is 
discontinuous at its residual 
saturation and it ceases to flow 
 
 
 

• Total relative permeabilities of oil 
and water in the porous medium is 
equal to one 
 
 

• Oil droplets or ganglia become 
trapped in the porous medium by the 
process of snap-off of oil filament at 
the pore throats  

 
• Both oil and water (emulsion) 

occupy the same flow channels 
 

• The dispersed phase consists of very 
small droplets and about the same 
size of the pore sizes, these droplet 
are surrounded by the continuous 
phase 
 

• At the same wetting phase 
saturation, the relative 
permeabilities to water and oil are 
quite different 
 

• Dispersed phase become trapped by 
the mechanism of straining capture 
at the pore throat smaller than the 
dispersed phase drop 

 
 
 
 
 

Other in-situ emulsifications in enhanced oil recovery methods are carbon 

dioxide flooding, chemical flooding and thermal flooding.  Spontaneous 

emulsification occurs during chemical flooding when there is a mass transfer of 

surfactant between the oil and water phases under sufficient shearing action at the 

oil/water interface (Cash et al., 1975).  In micellar-polymer flooding and alkali-

surfactant-polymer flooding, in-situ emulsification and entrapment of emulsion 

droplets occur to result in reduced water mobility, which in turn improves both 

vertical and areal sweep efficiencies (Jenning et al., 1974; Taylor and Hawkins, 

1992).  Similarly, in immiscible carbon dioxide flooding, an emulsion bank formed 

seems to improve oil displacement efficiency without pressure drop increases. 
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Soo and Radke (1984), Alvarado and Marsden (1979), McAuliffe (1973a) 

and Deveraux (1974b) have conducted the most relevant experimental investigations 

related to the flow of emulsion in porous media.  They evaluated some pore plugging 

mechanisms associated with the injection of emulsified oil droplets into fully brine-

saturated cores.  They have also found out that the stability of emulsions in porous 

media is affected by a number of factors such as drop size to pore size ratio, 

concentration of the droplets, flow rate, wettability and the surface chemistry of the 

porous medium.  For dilute, surfactant-free o/w emulsions, solid surface behaves 

more like a filter and is not affected by wettability.  Emulsion instability due to 

droplet coalescence then arises from the captured droplets coming into contact with 

each other, and from the effects of surface chemistry alterations may be due more to 

electrostatics than wettability (Basu, 1993; Jachowicz and Berthiaume, 1989).  For 

w/o emulsions with low dielectric oils, the electrostatic interactions will be negligible 

compared to other colloidal interactions and wettability to have a large effect on 

coalescence. 

 

Mendez (1999) has experimented similar core flow experiments but he 

investigated the effect of the flow of emulsions in porous media containing residual 

oil saturation.  He has compared the flow of emulsion in porous media in deep-bed 

filtration processes to emulsion flows occurring in oil recovery.  Oil reservoirs, as 

compared to filters, usually have fairly low permeabilities.  So the ratio of emulsion 

droplet to pore size is larger than that in standard filtration processes. 

 

Some researchers have concluded that the formation of stable 

macroemulsions in the oil fields is considered undesirable and can cause severe 

problems.  Strange and Talash (1977), Whiteley and Ware (1977), and Widmyer et 

al. (1977) have reported poor oil recovery due to problems associated with stable 

emulsions.  They were right with respect to a very high energy is required to flow a 

high viscosity emulsions formed in the reservoir of homogeneous permeability.  

However, McAuliffe (1973a) and Khambharatana et al. (1997) have shown 

beneficial effects of macroemulsions in oil recovery as their injection into sandstone 

cores increased sweep efficiency.  Emulsions (o/w or w/o emulsions) offer 

considerable promise as effective oil recovery agents.  Emulsions can provide 

mobility control in certain situations, and may even serve as blocking agents.  The 
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results show that the emulsion drop retained – hence mobility control – is rate-

dependent and related to pore size distribution.  According to the process, the 

emulsion droplets must be larger than the pore-throat constrictions in the porous 

media in order for the emulsion to be most effective.  The injected emulsion enters 

the highly permeable zones, which in turn reduces the channeling of water.  

Therefore, water starts to flow into low permeable zones, resulting in greater sweep 

efficiency.  A field test for emulsion flooding process conducted in the Midway 

Sunset field, California, has showed an improvement in oil recovery, an increase in 

sweep efficiency, and a lower in water-oil-ratio (McAuliffe,1973b). 

 
 Most of the research works conducted so far have been carried out on core 

flooding or analytical and numerical simulations, and sometimes alongside field 

trials.  The behaviors of emulsion flow in porous media, permeability reduction and 

oil recovery have been empirically investigated using core displacement 

experiments, and generally with water-wet cores.  Although micromodel techniques 

have become more accepted and have grown rapidly for fluid displacement study, a 

very limited micromodel visualization study of emulsion flow in porous media has 

been carried out to directly observe the physical processes taking place in the porous 

media.  Most micromodel studies of emulsion flow in porous media were in the 

emulsion separation in porous coalescers (fibrous or granular) for unstable and dilute 

emulsion systems, and at very low emulsion droplet-to-pore size ratio.  Soo and 

Radke (1984) have used a micromodel of Ottawa sand sandwiched between two 

glass plates to study o/w emulsion flow.  They only described the flow profiles of the 

injected emulsion in micromodel, but they did not produce any photograph of the 

pore level events in their report. 

 

 For possible implementation of an emulsion flooding/injection, the prior 

performance and recovery predictions for economic evaluation are needed by using a 

reliable simulation incorporating proper reservoir fluid and rock description which 

reflect the actual physics of the emulsion flow realistically.  2-D glass micromodel 

experiments were performed to test a series of emulsion flow in porous media to 

observe and record the flow processes and measure the model fluid saturations and 

recoveries.  The results of this study can be used in the future by others to verify the 

accuracy of the predictions made by the network model simulator (the network 
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model simulation is not part of this study). 

 
 
 
 
1.3 Problem Statement 

 

 It is understood that emulsion flow in porous media has significant 

engineering applications in oil recovery processes.  A great deal of work has been 

conducted on the flow (transport) of emulsions in porous media.  The primary 

problem of interest in this study is the emulsion flooding for oil recovery technique.  

A review of the literature indicates that there has been limited micromodel 

experimental work done on determining the pore level behaviors of porous media 

when emulsions are flooded into the formation.  Emulsions have been shown to be 

effective blocking agents (Bragg, 1999; Varadaraj et al., 2004; Zeidani el al., 2006), 

but limited work has been reported on their use at waterflooding.  In this study, 

microscale studies are conducted to investigate the emulsion flow behavior through 

porous media.  The microscale flow study will demonstrate the pore level mechanism 

and micro structure of the emulsion droplets. 

 

A number of questions are addressed with respect to the micromodel flow 

experiments in this study. 

 

(a) What are the mechanisms responsible for the permeability reduction of 

emulsion flow in porous media at different emulsion quality, emulsion flow 

rate, emulsion droplet size, emulsion stability, and droplet-to-pore size ratio? 

 

(b) What is the nature of emulsion at pore level and at pore network level?  Does 

it consist of single or multiple droplet straining and interception captured 

mechanisms at the pore throat and at the pore body?  Are there any preferred 

conditions that emulsion droplet will under goes re-entrainment and 

displacement? 

 

(c) How wetting interaction of the emulsion droplets with the porous media 

surfaces lead to different flow phenomena, and how does wettability 
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influences the emulsion stability?  Will droplet spreading on the surface and 

droplet wetting film on the solid substrate be more likely to coalesce with the 

droplets than the droplets to coalesce with other free droplets? 

 

(d) How flow rate and emulsion quality are important, how do these parameters 

effect emulsion distribution in the porous media? 

 

(e) How the two systems of stable dilute and stable concentrated emulsions 

provide different flow mechanism in porous media? 

 

(f) How emulsions can assist in oil recovery from the porous media?  It is 

through mobility improvement or profile improvement? 

 
 
 
 
1.4 Objective of Research 

 

This research is aimed at visualizing the fundamental mechanism of the 

permeability impairment caused by the flow of emulsions in porous media of two-

dimensional glass-etched micromodels with novel design, and quantifying some of 

the observation results.  This research was carried out with the objective of 

investigating the problems of the flow nature of emulsions through porous media as 

specifically stated below. 

 

a) To observe, elucidate and identify the main microscopic mechanisms 

involved in the permeability reduction phenomena of the flow of 

emulsions in porous media, and to evaluate the factors such as, 

dispersed phase contents, emulsion flow rates, and wettability 

conditions that may affect such a process.  The initial conditions of the 

flow models are dry (100% air filled), fully water-saturated, and filled 

by residual oil saturations. 

 

b) To observe the emulsion blocking phenomena in micromodel by 

identifying the blockage processes.  
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c) To quantify some of the observations by employing digital image 

analysis techniques to measure the relative saturation of the phases in 

the micromodels. 

 

 These results are examined and produced at three scale levels: (i) at the pore 

scale observation, using individual pores; (ii) at the target area, comprising a number 

of representative elementary volumes (REV); and (iii) at the bulk model, i.e., the 

entire model domain. 

 

 The overall objective of this research is to contribute to the understanding of 

the fundamental scientific principles of emulsion flow phenomena and mechanisms, 

the factors that control them, and the emulsion stability in the porous media.  This 

understanding is important in providing the information of the behaviors of 

emulsions within a porous medium.  

 
 
 
 
1.5 Scope of Research 

 

In order to materialize the objectives, this research is interested both in the 

mechanical behavior of the complex system of emulsions during flow, and the 

stability of the emulsion during flow.  The experimental works involved the 

investigation of emulsion flow behaviors in the micromodel.  All experiments are 

conducted at room conditions of about 27oC and 14.65 psia.  Visualization study of 

microscopic model would use 2-D- etched glass flow models as its porous media.  

The detail descriptions of these micromodels are presented in Chapter 4. 

 

The oil system of Model Oil of a mixture of 86.5% Dibutyphtalate and 13.5% 

n-Heptane, and paraffin oil are used for this study. The aqueous phases are distilled 

water.  Surfactant Triton-X100 was added in the paraffin oil emulsion.  The emulsion 

systems are prepared with the dispersed phase contents ranging from 0.5% to 10% 

v/v.  The emulsion flow rates are from 0.01 ml/min (about 1 ml/hr) to 2 ml/min.  

Flow rate of 2 ml/min would give very high terminal fluid velocity in the 

micromodel, however the flow test at this high flow rate is needed to see whether 
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pressure drop affected not only by emulsion droplet but also by the hydrodynamic 

forces. 

 

The wetting conditions generated are water-wet, oil-wet and mixed-wet with 

reference to the dispersed droplets.  Qualitatively, the degree of wettability of the 

porous media surfaces against the dispersed phase droplet and surrounded by 

external phase are determined by contact angle measurements. 

 

The results of emulsion flowing through etched glass micromodels can 

provide visual observation of the mechanisms, the fluid distributions and the fluid 

flow behaviors in situ of porous media.  The emulsions are allowed to flow 

continuously through the porous media up to several pore volumes.  Pressure drop 

(permeability reductions) across the model and the droplet distributions at outlet of 

the model are measured as a function of the number of pore volumes of emulsion 

passed through the micromodel. 

 

However, some limitations of this study are identified as follow. 

 

(a) The results of the micromodel tests were not represent the actual reservoir 

conditions of high pressure and high temperature.  The measured average 

properties in micromodels, such as permeability and fluid saturations can be 

valuable in a relative rather in absolute sense. 

 

(b) The studies are more interested in the local pore-level physics of 2-D rather 

than the topological of fluid flow behavior in 3-D. 

 

(c) The emulsion was injected under a constant flow rate.  Therefore, any 

obstruction of the emulsion flow in the micromodel would cause an increase 

of pressure drop. 

 

(d) The current design characteristics and techniques of the 2-D glass 

micromodel fabrication produce large pore and throat sizes as compared to 

emulsion droplet sizes.  So, droplet straining capture mechanisms were 

hardly observed under the microscope in the experiments. 
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1.6  Overview of Thesis Contents 

 

 This thesis consists of seven chapters, where in Chapter 1, the background, 

the research problem statements, the objective and scope of research and the 

importance of research were discussed.  Chapter 2 would summarize all aspects of 

fundamental theory of emulsions, and their flows in porous media and the factors 

that affect their flow behaviors.  The literature review for the emulsion study, 

particularly for emulsion flow in porous media, is presented in Chapter 3.  Research 

methodology and experimental setups and requirements are given in Chapter 4.  

Chapter 5 would provide the results and discussion of emulsion characterizations, 

while in Chapter 6 discussed the results of the experimental works of emulsion 

displacement flow in micromodels.  Finally, Chapter 7 would give the overall 

summary of the works, the conclusions of the research and the recommendation for 

future works. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




