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ABSTRACT 

 

 

 

The current drive towards environmental sustainability and the rising costs of 

raw material and waste treatment have encouraged the process industry to find new 

ways to reduce resource consumption and waste generation. Concurrently, the 

development of systematic techniques for resource conservation and recycling within 

a process plant has seen extensive progress. The advent of process integration 

technique based on pinch analysis as a tool for the synthesis of optimal resource 

conservation networks (RCNs) has been one of the most significant advances in the 

area of pollution prevention over the last decade.  However, most of the work on 

setting targets for resource conservation have been carried out using graphical tools.  

There is a clear need to develop a numerical technique to quickly and accurately 

establish the minimum resource targets for a RCN.  This thesis presents a new 

targeting tool called the cascade analysis technique to locate the minimum fresh feed 

and discharge flowrate targets, pinch location(s) and the resource allocation target for 

various types of RCNs.  The RCNs cases covered in this thesis include continuous 

and batch water networks, utility gas network as well as property-based network.  In 

the synthesis of water network, water cascade analysis (WCA) is the first numerical 

technique that is able to handle both mass transfer and non-mass transfer-based 

water-using processes simultaneously.  A new concept to achieve zero discharge via 

the use of regeneration unit optimisation in water network is also presented.  Gas 

cascade analysis (GCA) and property cascade analysis (PCA) techniques are the first 

non-iterative numerical targeting tools for the synthesis of utility gas and property-

based networks. The appropriate placement of resource regeneration/purification 

unit(s) and other process changes options were also assessed using these newly 

developed cascade analysis techniques.   
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ABSTRAK 

 

 

 

Keprihatinan terhadap pemuliharaan alam sekitar dan kenaikan harga bahan 

mentah serta kos rawatan sisa telah menggesa industri proses untuk mencari 

penyelesaian baru dalam usaha mengurangkan penggunaan sumber serta penjanaan 

sisa.  Pada masa yang sama, penyelidikan yang meluas telah dilaksanakan dalam 

pembangunan teknik sistematik yang melibatkan kitar semula dan penjimatan 

sumber dalam sesebuah loji proses.  Dewasa ini, teknik integrasi proses berdasarkan 

analisa jepitan untuk sintesis jaringan penjimatan sumber (RCNs) optima merupakan 

antara teknik yang terpenting dalam penyelidikan pencegahan pencemaran.  Walau 

bagaimanapun, penyelidikan yang meluas dalam penetapan sasaran penjimatan 

sumber telah bertumpu kepada kaedah grafik.  Oleh itu, adalah amat penting untuk 

membangunkan satu kaedah berangka yang pantas, jitu dan berkesan untuk mencapai 

sasaran penggunaan sumber yang minima.  Tesis ini membentangkan satu kaedah 

baru untuk penetapan sasaran rekabentuk yang dikenali sebagai teknik analisa lata 

untuk menetapkan sasaran kadaralir suapan segar dan pembuangan sisa, lokasi 

jepitan dan sasaran peruntukan sumber bagi pelbagai jenis RCNs.  Kes-kes RCNs 

yang dibincangkan dalam tesis ini merangkumi jaringan air sistem berterusan dan 

kelompok, jaringan gas utiliti dan jaringan sifat.  Dalam jaringan air, analisa lata air 

(WCA) adalah kaedah berangka pertama yang boleh menangani kedua-dua jenis 

proses penggunaan air yang berdasarkan pindah jisim dan bukan pindah jisim.  Satu 

konsep baru untuk mencapai sisa sifar dalam jaringan air melalui pengoptimuman 

unit penjanaan telah dibangunkan.  Untuk jaringan gas utiliti dan jaringan sifat, 

analisa lata gas (GCA) dan analisa lata sifat (PCA) merupakan kaedah berangka 

pertama yang tidak melibatkan pengiraan iteratif.  Penempatan alat penjanaan semula 

dan penulenan sumber serta skema pengubahsuaian proses juga dianalisa melalui 

teknik baru analisa lata telah dibangunkan.   
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1  Background problem 

 

The current drive towards environmental sustainability and the rising costs of 

resources and waste treatment have encouraged the process industry to find new 

ways to reduce its resource consumption and waste generation.  Process plants are 

now taking more serious steps towards minimising resource consumption via in-plant 

reuse and recycle.  This corresponds to reduced waste generation as a mean to reduce 

production cost and to ensure sustainable growth of business activities.  Recently, 

significant progress has been made in the optimisation of material recycle and reuse.  

In particular, process integration technique has emerged as an effective tool in 

handling the many waste minimisation (also often called as pollution prevention) 

problems in the process industries.   

 

 

 

1.2 Process integration and process synthesis 

 

Process integration is defined as the holistic approach to process design, 

retrofitting and operation which emphasises the unity of the process (El-Halwagi, 

1997).  In the context of pollution prevention, process integration element that plays 

the more important role in providing systematic solution is that of process synthesis.   
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Process synthesis is the step to determine the optimum interconnection of 

different processing units to form a flowsheet that meets the process design 

requirement (Westerberg, 1980).  It has been an active research area since the late 

1960s (Nishida et al., 1981).  Since then, process synthesis has been an active 

research area and the review on its development can now be found in many review 

papers (Hendry et al., 1973; Hlaváček, 1978; Westerberg, 1980, 1987; 

Stephanopoulos, 1981; Nishida et al., 1981; Gundersen and Naess, 1988; Linnhoff, 

1993; Manousiouthakis and Allen, 1995; El-Halwagi, 1998; El-Halwagi and Spriggs, 

1998; Johns, 2001; Dunn and El-Halwagi, 2003; Li and Kraslawski, 2004) and 

textbooks (Rudd et al., 1973; Linnhoff et al., 1982; Douglas, 1988; Smith, 1995, 

2005; Shenoy, 1995; Mann and Liu, 1999; El-Halwagi, 1997, 2006).   

 

Manousiouthakis and Allen (1995) had broadly classified process synthesis 

into seven major areas:  

 

i. Material synthesis  

ii. Reaction path synthesis  

iii. Reactor network synthesis  

iv. Separation network synthesis  

v. Heat exchanger network synthesis  

vi. Mass exchanger network synthesis  

vii. Total flowsheet network synthesis   

 

Among these many process synthesis areas, two of the most well developed 

areas are the synthesis of heat exchanger network synthesis (HEN, or commonly 

know as heat integration) and mass exchanger network (MEN, commonly known as 

mass integration).  Both of the heat and mass integration areas have been widely 

accepted as practical design tools and have been included in almost all process 

design textbooks lately (e.g. see Douglas, 1988; Biegler et al., 1997; Turton et al., 

1998; Allen and Shonnard, 2002; Seider at al., 2003; Smith, 1995, 2005).  Heat, 

mass and the recent established property integration (Shelley and El-Halwagi, 2000; 

Vasiliki and El-Halwagi, 2005) techniques together become the three subsets of 

process integration techniques.   
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In the context of pollution prevention, various special cases of mass and 

property integration has received much attention from both the academic and 

industrial practitioners.  This includes the synthesis of water and hydrogen (special 

cases of mass integration) as well as the property-based networks.  These special 

cases can be generally categorised under the main framework of material 

reuse/recycle, or more specifically resource conservation networks (RCNs).   

 

 

 

1.3 Problem statement 

 

Most of the works on the synthesis of RCNs based on process integration 

technique have been carried out using graphical tools.  Many limitations have been 

associated with these graphical tools, such as inaccuracy and cumbersomeness.  

Clearly, a more efficient tool based on numerical technique is needed to handle the 

minimum fresh resource and waste discharge targeting step in these RCNs and 

overcome the limitations of graphical approaches.   

 

 

 

1.4 Objective  

 

The objective of this research is to develop a generic systematic technique to 

efficiently and accurately locate the minimum fresh feed and discharge targets in a 

RCN.  This includes continuous and batch water networks, property-based network 

and utility gas network.  

 

 

 

1.5 Scopes of research 

 

This research is divided into four main parts: 
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i. Flowrate targeting for water network in continuous mode 

Minimum fresh water and wastewater flowrates targeting based on pinch 

analysis concept is the first stage of the water network synthesis.  It is carried out 

prior to water network design.  A new targeting technique is to be developed to 

locate the minimum water flowrates, covering both mass transfer-based and non-

mass transfer-based water-using processes.  Options for process changes are to be 

assessed using the new targeting technique.   

 

ii. Synthesis of a batch water network 

A two-stage procedure for the synthesis of batch water network will be 

developed.  In the first stage, the targeting technique developed for continuous water 

network will be extended to the batch water network problem.  The time dimension 

is taken as a primary constraint in this adaptation.  In the second stage, a systematic 

design procedure for a water network utilising the newly introduced batch network 

representation will be presented.  

 

iii. Targeting for utility gas network  

Targeting technique developed in earlier chapters will be applied to nitrogen, 

oxygen and hydrogen gas networks.  Beside, appropriate placement of gas 

purification units will be assessed using the targeting tool.     

 

iv. Synthesis of property-based network 

A two-stage procedure for the synthesis of property-based network is to be 

developed.  New graphical and numerical targeting tools will be developed to locate 

the various network targets prior to network design.   

 

 

 

1.6 Contributions of the work 

 

This thesis offers significant contributions in the area of RCNs synthesis. The 

key contributions are summarised as follows: 
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i. A generic non-iterative numerical technique for locating minimum fresh and 

discharge flowrate targets in a RCN called the cascade analysis technique has 

been developed.  It has been applied to various kind RCN problems with 

different characteristics (e.g. driving force, multiple pinches, etc.).  

ii. For the synthesis of water network, water cascade analysis (WCA) technique 

is the first numerical technique that is able to handle both mass transfer and 

non-mass transfer-based water-using processes simultaneously.  A new 

concept to achieve zero discharge in water network is also presented, i.e. with 

the use of regeneration unit optimisation.  

iii. For the synthesis of batch water network, the two-step approach presented in 

this thesis is the first work to handle both mass transfer and non-mass 

transfer-based water-using processes, as can be found in the open literature. 

iv. Gas cascade analysis (GCA) technique is the first non-iterative numerical 

targeting tool for utility gas network synthesis.  New application of utility gas 

network synthesis has also been firstly extended into oxygen and nitrogen gas 

networks.  Besides, problem involving multiple pinches for utility gas 

network has also been addressed and solved for the first time. 

v. The property cascade analysis (PCA) technique is the first numerical 

targeting tool for property-based network.  

 

 

 

1.7 Summary of this thesis  

 

Cascade analysis technique is non-iterative and can quickly yield rigorous 

targets prior to detailed network design.  The developed methodologies are described 

in depth in each chapter using various literature and industrial case studies.  

  

Chapter 2 provides a review of the relevant theories and literatures of this 

thesis related to the development in process integration for the synthesis of RCNs.  

The development of a systematic targeting procedure is initiated here.   

 

The methodology for setting minimum fresh feed and discharge targets for 

RCNs using cascade analysis technique is described in Chapter 3.  The generic 
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representation of the cascade analysis technique that is applicable to various RCN 

problems is presented here.   

  

In Chapter 4, cascade analysis technique is applied to maximum water 

recovery (MWR) network problem.  Hence, it is called the WCA technique.  WCA 

handles both mass transfer-based and non-mass transfer-based water-using 

operations and is applicable to a wide range of water network (e.g. multiple pinches).  

WCA also helps in the assessment of various options for process changes, including 

water regeneration, equipment modifications and optimisation towards zero 

discharge.   

 

A new extension of WCA technique, i.e. time-dependent water cascade 

analysis (TDWCA) technique is next applied to the synthesis of a batch water 

network, as discussed in Chapter 5.  A new network representation called the time-

water network is also introduced in this chapter to synthesis the batch MWR network 

to achieve the established fresh water and wastewater targets.  

 

Chapter 6 describes the application of cascade analysis technique in utility 

gas network, i.e. the GCA technique.  Different industrial processes involving the 

integration of nitrogen, oxygen and hydrogen gases are used to demonstrate the GCA 

technique.  Appropriate placement of gas purification units is also being assessed.   

 

Cascade analysis technique is next applied to the property-based network in 

Chapter 7.  Two new tools are developed here.  With the introduction of a new 

graphical tool called the property surplus diagram, a basic framework for the 

determination of the minimum fresh feed and discharge targets is provided.  The 

PCA technique is next established to set targets via a tabular approach.  A network 

design technique is also presented to synthesise a maximum resource recovery 

(MRR) network that achieves the various established targets. 

 

Chapter 8 concludes the thesis by summarising the main points discussed and 

exploring the potential areas for future development of RCNs synthesis.  Figure 1.1 

summarises the conceptual links between the chapters in this thesis.  
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CHAPTER 5: BATCH WATER NETWORK 
Application of time-dependant cascade analysis technique to: 
 Targeting for network without water storage tank 
 Targeting for network with water storage tank 

Batch water network design  

CHAPTER 2: BACKGROUND THEORY AND LITERATURE 
REVIEW 

A review and analysis of work on: 
 Synthesis of continuous and batch water network  
 Synthesis of property-based network 
 Synthesis of hydrogen network 

CHAPTER 3: METHODOLOGY DEVELOPMENT 
 Cascade analysis technique for resource conservation network  

THESIS INTRODUCTION

CONCLUSIONS AND FUTURE WORKS

CHAPTER 4: WATER NETWORK (CONTINUOUS PROCESS) 
Application of water cascade analysis (WCA) technique to: 
 Maximum water recovery (MWR) network 
 Options for process changes: water regeneration placement and 

hardware modification 
 Multiple pinch points problem 
 Mass transfer-based water-using processes 
 Optimisation to achieve zero discharge 

CHAPTER 6: PROPERTY-BASED NETWORK 
Application of property cascade analysis (PCA) technique to: 
 Maximum resource recovery (MRR) network 
 Process modification 

MRR network design 

CHAPTER 7: UTILITY GAS NETWORK 
Application of gas cascade analysis (GCA) technique to: 
 Maximum gas recovery (MGR) network 
 Appropriate placement of gas purifier 
 Multiple pinch problems  

Gas network design  

 
Figure 1.1  A flow diagram illustrating the conceptual links between the chapters 
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