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ABSTRACT

 The study of online handwriting recognition has gained an immense interest 

among the researchers especially with the increase in use of the personal digital 

assistant (PDA). The large number of writing styles and the variability between them 

make the handwriting recognition a challenging area to date. The present tools for 

modelling are not sufficient to cater for the various styles of human handwriting. 

Furthermore, the techniques used to get appropriate features, architecture and 

network parameters for online handwriting recognition are still ineffective. The 

success of any recognition system depends critically upon how far a set of 

appropriate numerical attributes or features can be extracted from the object of 

interest for the purpose of recognition. Thus the aim of this research work is to 

propose novel feature extraction methods to facilitate a system or device to achieve 

satisfactory online handwriting recognition. Two new simple and robust methods 

based on annotated image and sub-character primitive feature extractions have been 

proposed. The selection of features is based mainly on their effectiveness. Using the 

proposed techniques and a neural network based classifier, several experiments were 

carried out using the UNIPEN benchmark database. The techniques are independent 

of character size and can extract features from raw data without resizing. The 

maximum recognition rates achieved are 94% and 92% for annotated image and sub-

character primitive methods respectively.  
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ABSTRAK 

 Kajian pengecaman tulisan tangan semakin mendapat perhatian para 

penyelidik, khususnya apabila penggunaannya telah diaplikasikan di dalam peralatan 

keperluan era baru seperti personal digital assistant (PDA). Kepelbagaian gaya 

tulisan dan kewujudan beberapa pembolehubah yang boleh mempengaruhi gaya 

tulisan menjadikan pengecaman tulisan tangan satu bidang kajian yang agak 

mencabar pada hari ini. Peralatan pemodelan yang sedia ada pada hari ini masih 

tidak mampu menangani kepelbagaian gaya tulisan tangan manusia. Tambahan pula 

teknik untuk mendapatkan parameter kesesuaian ciri, senibina dan rangkaian untuk 

mengecam tulisan tangan secara atas talian masih juga kurang berkesan. 

Keberkesanan suatu sistem pengecaman adalah bergantung sepenuhnya kepada 

sejauhmana set ciri atau sifat numerik yang sesuai dapat diekstrak daripada objek 

yang hendak dicam. Oleh itu, tumpuan utama kajian ini adalah untuk mencadangkan 

kaedah baru pengekstrakan ciri bagi membantu sistem atau alat untuk mendapatkan 

satu pengecaman tulisan tangan secara atas talian yang lebih berkesan. Dua kaedah 

baru yang mudah dan tegar berasaskan pengekstrakan ciri imej teranotasi dan 

primitif sub-huruf telah dibangunkan. Pemilihan ciri dilakukan hanya berdasarkan 

kepada keberkesanan. Dengan menggunakan kaedah yang telah dibangunkan ini 

bersama pengelas rangkaian neural, beberapa pengujian telah dilakukan dengan 

menggunakan data daripada pangkalan data piawai UNIPEN. Teknik ini didapati 

tidak terhad kepada saiz huruf dan mampu mengesktrak ciri daripada data mentah 

tanpa perlu pensaizan semula. Kadar pengecaman tertinggi yang telah dicapai adalah 

94% untuk imej teranotasi dan 92% untuk primitif sub-huruf. 
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CHAPTER 1 

INTRODUCTION

Online handwriting recognition is one of the very complex and challenging 

problems (Plamondon and Srihari, 2000; Xiaolin and Yeuug, 1997; Plamondon and 

Privitera, 1999) because of variability of size, writing style of hand-printed 

characters (Verma et al., 2004), and duplicate pixels caused by a hesitation in writing 

or interpolation of non-adjacent consecutive pixels caused by fast writing. As 

mentioned in the literature (Parizeau et al., 2001; Jaeger et al., 2001), the feature 

extraction plays an important role in the overall process of handwriting recognition. 

Many feature extraction techniques (Parizeau et al., 2001; Jaeger et al., 2001; 

Chakraborty B. and Chakraborty G., 2002; Ping and Lihui, 2002; Gomez  et al.,

1998;  Trier et al., 1996; Hammandlu et al., 2003) have been proposed to improve 

overall recognition rates; however most of them are dependent on the size and slope 

of handwriting characters. They require very accurate resizing, slant correction 

procedure or technique, otherwise they achieve very poor recognition rates. Also 

most of existing techniques use only one characteristic of a handwritten character. 

This research focuses on an annotated image feature extraction technique that does 

not use resizing of a character but it uses overall characteristics of a character and 

combines them to create a global feature vector. Another approach based on sub-

character primitive features of a character has also been experimented. This approach 

was previously adopted for trademark matching (Zafar, 2003) and now has been 

extended and modified for isolated character recognition.

To estimate the relative performance of different proposed feature 

representations, experiments have been conducted using the same UNIPEN data sets 
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using a neural network classifier, namely a multilayer perceptron with 

backpropagation (Verma et al., 2004), trained with a fixed set of parameters. In this 

way, even if backpropagation may not be the best and the fastest learning algorithm 

for all situations and problems, it is assumed in this study that its limitations will not 

change the relative ordering of the different representations, nor it will affect greatly 

their performance gains on a given data set. Besides, it has been experienced that, 

when used correctly, it can in fact perform very well on large noisy data sets like 

UNIPEN that contains broad within class deviations (Parizeau et al., 2001). 

1.1 Handwriting Recognition 

Two classes of handwriting recognition systems are usually distinguished: 

online systems (Tappert et al., 1990); (Anoop et al.,2004);( Cheng-Lin et al., 2004) 

for which handwriting data are captured during the writing process, which makes 

available the information on the ordering of the strokes, and offline systems 

(Steinherz et al., 1999) for which recognition takes place on a static image captured 

once the writing process is over.

1.1.1 On-Line Handwriting and Personal Digital Assistants (PDAs) 

Handwriting recognition can be approached from both perspectives, and the 

current focus of the market is on-line handwriting recognition. With the increase in 

popularity of portable computing devices such as PDAs and handheld computers 

(Evan, 2005), (Pen Computing Magazine, 2005), non-keyboard based methods for 

data entry are receiving more attention in the research communities and commercial 

sector. Large number of symbols in some natural languages (e.g., Kanji contains 

4,000 commonly used characters) make keyboard entry even a more difficult task 

(Scott, 2000). The most promising options are pen-based and voice-based inputs. 

Digitizing devices like SmartBoards (Smart Technologies Inc. Homepage, 2005) and 

computing platforms such as the IBM Thinkpad TransNote (IBM ThinkPad 
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TransNote, 2005) and Tablet PCs (Windows XP Tablet PC Edition Homepage, 2005)

have a pen-based user interface.

In current PDAs, people use input methods which differ from the natural 

writing habit, e.g., the widespread Graffiti. In Graffiti, each character or symbol is 

obtained with a specific shape written in one or two strokes as shown in Figure 1.1. 

These specific symbols are not very user-friendly because user needs to learn the

specific shapes.  Other systems use a more natural input; however, they still rely on 

restricted writing styles. Thus, in the majority of these devices, the handwriting input 

method is still not satisfoatory (Bahlmann and Burkhardt, 2004; Bouteruche et al.,

2005). Even more difficult for online recognition, a writing which looks similar in a 

graphical (i.e., offline) representation, can have a different sequential (i.e., online) 

representation (Bahlmann and Burkhardt, 2004). 

Figure 1.1: The Graffiti Character Set. Reproduced from (Scott, 2000) 
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1.1.2  Off-Line Handwriting Recognition 

Off-line handwriting recognition focuses on documents that have been 

written on paper at some previous point in time. Information is presented to the 

system in the form of a scanned image of the paper document. The literature contains 

many studies on the recognition of isolated units of writing such as characters, words 

or strings of digits, which are important subtasks of many applications such as 

reading texts from pages (Marti and Bunke, 2001), postal addresses (Yacoubi et al.,

2002), and processing of dates (Morita et al., 2002), courtesy (Oliveira et al., 2002) 

and legal (Gorski et al., 2001) amounts on cheques. 

Off-line data is two-dimensional in structure because of its image 

representation and has a typical size of a few hundred kilobytes per word. Since an 

image has no granted provision to distinguish its foreground and background, the 

first step of an off-line recognition, called "thresholding" (Liu and Srihari, 1997; 

Otsu,1978; Sahoo, 1988), is to separate the foreground pixels from the background in 

the input. Unlike on-line handwriting, a written image also has a line thickness 

whose width depends on the writing instrument used and the scanning process. 

Hence the next processing step is to apply a class of techniques called "thinning" or 

"skeletonization" (Plamondon et al., 1993) which tries to shed out redundant 

foreground pixels from the input. These early preprocessing steps are necessary for 

off-line recognition but are in general expensive computationally and imperfect, and 

may introduce undesirable artifacts in the result, for example, "spurs" in the thinning 

process (Lam et al., 1992).

1.1.3  Comparisons of On-Line and Off-Line Recognition 

An aspect of on-line handwriting recognition, that sets it apart from off-line 

handwriting recognition, is the temporal input sequence information provided 

directly by the user. The digitizer naturally captures the temporal ordering 

information when it samples the points on the contour that the user is forming. Hence 

on-line data has one-dimensional structure and has a typical size of a few hundred 
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bytes per word. This dynamic information provides clean foreground separation and 

perfect thinning, and the on-line recognition can bypass the preprocessings that are 

required by the off-line recognition process. Also the difference in input 

representation leads to a large difference in the size of the input data. As mentioned

above, on-line data, in general, is at least an order of magnitude more compact

compared to off-line data because of the different dimensionalities in representation.

The difference in the data size also results in substantial difference in the processing 

time (Jong, 2001). 

Meanwhile, an advantage of off-line recognition's image representation is that 

it is insensitive to variations in the ordering of the strokes contained in handwriting. 

See Figure 1.2. That is, the same handwriting may have been formed in many

different orders of strokes, but the completed written image looks the same and has

the same representation. This is not the case for on-line data since different orderings 

of the strokes will result in different representations even though the completed

image is the same. Fortunately, each character class has certain regularity in stroke 

orderings so that the number of different stroke orders is not large in most cases. In 

overall comparison, the advantages of on-line handwriting recognition outweigh its

disadvantages and on-line recognizers achieve consistently higher accuracy and run 

faster than the off-line recognizers do. Because of the benefits of on-line recognition, 

some efforts have studied the interchangeability of the representations (Doermann

and Rosenfeld,1995; Nishida, 1995; Fevzi and Ethem,1997; Plamondon and 

1

3

3
2

2
1

(b)

(a)

1

(c) (d)

Figure 1.2: (a) image of "N" and the three different orders that it could have 

been written indicated in boxed numbers in (b), (c) and (d).
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Privitera,1999). The rationale is that if we have a means to convert off-line data to an 

on-line version and apply the on-line processing techniques, then we would achieve a 

level of performance comparable to on-line recognition, on the off-line data. 

However, the interchangeability has proven to be asymmetric: the conversion from 

on-line data to off-line version is not hard but the other direction has turned out to be 

difficult and has led to only limited success (Jong, 2001). 

1.2  Research Problem Statement  

In recent years, several handheld devices like PDAs are in operation, which 

use the feature of online handwriting recognition. In online handwriting recognition, 

existing challenges are to cope with problems of various writing fashions, variable 

size of the same character, different stroke orders of the same letter, and efficient 

data presentation to the classifier. The similarities between distinct character shapes 

and the ambiguous writing further complicate the dilemma. A solitary solution of all 

these problems lies in the intelligent and appropriate extraction of features from the 

character at the time of writing. The present tools for feature extraction are not yet 

sufficient to handle online variations in handwriting and there is a lack of techniques, 

which can find appropriate features. Also the existing techniques are quite 

complicated and computationally very expensive which are not suitable for small 

devices. Thus, there is demand to propose feature extraction schemes which are 

computationally less expensive and are able to handle the above mentioned problems 

efficiently.

1.3  Objectives  

The objective of this work is to produce a new feature extraction method for 

online isolated handwritten characters. The proposed technique is based on a new 

annotated feature method and the extension of sub-character primitive features.  
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1.4   Research Scope 

Scope of this research consists of the following problems:  

1. Only online recognition is performed. 

2. Only upper case alphabets are considered for isolated character recognition 

3. Only section 1b of UNIPEN Train-R01/V07 data set is used for training and 

testing.

4. Standard backpropagation neural network has been used for classification 

1.5  Thesis Contributions  

The main contributions of this thesis are: 

On-line handwritten scripts are usually dealt with pen tip traces from pen-

down to pen-up positions. However, the data obtained needs a lot of 

preprocessing including filtering, smoothing, slant removing and size 

normalization before recognition process. Instead of doing such lengthy 

preprocessing, simple and robust annotated image features have been 

proposed and experimented which showed very encouraging results. The 

entire process requires no preprocessing and size normalization. 

Sub-character primitive feature set, previously designed for trademark 

matching, has been extended and modified for online isolated handwritten 

characters. For handwriting recognition, this approach has succeeded in 

having robust pattern recognition features, while maintaining features’ 

domain space to a small, optimum quantity. 

A novel smoothing algorithm has been proposed and implemented for the 

direction encoded data. 



8

1.6   Thesis Organization 

Chapter 2 presents the literature review in detail. Chapter 3 gives the 

description of the methodology of the proposed system for isolated handwritten 

character recognition using annotated image features. In Chapter 4 methodology for 

sub-character primitive feature extraction has been discussed in detail. In chapter 5 

the thesis has been concluded. In the end, references have been given. 
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