COMPUTER-BASED MALAY SPEECH ARTICULATION-PHONOLOGICAL ASSESSMENT SYSTEM

TING HUA NONG

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > DECEMBER 2006

Dedicated to Jesus Christ, my mum, dad, sister, brother, my beloved wife, my cute daughter, Joanne, speech-language pathologists, and children with articulation/phonological speech impairments.

ACKNOWLEDGEMENTS

I would like to thank to my supervisor, Associate Professor Dr. Jasmy Yunus on his valuable guidance, enlightenments and insights. To me, he is a wonderful supervisor. Thanks for giving me flexibility and much patience in doing the research.

I would like to thank Ministry of Science, Technology and Innovation (MOSTI), Malaysia for sponsoring my study through National Science Fellowship (NST) and IRPA grant. Thanks for financially supporting me to present technical paper at 2005 IEEE Engineering in Medicine and Biology Conference (EMBC 2005), Shanghai, China. The research could not be a success without the funds.

Special thanks to Sandra Vandort, the speech-language pathologist at Department of Audiology and Speech Sciences, Universiti Kebangsaan Malaysia for her kind assistance and suggestions. Many thanks to Radziah Fahmy, Ernie Heliza Yusof and Zanira Haslinda Zakaria, for their assistance throughout the clinical trial as the speech-language pathologists at Department of Ear, Nose and Throat, Hospital Sultanah Aminah, Johor Bahru. Thanks to Sekolah Agama UTM Skudai for the collection of speech database as well as the control-subject trial. Thanks to Sekolah Kebangsaan Pendidikan Khas Johor Bahru for providing clients for the clinical assessment.

Warmest thanks to my beloved wife, Wong Suing Ming for her ever lasting support, patience and sharing.

Most of all, may thanksgiving, praise and glory be all to Jesus Christ, who gives me abundant faith, hope and love through the entire Ph. D. study. Amen.

ABSTRACT

Articulation and phonological disorders are associated with the problems of speech sound production and the improper usage of phonological rule in a language respectively. In a conventional assessment, client with articulation and/or phonological disorder is diagnosed manually by speech-language pathologist. Some problems of conventional assessment are identified such as subjectivity in transcription of speech sounds, no integration between the assessment tests of articulation evaluation, phonological evaluation, stimulability test and auditory discrimination test, expensive and non user-friendly instrumental devices and lack of computer-based Malay assessment. Thus, the study proposes an effective methodology for computer-based Malay articulation-phonological assessment in order to overcome the problems. The study also proposes three modular neural networks to recognize the Malay speech sounds in an objective way based on speech characteristics: place of articulation, manner of articulation and voicing. The training and testing of the neural networks involve 60 and 32 Malay children with a database size of 15,668 speech samples. The computer-based assessment requires a client to speak to a microphone, without any attached physical devices. All the results of speech sound transcription and analysis are summarized by the computer-based system. The proposed computer-based assessment system examines 22 Malay consonantal phonemes in isolated words, at three word positions: initial, middle and final. Clinical trial involving 14 Malay primary school children and three children with hearing and speech impairment reveals that the proposed computer-based assessment is valid and reliable. The computer-based system is able to achieve an accuracy of 65% in transcribing the speech sounds in a speaker-independent manner. Though the recognition rate is not very promising to make the system a total computer-based assessment, the proposed system is a helpful analysis tool for clinician, which is able to provide the results in a click of time.

ABSTRAK

Kecacatan artikulasi dan fonologi dikaitkan dengan masalah sebutan bunyi dan penyalahgunaan peraturan fonologi dalam sesuatu bahasa masing-masing. Dalam penilaian tradisi, pelanggan dengan kecacatan artikulasi dan/atau fonologi diuji oleh ahli patologi pertuturan dan bahasa. Berapa masalah penilaian tradisi telah dikenalpasti seperti kesubjektifan dalam transkripsi bunyi, ketiadaan penyatuan di antara ujian-ujian penilaian artikulasi, fonologi, perangsangan dan diskriminasi auditori, peralatan yang mahal dan tidak mesra penggunaan, dan ketiadaan penilaian berkomputer bahasa Melayu. Justeru itu, kajian ini telah mengemukakan satu metodologi berkesan untuk penilaian berkomputer bahasa Melayu dengan bertujuan untuk mengatasi masalah-masalah penilaian tradisi. Kajian ini juga mengemukakan tiga rangkaian neural buatan bermodul dalam mengecam bunyi bahasa Melayu secara objectif berdasarkan ciri-ciri bunyi: tempat artikulasi, cara artikulasi dan kesuaraan. Latihan dan ujian rangkaian neural buatan melibatkan 60 dan 32 kanakkanak Melayu dengan saiz pangkalan data sebanyak 15,668 sampel bunyi. Penilaian berkomputer mengkehendaki pelanggan bercakap melalui mikrofon, tanpa dipasang sebarang alat fizikal. Semua keputusan transkripsi bunyi dan analisis diringkaskan oleh sistem berkomputer. Sistem penilaian berkomputer memeriksa 22 konsonan Melayu dalam bentuk perkataan di semua kedudukan seperti depan, tengah dan belakang. Percubaan klinik yang melibatkan 14 kanak-kanak Melayu sekolah rendah dan tiga orang kanak-kanak dengan kecatatan pendengaran dan pertuturan, telah membuktikan sistem penilaian berkomputer adalah sah dan berkebolehpercayaan. Sistem berkomputer ini dapat mencapai ketepatan 65% dalam transkripsi bunyi bebas penutur. Walaupun kadar tidak secara pengecaman adalah memberangsangkan, namun sistem ini merupakan alat analisis yang sangat berguna kepada ahli patologi, yang dapat memberikan keputusan analisis dan markah pengiraan dengan sejurus mata.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE					
TI	TLE PAGE	i					
DI	CLARATION						
DI	EDICATION	iii					
A	ACKNOWLEDGEMENTS ABSTRACT						
Al							
Al	BSTRAK	vi					
TA	TABLE OF CONTENTS						
LI	LIST OF TABLES						
LI	ST OF FIGURES	xviii					
LI	ST OF SYMBOLS	xxi					
LI	ST OF APPENDICES	XXV					
1 IN	TRODUCTION	1					
1.1	Introduction	1					
1.2	2 Overview of Articulation and Phonological Assessment	2					
1.3	B Problem Statements	5					
1.4	4 Objectives	7					
1.5	5 Scope of the Work	8					
1.6	6 Outline of the Thesis	10					
1.7	7 Contribution of the Study	11					

2	ART	ICULA	TION A	AND PHONOLOGICAL				
	ASSESSMENT							
	2.1	Introd	uction		13			
	2.2	Malay Phonetics						
	2.3	Malay	Phonolo	ду	19			
		2.3.1	Distribu	tion of Malay Vowels	19			
		2.3.2	Distribu	tion of Malay Dipthongs	20			
		2.3.3	Distribu	ition of Malay Consonants	21			
	2.4	Speecl	h Disorde	ers	22			
		2.4.1	Voice I	Disorder	22			
		2.4.2	Fluency	Disorder	22			
		2.4.3	Articula	tion and Phonological Disorder	23			
	2.5	Causes of Articulation/Phonological Disorder						
	2.6	Articu	lation an	d Phonological Assessment	26			
		2.6.1	Articula	tion Assessment	27			
			2.6.1.1	Templin-Darley Test of Articulation	29			
			2.6.1.2	Photo Articulation Test	29			
			2.6.1.3	Goldman-Fristoe Test of Articulation	30			
			2.6.1.4	Arizona Articulation Proficiency Scale	30			
			2.6.1.5	Fisher and Logemann Articulation				
				Competence	31			
		2.6.2	Phonolo	ogical Assessment	31			
			2.6.2.1	Compton-Hutton Phonological				
				Assessment	36			
			2.6.2.2	Assessment of Phonological Processes	37			
			2.6.2.3	Phonological Process Analysis	37			
			2.6.2.4	Natural Process Analysis	38			
			2.6.2.5	Khan-Lewis Phonological Analysis	38			
		2.6.3	Instrum	ental Assessment	39			
			2.6.3.1	Computer-assisted Phonological				
				Analysis	41			
			2.6.3.2	Electromyograph	41			
			2.6.3.3	Electropalatograph	42			

			2.6.3.4	Endoscopy	42
			2.6.3.5	Spectrum Analyzer	43
			2.6.3.6	Spectrograph	43
			2.6.3.7	IBM SpeechViewer	44
	2.7	Speec	h Recogr	ition Technology	46
		2.7.1	Speech	Feature Extraction	47
			2.7.1.1	Formants	47
			2.7.1.2	Filter Bank Analysis	47
			2.7.1.3	Linear Predictive Coding	48
		2.7.2	Speech	Recognition Techniques	49
			2.7.2.1	Dynamic Time Warping	50
			2.7.2.2	Hidden Markov Model	50
			2.7.2.3	Artificial Neural Networks	51
	2.8	Summ	nary		57
3	MA	LAY A	RTICUL	ATION-PHONOLOGICAL	
	ASS	ESSMI	ENT SYS	STEM	58
	3.1	Introd	uction		58
	3.2	Desig	n Philoso	phy	58
	3.3	Propo	sed Com	puter-based Assessment System	59
		3.3.1	Compo	nents of the Assessment	60
		3.3.2	Determ	ination of Etiologies of	
			Articula	tion/Phonological Disorder	61
		3.3.3	Procedu	are of Computer-based Articulation-	
			Phonolo	ogical Assessment	63
			3.3.3.1	Speech Sample Collection	64
			3.3.3.2	Recording and Phonetic Transcription	64
			3.3.3.3	Articulation and Phonological Analysis	64
			3.3.3.4	Stimulability-Contextual Test	65
			3.3.3.5	Stimulability-Contextual Analysis	65
			3.3.3.6	Auditory Discrimination Test	66
			3.3.3.7	Auditory Discrimination Analysis	67
			3.3.3.8	Integrated Analysis	67

		3.3.4	Formul	ation of Target Words for the Computer-	
			based A	ssessment	68
			3.3.4.1	Target Words for Articulation-	
				Phonological Evaluation	68
			3.3.4.2	Target Words for Stimulability-	
				Contextual Test	74
			3.3.4.3	Target Words for Auditory	
				Discrimination Test	77
	3.4	System	n Design		78
		3.4.1	Speech	Recognition System	78
			3.4.1.1	Speech Database Collection	78
			3.4.1.2	Phoneme Recognition	82
			3.4.1.3	Off-line Experiments	87
			3.4.1.4	On-line Experiments	88
		3.4.2	Compu	ter-based Malay Articulation-	
			Phonolo	ogical Assessment System	88
			3.4.2.1	Articulation-Phonological Evaluation	89
			3.4.2.2	Stimulability-Contextual Test	91
			3.4.2.3	Auditory Discrimination Test	93
			3.4.2.4	Analysis Results	94
	3.5	Summ	nary		108
4	PEF	RFORM	IANCE (DF PHONEME RECOGNIZER	109
	4.1	Introd	uction		109
	4.2	Singu	lar Neura	l Networks	109
		4.2.1	Perform	nance of Initial SNN	110
		4.2.2	Perform	nance of Final SNN	115
		4.2.3	Overall	Performance of SNN	118
	4.3	Modu	lar Mann	er Neural Networks	118
		4.3.1	Initial N	Iodular Manner Neural Networks	119
			4.3.1.1	Performance of Initial Affricates	119
			4.3.1.2	Performance of Initial Fricatives	120
			4.3.1.3	Performance of Initial Lateral-Trill	121

		4.3.1.4	Performance of Initial Nasals	122
		4.3.1.5	Performance of Initial Plosives	123
		4.3.1.6	Performance of Initial Semivowels	124
	4.3.2	Final M	odular Manner Neural Networks	125
		4.3.2.1	Performance of Final Fricatives	125
		4.3.2.2	Performance of Final Lateral-Trill	126
		4.3.2.3	Performance of Final Nasals	127
		4.3.2.4	Performance of Final Plosives	128
	4.3.3	Overall	Performance of Modular Manner	
		Neural 1	Networks	130
		4.3.3.1	Integration Based on Maximum	
			Recognition Rate of Individual Classes	130
		4.3.3.2	Integration Based on Maximum Overall	
			Recognition Rate	131
		4.3.3.3	Hybrid Integration	132
4.4	Modu	lar Place	Neural Networks	134
	4.4.1	Initial N	Iodular Place Neural Networks	134
		4.4.1.1	Performance of Initial Alveolar	135
		4.4.1.2	Performance of Initial Bilabial	135
		4.4.1.3	Performance of Initial Glottal	136
		4.4.1.4	Performance of Initial Labio-Dental	137
		4.4.1.5	Performance of Initial Palatal	138
		4.4.1.6	Performance of Initial Velar	139
	4.4.2	Final M	odular Place Neural Networks	140
		4.4.2.1	Performance of Final Alveolar	140
		4.4.2.2	Performance of Final Bilabial	141
		4.4.2.3	Performance of Final Glottal	142
		4.4.2.4	Performance of Final Labio-Dental	143
		4.4.2.5	Performance of Final Palatal	144
		4.4.2.5	Performance of Final Velar	145
	4.4.3	Overall	Performance of Modular Place	
		Neural	Networks	147
		4.4.3.1	Integration Based on Maximum	

				Recognition Rate of Individual Classes	147
			4.4.3.2	Integration Based on Maximum Overall	
				Recognition Rate	148
			4.4.3.3	Hybrid Integration	149
	4.5	Modu	lar Voici	ng Neural Networks	149
		4.5.1	Initial N	Iodular Voicing Neural Networks	150
			4.5.1.1	Performance of Initial Voiced	150
			4.5.1.2	Performance of Initial Unvoiced	151
		4.5.2	Final M	odular Voicing Neural Networks	151
			4.5.2.1	Performance of Final Voiced	152
			4.5.2.2	Performance of Final Unvoiced	153
		4.5.3	Overall	Performance of Modular Voicing	
			Neural	Networks	153
			4.5.3.1	Integration Based on Maximum	
				Recognition Rate of Individual Classes	154
			4.5.3.2	Integration Based on Maximum Overall	
				Recognition Rate	155
			4.5.3.3	Hybrid Integration	156
	4.6	Comp	arison wi	th Other Phoneme Recognizers	161
	4.7	Sumn	nary		163
5	PEF	RFORM	IANCE (OF MAPAS	164
	5.1	Introd	luction		164
	5.2	Clinic	al Trial a	t Primary School	164
		5.2.1	Percept	ual Assessment	165
			5.2.1.1	Articulation Performance	165
			5.2.1.2	Phonological Processes Performance	168
			5.2.1.3	Stimulability-Contextual Performance	169
		5.2.2	Comput	ter-based Assessment	169
			5.2.2.1	Articulation Performance	169
			5.2.2.2	Stimulability-Contextual Performance	173
			5.2.2.3	Auditory Discrimination Performance	175
	5.3	Clinic	al Trial a	t Hospital	176

		5.3.1	Validity	Test	176
			5.3.1.1	Target Phonemes	176
			5.3.1.2	Conventional Malay	
				Articulation/Phonological Test	178
			5.3.1.3	Computer-based Articulation-	
				Phonological Assessment	181
		5.3.2	Reliabil	ity Test	185
		5.3.3	Comput	er Performance	187
	5.4	Summ	nary		188
6	CON	ICLUS	IONS AN	ND SUGGESTIONS	189
	6.1	Concl	usions		189
	6.2	Sugge	estions		192
		6.2.1	Comput	er-based Malay Articulation-	
			Phonolc	gical Assessment System	192
		6.2.2	Phonem	e Recognition	193
REFEF	RENCE	S			195
APPEN	DICES	5			
APPEN	DIX A	Result of Survey on Children's Familiarity with Malay		208	
		Words	S		
APPEN	DIX B	Articu	lation Err	or of Malay Children Between Seven	
		and T	en Years	Old	210
APPEN	DIX C	Confu	ision Matr	rices of Phoneme Recognizers	211
APPEN	DIX D	Public	cations		230

LIST OF TABLES

TABLE	NO. TITLE	PAGE
2.1	List of Malay vowels	14
2.2	List of pure Malay consonants	15
2.3	List of borrowed Malay consonants	15
2.4	Complete set of Malay consonants	16
2.5	Description of place of articulation	17
2.6	Description of manner of articulation	18
2.7	Description of voicing articulation	18
2.8	Distribution of Malay vowels	20
2.9	Distribution of Malay dipthongs	20
2.10	Distribution of Malay consonants	21
2.11	Types of Disfluency	23
2.12	Phonological processes of syllable structure changes	33
2.13	Phonological processes of substitution processes	34
2.14	Phonological processes of assimilation	35
3.1	List of target words	69
3.2	Number of phonemes at different word positions	71
3.3	Availability of phonemes at various word positions	75
3.4	Target words of Stimulability-Contextual Test	76
3.5	Target words and possible answers for the Auditory	
	Discrimination Test	77
3.6	Summary of speech database collection	79
3.7	Number of tokens of training and test set	80
3.8	Number of tokens of training and test set for abnormal speech	81

3.9	Replacement of SFWW speech sounds with SIWW speech							
	sounds	81						
4.1	Performance of Initial SNN with different signal lengths	110						
4.2	Common Errors of Initial SNN	112						
4.3	Performance of Final SNN with different signal lengths	116						
4.4	Common errors of the Final SNN	117						
4.5	Performance of Initial Affricates with different signal lengths	120						
4.6	Performance of Initial Fricatives with different signal lengths	121						
4.7	Performance of Initial Lateral-Trill with different signal							
	lengths	122						
4.8	Performance of Initial Nasals with different signal lengths	123						
4.9	Performance of Initial Plosives with different signal lengths	124						
4.10	Performance of Initial Semivowels with different signal							
	lengths	125						
4.11	Performance of Final Fricatives with different signal lengths	126						
4.12	Performance of Final Lateral-Trill with different signal							
	lengths	127						
4.13	Performance of Initial Nasals with different signal lengths	128						
4.14	Performance of Initial Plosives with different signal lengths	129						
4.15	Performances of Initial and Final MMNN	130						
4.16	Performance of Integrated MMNN based on maximum							
	recognition rate of individual classes	131						
4.17	Performance of integrated MMNN based on maximum							
	overall recognition rate	132						
4.18	Selection of sub-networks of MMNN based on maximum							
	recognition rate of individual class or overall recognition rate	133						
4.19	Performance of hybrid integrated MMNN	134						
4.20	Performance of Initial Alveolar with different signal lengths	135						
4.21	Performance of Initial Bilabial with different signal lengths	136						
4.22	Performance of Initial Glottal with different signal lengths	137						
4.23	Performance of Initial Labio-Dental with different signal							
	lengths	138						
4.24	Performance of Initial Palatal with different signal lengths	139						

4.25	Performance of Initial Velar with different signal lengths	140
4.26	Performance of Final Alveolar with different signal lengths	141
4.27	Performance of Final Bilabial with different signal lengths	142
4.28	Performance of Final Glottal with different signal lengths	143
4.29	Performance of LabioDental with different signal lengths	144
4.30	Performance of Final Palatal with different signal lengths	145
4.31	Performance of Final Velar with different signal lengths	146
4.32	Performances of Initial and Final MPNN	147
4.33	Performance of Integrated MPNN based on maximum	
	recognition rate of individual classes	148
4.34	Performance of Integrated MPNN based on maximum overall	
	recognition rate	149
4.35	Performance of Initial Voiced with different signal lengths	150
4.36	Performance of Initial Unvoiced with different signal lengths	151
4.37	Performance of Final Voiced with different signal lengths	152
4.38	Performance of Final Unvoiced with different signal lengths	153
4.39	Summary of Initial and Final MVNN	154
4.40	Performance of Integrated MVNN based on maximum	
	recognition rate of individual classes	155
4.41	Performance of Integrated MVNN based on maximum	
	overall recognition rate	156
4.42	Selection of MVNN based on maximum recognition rate of	
	individual class or overall recognition rate	156
4.43	Performance of singular and modular neural networks	157
4.44	Performance of singular and modular neural networks	
	without abnormal speech sounds	157
4.45	Performance of the singular and modular neural networks	158
4.46	Substitution errors of the singular and modular neural	
	networks	160
4.47	Comparison between different phoneme recognizers	162
5.1	Overall performance of Malay children	166
5.2	Confusion Matrix of the articulation performance of Malay	
	children	167

5.3	Summary of phonological processes	168
5.4	Confusion matrix of stimulability-contextual performance	169
5.5	Overall performance of Malay children	170
5.6	Confusion Matrix of the computer's performance	172
5.7	Stimulability-Contextual performance of computer	174
5.8	Auditory discrimination performance of computer	175
5.9	Comparison between Ujian Fonologi Bahasa Melayu and	
	MAPAS	177
5.10	List of target words used in the Ujian Fonologi Bahasa	
	Melayu	179
5.11	Articulation scores obtained from Ujian Fonologi Bahasa	
	Melayu	180
5.12	Articulation scores obtained from MAPAS	181
5.13	Consistency of speech production of Client 2	183
5.14	ADT scores and errors	184
5.15	Number of children involved in the inter-judge reliability test	185
5.16	Inter-judge reliability scores	186

LIST OF FIGURES

FIGU	FIGURE NO. TITLE	
2.1	Mid-sagittal view of vocal tract, which shows anatomical	
	place of articulation	17
2.2	Approaches of articulation-phonological assessment	45
2.3	Filter Bank Analysis	48
2.4	A MLP with one hidden layer	52
3.1	Proposed computer-based Malay articulation-phonological	
	assessment	60
3.2	Classification of etiologies of articulation-phonological	
	disorder	62
3.3	Procedure of computer-based articulation-phonological	
	assessment	63
3.4	Description of word positions in a two-syllable word	70
3.5	Speech feature extraction	82
3.6	Architectures of SNN	83
3.7	Architectures of MMNN	84
3.8	Architectures of MPNN	85
3.9	Architectures of MVNN	86
3.10	GUI of computer-based Malay Articulation-Phonological	
	Assessment	89
3.11	Sound recording during Articulation-Phonological	
	Evaluation	91
3.12	Sound recording during Stimulability-Contextual Test	92
3.13	Auditory Discrimination Test	93

3.14	Words transcribed by SLP based on client's pronunciation	94
3.15	Words transcribed by computer based on client's	
	pronunciation	95
3.16	Viewing analysis result of Performance using SLP mode	
	(in percentage)	96
3.17	Viewing analysis result of Performance using SLP mode	
	(in number of correct phoneme)	96
3.18	Viewing analysis result of Performance using Computer	
	mode (in percentage)	97
3.19	Viewing analysis result of Performance using Computer	
	mode (in number of correct phoneme)	97
3.20	Contrastic phone chart	98
3.21	Phonetic inventory of client based on SLP's perception	99
3.22	Phonetic distribution	100
3.23	Articulation errors of client based on SLP's perception	101
3.24	Phonological processes of client based on SLP's	
	transcription	102
3.25	Analysis result of Stimulability-Contextual Test based on	
	SLP's transcription	103
3.26	Analysis result of Stimulability-Contextual Test based on	
	computer's transcription	103
3.27	Summary of result of Auditory Discrimination Test	104
3.28	Summary of integrated analysis result	105
3.29	Classification of etiology of the articulation-phonology	
	speech disorder	106
3.30	SLP's comments	108
4.1	Training error vs epoch for Initial SNN with signal length	
	of 130ms	113
4.2	Training error vs epoch for Initial SNN with signal length	
	of 140ms	113
4.3	Recognition rate vs epoch for Initial SNN with signal	
	length of 130ms	114

4.4	Recognition rate vs epoch for Initial SNN with signal	
	length of 140ms	114
4.5	Training error vs epoch for Final SNN with signal length of	
	170ms	117
4.6	Recognition rate vs epoch for Final SNN with signal length	
	of 170ms	118
5.1	Waveform of "cendawan", which was detected as two-	
	syllable sound	171
5.2	Waveform of "dewan", which was detected as one-syllable	
	sound	171
5.3	Waveform of "selipar", which was detected as two-syllable	
	sound	171

LIST OF SYMBOLS

ADT	Auditory Discrimination Test
a _k	LPC coefficients
α	Momentum term
ANN	Artificial Neural Network
BP	Back-propagation
$bh_{j} \\$	Biases at the hidden layer
by_k	Biases at the output layer
С	Consonant
Č	Phoneme /c/
c _m	Cepstral coefficients
CBST	Computer-based Speech Training
CV	Consonant-Vowel
CVC	Consonant-Vowel-Consonant
$\delta_{_j}$	Error information term at hidden layer
${\mathcal S}_k$	Error information term at output layer
Δbh_{j}	Bias correction term at hidden layer
Δby_k	Bias correction term at output layer
Δw_{ij}	Weight correction term between input layer and hidden layer
$\Delta w_{_{jk}}$	Weight correction term between hidden layer and output layer
dB	Decibel
DTW	Dynamic Time Warping
ð	Phoneme /dh/ or /dz/
E _{min}	Minimum error or global minimum
Ep	Mean square error for a single input pattern

E _{rms}	Root mean square error
e(n)	Prediction error
E(n)	Mean squared error used in autocorrelation method
ə	Mid-high central vowel e
EF	Error Function
EGG	Electroglottograph
E _p	Mean square error for single pattern
E _{rms}	Root mean square error
EMG	Electromyograph
EPG	Electropalatograph
F1	Formant 1
F2	Formant 2
F3	Formant 3
F4	Formant 4
F5	Formant 5
G	Gain of the excitation
GUI	Graphics User Interface
HMM	Hidden Markov Models
HNN	Hidden Neuron Number
IBM	International Business Machines
IPA	International Phonetic Alphabets
ISPA	Interactive System for Phonological Analysis
J	Phoneme /j/
?	Plosive-Glottal sound
۲	Phoneme /kh/
LIPP	Logical International Phonetic Programs
LPC	Linear Predictive Coding
LR	Learning Rate
MAPAS	Malay Articulation-Phonological Assessment System
MLP	Multi-layer Perceptron
MMNN	Modular Manner Neural Networks
MPNN	Modular Place Neural Networks

ms	Milliseconds
MSE	Mean square error
MVNN	Modular Voicing Neural Networks
η	Learning rate
ŋ	Phoneme /ng/
ŋ	Phoneme /ny/
PCC	Percentage of Consonants Correct
R(n)	Autocorrelation Function
RR	Recognition Rate
SCT	Stimulability-Contextual Test
SFWW	Syllable-Final-Word-Within
SFWF	Syllable-Final-Word-Final
SIWI	Syllable-Initial-Word-Initial
SIWW	Syllable-Initial-Word-Within
SLP	Speech-language pathologist
SLTRU	Speech and Language Therapy Research Unit
SNN	Singular Neural Network
s(n)	Speech samples
$\hat{s}(n)$	Predicted speech samples
š	Phonome /sy/
l	Phoneme /sy/
TDNN	Time Delay Neural Network
TFL	Total Frame Length
TFN	Total Frame Number
θ	Phoneme /th/
UFBM	Ujian Fonologi Bahasa Melayu
UKM	Universiti Kebangsaan Malaysia
UTM	Universiti Teknologi Malaysia
u(n)	Normalized excitation
V	Vowel
VOT	Voice Onset Time
\mathbf{W}_{ij}	Weights between input layer and hidden layer
Winitial	Initial weights

w_{jk}	Weights between hidden layer and output layer
W _{local}	Weights during local minimum
W _{min}	Weights during global minimum
WI	Weight Initialization
w(n)	Window function
Wm	Weighting window for cesptral coefficients
Xi	Input neuron of the Multi-layer Perceptron
Х	Phoneme /gh/ or [gh] sound
X _n	Bandpass filter
ž	Phoneme /zh/ or [zh] sound
+	Presence
-	Absence

LIST OF APPENDICES

APPENDIX TITLE		PAGE
A	Result of survey on children's familiarity with Malay	
	words	208
В	Articulation errors of Malay children between seven	
	and ten years old (transcription by SLP)	210
С	Confusion matrices of phoneme recognizers	211
D	Publications	230

CHAPTER 1

INTRODUCTION

1.1 Introduction

In 1970s, while speech-language pathologist (SLP) was still investigating conventional method in assessing articulation and phonological disorder manually, it was really hard to think of a computer that could recognize and understand speech of human beings. It was a dream of SLP that computer could transcribe the speech sounds and analyze the result for them.

It was an impossible mission in the past. However, with the advancement of computer technology in its computing speed and memory, nowadays, the fiction-like mission could be a reality! How could this impossible task become possible in the assessment of articulation and/or phonological disorder? Is computer really able to understand the human speech sounds? How good can the computer transcribe the human speech sounds? Is the computer's performance comparable to human perception? Lots of questions could be asked before a computer-based system is to be developed. We may doubt the ability and capability of the computer in transcribing and understanding the human speech sounds. Thus, it is hoped that the study could provide some insightful answers to the above questions.

1.2 Overview of Articulation and Phonological Assessment

Early traditional assessment focuses primarily on the articulation disorders. This is because the disorder is regarded exclusively as the result of motor act. The focus of the traditional assessment is on the individual speech sounds. Examples of traditional assessment of articulation are Templin-Darley Test of Articulation (Templin and Darley, 1969), Fisher and Logemann Test of Articulation (Fisher and Logemann, 1971), Photo Articulation Test (Pendergest, Dickey, Selmar and Sudar, 1984), Arizona Articulation Proficiency Scale and Goldman-Fristoe Test of Articulation (Goldman and Fristoe, 1986). The tests can be administered in 15 minutes or up to 45 minutes, depending on the experience and skill of the SLP as well as the severity of the articulation disorders. These articulation assessments are easy and fast to administer. Besides that, they provide quantifiable list of misarticulated sounds in different word positions and standardized scores. However, most of these tests test one target phoneme in single words, ignoring the rests of the phonemes including consonants and vowels in the phonetic context. In addition, most of these tests examine the speech sounds in a limited number of phonetic contexts. More importantly, most of these tests do not detect the patterns of error in client's speech, thus provides insufficient information about the client's phonological system.

Due to the failure of the articulation assessment to provide the information regarding the linguistic usage of the speech sounds, thus SLP began to examine the speech production problems from the perspectives of phonological theory in 1970s. Two approaches of phonological assessment were introduced: distinctive feature analysis and phonological process analysis. Distinctive feature analysis attempts to specify the characteristics of phonemes – according to the presence (+) and absence (-) of each feature that distinguishes or contrast one speech sound from another. Distinctive feature analysis is limited of its application due to its time-consuming administering time, complexity and its binary functionality. On the other hand, phonological process analysis describes the systematic sound change or simplification of adult speech patterns in terms of phonological processes. Examples of phonological process analysis are Assessment of Phonological Processes (Hodson, 1986), Assessment Link Between Phonology and Articulation (Lowe, 1986),

Phonological Process Analysis (Weiner, 1979) and Compton-Hutton Phonological Assessment (Compton & Hutton, 1978). The major drawback of these phonological assessments is that the time required to administer and analyze is much longer if compared to the articulation assessment.

Articulation assessment and phonological assessment are referred to as conventional assessment or perceptual assessment. The conventional assessment requires a diagnostician or SLP to manually conduct the assessment including picture-naming, tape-recording, transcribing speech sounds, form-recording, scoring, analyzing, interpreting and summarizing. Single words, phrases, sentences or conversation can be used to elicit the speech samples from the client. These perceptual assessments are subjective in nature. The subjectivity is much dependent on the skill, experience, knowledge and expertise of the SLP and it differs from one diagnostician to another.

McGuire (1995) points out that the advent of computers and the overall improvement in instrumentation have allowed the practitioner to quantify various speech dimensions and study the results in relation to perceptual observations. The instrumental assessment can be described in three ways: computer-assisted phonological analysis, acoustical approach and physiological approach.

Haynes and Pindzola (1997) describe the beauty of the computer-assisted phonological analysis is that the SLP does not have to spend several more hours of organizing data, scanning the transcript over and over again, and performing mathematical operations. In addition, the computer also provides elegant summaries of the data such as phonetic inventories, measures of severity and even suggested treatment targets on some programs. In other words, the computer-assisted analysis saves lots of time for SLP and provides greater efficiency. However, Haynes and Pinzola (1997) point out that these computer analysis do take away much of tedious work but not all. The SLP still have to obtain speech sample manually, transcribe the sample, input the sample into the computer through keyboard, and in many cases do some other work, responding to menus and prompts produced on the screen. Examples of the computerized or computer-assisted phonological analysis are Computer Analysis of Phonological Processes (Hodson, 1985), Computerized Profiling (Long and Fey, 1993), Interactive System for Phonological Analysis (Masterson and Pagan, 1993), Logical International Phonetic Programs Version 1.03 (Oller and Delgado, 1990), and Programs to Examine Phonetic and Phonologic Evaluation Records Version 4.0 (Shriberg, 1986).

Physiological assessment is carried out as aerodynamic measurement and movement measurement of vocal tract during speech or/and non-speech tasks such as pneumatachograph, spirometer, electromyograph (EMG), electropalatograph (EPG) and endoscopy. According to Buder et al. (1996), the physiological methods can provide fairly direct indications of speech and voice processes, but they tend to encumber the speaker with sensing devices, often give only a restricted view of the processes of interest and sometimes are difficult to correlate with perceptual or acoustic evaluations. In addition, the device needed for some physiological studies can be expensive and not easily accommodated to subjects of different ages and sizes.

Acoustical approach investigates common acoustic features such as frequency, amplitude and duration of speech sounds. Common and widely used acoustic measurement devices include spectrum analyzer and spectrograph. The advantage of acoustic measures over the perceptual measure is that it can provide quantified and objective evaluation. The major drawback of these acoustic analyses is that the displayed information is difficult to be understood by the client. Only those SLP with special training can analyse and interpret the results. These acoustic devices are very useful in analysing the speech signals but may not be efficient in terms of time if used as the assessment tool. Many user-friendly speech software systems are developed based on acoustical approach such as IBM SpeechViewer and Kay's Elecmetrics programmes. However, these systems are used as training tools rather than as diagnostic tools and they are mostly available in foreign language such as English.

Physiological and acoustical approaches do provide means of quantified and objective evaluations in some ways. However, most of the physiological and acoustical devices are analysis devices, which can be used in the session of assessment and therapy. These devices are still dependent on the SLP to interpret the results, thus introducing the issue of subjectivity.

Haynes and Pindzola (1997) suggest an ideal computer system, where the client simply talks into a microphone that is plugged into a computer and in a few seconds a printout appears that reveal the secrets of the phonological system. Unfortunately, the current instrumental assessments are still unable to achieve that and most of jobs in the assessment need to be done manually.

1.3 Problem Statements

The problems of traditional articulation and phonological assessment as well as the instrumental assessment are identified and summarized into five problem statements as below:

1) Conventional articulation and phonological assessment and other tests such as stimulability test and auditory discrimination test work independently towards describing the speech disorders. Each of the tests addresses different diagnosis of the speech problem. Articulation assessment examines client from the aspect of motorbased speech production while phonological assessment assesses client from the perspective of speech error patterns. Stimulability test evaluates the stimulability of the error sounds and auditory discrimination test examines the phonological processing or speech perceptual skills of the client. Each of the assessments has its own limitations. More importantly, there is no integration between these conventional assessments. Thus, there is a need to develop a computer-based assessment system to integrate these assessments and inter-relate the analysis of the different assessments into a more comprehensive analysis result. The integration of these results makes it possible to determine the etiologies of the speech disorder, which the individual tests can not solve with. According to Crystal (1981), children with different etiologies can be classified into three groups based on the phonetics and phonology: (1) Normal phonology, but abnormal phonetics (speech production), (2) Normal phonetics, but abnormal phonology, and (3) Abnormal phonology and phonetics. The integration could make a clear-cut to determine the actual and specific

client's problems either articulatory or phonological, which result in appropriate treatment strategies to remediate the client's problem.

2) Conventional articulation and phonological assessment are subjective in nature especially in the tasks of obtaining speech samples, transcribing speech samples, analyzing and interpreting the results, defining levels of severity and planning for the therapy. The subjectivity is much dependent on the skill, experience, knowledge and expertise of the SLP. This issue of subjectivity differs from one diagnostician to another. Thus, there is a need to develop a computer-based system to assess the articulation-phonological speech disorder in an objective way by utilizing computer phoneme recognition technology to transcribe the speech samples and define the levels of severity.

3) Despite the instrumental assessment providing many advantages, they do have problems and limitations. Firstly, computerized phonological analysis systems do help SLP save a lot of time doing analysis, but SLP still have to obtain speech samples manually, transcribe the speech sample and input the data into computer for analysis. Secondly, the physiological instrument such as EPG, pneumatachograph and spirometer are expensive and these devices are to be attached to the client. Furthermore, these devices only examine certain aspect of interest per device. The acoustic approach such as spectrum analyzer and spectrograph are reliable but the diagrams are difficult to be understood by the client. Besides that these devices may not appropriate to be used as assessment tools because they require much more time to administer. On the other hand, most of the instrumental devices are used as speech training tool rather than assessment tool. Thus, a computer-based methodology needs to be proposed to overcome the limitation and problems of current instrumental assessment devices. The proposed methodology needs to be able to i) to take away most of manual assessment tasks and further save much more time for SLP, ii) examine the client in a more natural way without any external circuit to be connected to the client, iii) to develop a computer-based system that is user-friendly to the SLP and client, where the client can understand the diagrams and analysis result more easily.

4) So far there is no standard Malay articulation-phonological assessment in Malaysian clinics and hospitals. There are some clinician derived tests available in clinics and hospital such as Azizah's Phonological Test (Nordin, 1999). Furthermore there is no computer-based articulation-phonological assessment in Malaysia. Currently, most of the computer-based system are available in foreign languages especially English. These foreign-language-based computer-based systems are basically speech training system rather than assessment system. Thus, there is a need to develop a Malay-language computer-based system to be used in Malaysian clinics and hospitals and hopefully a standard computer-based Malay articulation-phonological assessment.

5) Most of the current research of Malay speech recognition primarily focuses on the adult speech recognition at isolated word level and it is very limited at phoneme level. These isolated word speech recognition systems, however are not feasible to be implemented in the computer-based speech articulation-phonological assessment system to recognize Malay consonantal phonemes of Malay children. Thus, there is a need to develop a phoneme recognition system that is able to recognize Malay consonantal phonemes of Malay children in a speaker-independent manner.

1.4 Objectives

The objectives of the study are

- (1) To develop an effective methodology for a Malay articulationphonological assessment by integrating different assessment tests into a comprehensive computer-based assessment system.
- (2) To develop a prototype computer-based Malay articulation-phonological assessment system to assess speech problem among Malay children in an objective and user-friendly way.
- (3) To propose new neural network architectures in recognizing Malay speech sounds in a speaker-independent manner.

1.5 Scope of the Work

The objectives of the study can be achieved through these scopes of study. The scopes clearly define the specific area of interest of the study.

Speech disorders are categorized into three major groups: voice disorder, fluency disorder and articulation/phonological disorder. Each of the disorders concerns different aspects of the speech problem, indicated by their names. The study focuses only on the aspects of articulation/phonological disorder, excluding the rest of speech disorders.

The articulation/phonological disorders are addressed in two major aspects: assessment and therapy. Assessment is used to diagnose the disorder whereas therapy is used to remediate the disorder based on the assessment result. The study investigates a computer-based methodology for the articulation/phonological assessment. The study does not look into the therapy aspect of the speech problem.

The articulation/phonological disorder can be a speech problem for children or adults, or both. The study investigates the speech problem of children rather than adult's. Children are definitely in the process of learning adult's speech, thus facing more problems than adults. Malay children between seven and ten years old are selected for the study.

The articulation/phonological disorder can exist in any language such as English, Chinese, Tamil and Malay. Each of the languages has its own unique phonetic and phonological system. As a result, the articulation/phonological disorder can be different from one language to another. The study only investigates the computer-based articulation/phonological assessment of Malay language among Malay children.

During the articulation/phonological assessment, the speech samples can be elicited from the children in terms of single words, phrases, sentences or conversation. The study investigates the use of single words to elicit the speech samples from the children, which is easier and faster. These single words can consist of single or multiple syllables. Three types of syllable structures are available in the study: consonant-vowel (CV), vowel-consonant (VC) and consonant-vowel-consonant (CVC).

Malay speech sounds are basically comprised of phonemes of vowel, dipthongs and consonants. The study only investigates computer-based articulation-phonological assessment of Malay consonantal phonemes. Consonants are selected rather than vowels because children with articulation/phonological disorder have primarily problems with consonants. 22 Malay consonants are selected for the study. The study does not investigate the consonants that are low in frequency of occurrence such as /q/, /gh/, /kh/, /th/, /dh/ and /zh/. The study examines the assessment of consonants in all word position such as initial, middle and final positions. The study does not look into the consonant clusters or blends.

There are quite a number of speech feature extraction techniques available to extract the speech features such as formants, filter banks and Linear Predictive Coding (LPC). The study adopts LPC in extracting the speech feature because it is easy to implement and fast to compute.

The study uses Artificial Neural Networks in recognizing the Malay consonantal speech sounds. A phoneme recognizer is developed using Multi-layer Perceptron (MLP) with one hidden layer to recognize the Malay consonantal sounds in speaker-independent manner. The MLP is trained with stochastic Back-propagation training, where weights of the MLP are updated after presentation of each training pattern.

Lastly, the study uses software development tools of Microsoft Visual C++ and C++ programming languages to develop the computer-based Malay speech articulation-phonological assessment system as well as the phoneme recognition system.

1.6 Outline of the Thesis

Chapter 2 simply describes the literature review of the articulation and phonological assessments. First of all, Malay phonetics and phonology are introduced to provide a brief information on the Malay speech sounds such as consonants and vowels. Speech disorders and causes of the disorders are then discussed. Subsequently, the chapter discusses in length about the conventional articulation and phonological assessment as well as the instrumental approaches. Lastly, the speech recognition technology such as speech feature extraction and recognition techniques are reviewed. The speech recognition system is used as the front-end processor of the computer-based assessment system to transcribe the speech sounds.

Chapter 3 illustrates the system design of the proposed computer-based Malay Articulation-Phonological Assessment System (MAPAS). Procedure of the articulation-phonological assessment is described. The formulation of target words for Articulation and Phonological Evaluation, Stimulability-Contextual Test and Auditory Discrimination Test is discussed. Lastly, the chapter presents the system design of the speech recognition system including proposed modular neural networks as well as the MAPAS.

Chapter 4 presents the performance of the speech recognition system – phoneme recognizer in a speaker-independent manner through offline experiments. The phoneme recognizer is implemented using Linear Predictive Coding as the speech feature extractor and Multi-layer Perceptron (MLP) as the recognizer. The performances of different architectures of neural networks are evaluated including the singular neural networks and modular neural networks. Three modular neural networks are proposed based on the speech characteristics: Modular Manner of Articulation, Modular Place of Articulation and Modular Voicing. The effect of speech signal length on the performance of phoneme recognizer and the ability of these neural networks in recognizing abnormal speech sounds are investigated.

Chapter 5 deals with the online or real-time performance of the computerbased Malay Articulation-Phonological Assessment System (MAPAS). The clinical trials are carried out in primary school and hospital involving normal and abnormal Malay children between seven and ten years old. The validity and reliability of MAPAS is evaluated as well. The comparison between conventional articulation assessment and computer-based system is discussed.

Chapter 6 simply concludes the study and provides suggestions for future development of the study. The conclusions of the study include the efficiency of MLP in recognizing the Malay consonantal phonemes and abnormal speech sounds in speaker-independent way, computer-based Malay articulation-phonological assessment system and its ability to recognize Malay consonantal phonemes and abnormal speech sounds in speaker-independent way. The suggestions are based on the limitations of the current computer-based assessment system and the phoneme recognizer.

1.7 Contribution of the Study

The study is solving the problems and limitations of conventional articulation and phonological assessments. The existing conventional articulation and phonological assessments, stimulability test and auditory discrimination test work independently and separately to describe the articulation/phonological disorders. Each of the tests looks at different perspective of the speech problem and thus has their own strengths and limitations. The study has proposed a new effective methodology by integrating all these assessments and tests into a computer-based assessment to diagnose the speech problem more efficiently from different perspectives. The integration of these analysis results makes it possible to determine the etiologies of the articulation/phonological disorder, which the individual tests of the conventional assessment can not solve. Through the proposed methodology, the etiologies of the articulation and phonology, normal articulation and abnormal phonology, abnormal articulation and phonology, abnormal articulation and phonology. Articulation and phonological assessments are still conducted manually by SLP in most Malaysian clinics and hospitals. Currently, there is no standard Malay assessment test available and most of tests are informal clinician-derived tests. Moreover, there is no computer-based Malay articulation/phonological assessment system available in Malaysia. The study has proposed a new computer-based method to diagnose Malay articulation/phonological disorder among Malay children in an objective way and in a faster way. The proposed computer-based assessment system is called Malay Articulation-Phonological Assessment System (MAPAS), which is able to provide analysis of result in a click of time.

Current research of Malay speech recognition has been carried out comprehensively at isolated word level, but very limited at phoneme level. These studies focus on the recognition of adult speech sounds. The existing Malay speech recognition systems of adult speech sounds at isolated word level are not feasible to be implemented to recognize the Malay phonemes in computer-based speech articulation-phonological assessment. Thus, the study has proposed new architectures of neural networks in recognizing 22 Malay consonantal phonemes of Malay children in a speaker-independent manner. The architectures are proposed in modular neural networks based on speech characteristics: place of articulation, manner of articulation and voicing. The proposed modular architectures perform better than conventional singular neural networks. The performance of the proposed modular neural networks is comparable with other phoneme recognizers of foreign languages. Besides that, the study also investigates the effect of different speech signal lengths on the performance of the neural networks. Most of the phoneme recognitions, however examine the speech signal length in a fixed length. The study concludes that the performance of the neural networks is very dependent on the appropriate length of speech signal.

References

- Abas, Lufti (1971). *Linguistik Deskriptif Nahu Bahasa Melayu*. Kuala Lumpur, Malaysia: Dewan Bahasa dan Pustaka.
- Abdelatty Ali, A. M., Van Der Spiegel, J., Mueller, P, Haentjens, G. and Berman, J. (1999). An Acoustic-phonetic Feature-based System for Automatic Phoneme Recognition in Continuous Speech. *Proceedings of the 1999 IEEE International Symposium on Circuits and Systems*. 118-121.
- Adams, F. R., Crepy, H., Jameson, D. and Thatcher, J. (1989). IBM Products for Persons with Disabilities. *Proceedings of the 1989 Global Telecommunications Conference*. 980-982.
- Arnfield, S. and Jones, W. (1996). Updating the Reading EPG. *Proceedings of the Fourth International Conference on Spoken Language*.1609-1611.
- Arlt, P. B. and Goodban, M. T. (1976). A Comparative Study of Articulation Acquisition as Based on a Study of 240 Normals, Aged Three to Six. *Language, Speech and Hearing Services in Schools*. 7: 173-180.
- Baken, R. J. (1987). Clinical Measurement of Speech and Voice. San Diego: College-Hill Press.
- Bankson, N. W. and Bernthal, J. E. (1990). Articulation and Phonological Disorders.
 2nd ed. Englewood Cliffs, NJ: Prentice-Hall.
- Bankson, N. W. and Bernthal, J. E. (1998). Phonological Assessment Procedures. In:
 Bernthal, J. E. and Bankson, N. W. *Articulation and Phonological Disorders*. 4th
 ed. MA: Allyn & Bacon. 233-269.

- Basir, S. (1993). An Investigation of an Object-oriented Design Implementation of a Phoneme Recognition System based on Dynamic Time Warping Algorithm. Universiti Teknologi Malaysia: Master Thesis.
- Bauman-Waengler, J. (2000). Articulatory and Phonological Impairments: A Clinical Focus. MA: Allyn & Bacon.
- Buder, E. H., Kent, R. D., Kent, J.F., Milenkovic, P. and Workinger, M. (1996). FORMOFFA: An Automated Formant, Moment, Fundamental Frequency, Amplitude Analysis of Normal and Disordered Speech. *Clinical Linguistics and Phonetics*. 10(1): 31-54.
- Butcher, A. (1990). The Uses and Abuses of Phonological Assessment. *Child Language Teaching and Therapy*. 6: 262-276.
- Carrell, J. and Pendergast, K. (1954). An Experimental Study of the Possible Relation Between Errors of Speech and Spelling. *Journal of Speech and Hearing Disorders*. 19: 327-334.
- Clark, R. (1959). Maturation and Speech Development. Logos. 2: 49-54.
- Collins, M. (1984). Integrating Perceptual and Instrumental Procedures in Dysathria Assessment. *Communication Disorders*. 5: 159-170.
- Compton, A. (1970). Generative Studies of Children's Phonological Disorders. *Journal of Speech and Hearing Disorders*. 35: 315-339.
- Compton, A. J. and Hutton, S. (1978). *Compton-Hutton Phological Assessment*. San Francisco: Carousel House.
- Costello, J. and Onstine, J. (1976). The Modification of Multiple Articulation Errors
 Based on Distinctive Feature Theory. *Journal of Speech and Hearing Disorders*.
 41: 199-215.

- Creaghead, N. A., Newman, P. W. and Secord, W. A. (1989). Assessment and Remediation of Articulatory and Phonological Disorders. 2nd ed. New York: Macmillan Publishing Company.
- Crystal, D. (1981). Clinical Linguistics. New York: Springer-Verlag.
- Dagenais, P. A. (1995). Electropalatography in the Treatment of Articulation/Phonological Disorders. *Journal of Communication Disorders*. 28: 303-330.
- Denny, M. and Smith, A. (1992). Gradations in a Pattern of Neuromuscular Activity Associated with Stuttering. *Journal of Speech and Hearing Research*. 35: 1216-1229.
- Duffy, J. R. (1995). Motor Speech Disorders. St. Louis: Mosby-Year Book, Inc.
- Edwards, C. and Estabrooks, W (1994). Learning through Listening: A Hierarchy. In: Estabrooks, W. *Auditory-Verbal Therapy for Parents and Professionals*. Washington DC: AG Bell. 55-74.
- Farooq, O. and Datta, S (2004). Wavelet based Robust Sub-band Features for Phoneme Recognition. *IEE Proceedings of Vision, Image and Signal Processing*. 151(3): 187-193.
- Fey, M. E. (1992). Clinical Forum: Phonological Assessment and Treatment. Articulation and Phonology: Inextricable Constructs in Speech Pathology. Language, Speech and Hearing Services in Schools. 23: 225-232.
- Fisher, H. B. and Logemann J. A. (1971). *The Fisher-Logemann Test of Articulation Competence*. Boston: Houghton Mifflin.
- Fudala, J. B. and Reynolds, W. M. (1988). Arizona Articulation Proficiency Scale.
 2nd ed. Los Angeles: Western Psychological Services.

- Garrett, K. and Moran, M. (1992). A Comparison of Phonological Severity Measures. *Language, Speech and Hearing Services in Schools*. 23: 48-51.
- Gelfer, M. P. (1993). Survey of Communication Disorders. USA: McGraw-Hill Companies.
- Goldman, R. and Fristoe, M. (1986). *Goldman-Fristoe Test of Articulation*. Circle Pines, MN: American Guidance Service.
- Goldman, R. and Fristoe, M. (2000). *Goldman-Fristoe Test of Articulation- Second Edition (GFTA-2)*. Circle Pines, MN: American Guidance Service.
- Goldman, R., Fristoe, M. and Woodcock, R. (1970). *Goldman-Fristoe-Woodcock Test of Auditory Discrimination*. Circle Pines, MN: American Guidance Service.
- Grant, P. M. (1991). Speech Recognition Techniques. *Electronics & Communication Engineering Journal*. 3: 37-48.
- Grunwell, P. (1985). *Phonological Assessment of Child Speech*. San Diego: College Hill Press.
- Grunwell, P. (1990). Assessment of Articulation and Phonology. In: Beech J. R. and Harding, L and Hilton Jones, D. ed. Assessment in Speech and Language Therapy. London: Routledge. 49-67.
- Haykin, S. (1999). *Neural Networks A Comprehensive Foundation*. 2nd ed. New York: Prentice-Hall, Inc.

Hanson, M. L. (1983). Articulation. Philadephia, PA: W. B. Saunders Company.

Harrison, T. D. and Fallside, F. (1989). A Connectionist Model for Phoneme Recognition in Continuous Speech. *Proceedings of the 1989 IEEE International Conference on Acoustics, Speech and Signal Processings*. 417-420.

- Hassan, Abdullah (1980). Linguistik Am Untuk Guru Bahasa Malaysia. Petaling Jaya, Malaysia: Penerbit Fajar Bakti Sdn. Bhd.
- Hatzis, A., Green, P.D. and Howard, S. (1996). Optical Logo Therapy (OLT) A Computer based speech training system for the visualization of articulation using connectionist techniques. *Institute of Acoustics Conference on Speech and Hearing (IOA'96)*.
- Haynes, W. O. and Pindzola, R. H. (1997). *Diagnosis and Evaluation in Speech Pathology*. 5th ed. MA: Allyn and Bacon.
- Hodson, B. W. (1980). *The Assessment of Phonological Process*. Danville, IL: Interstate Printers and Publishers.
- Hodson, B. W. (1985). Computerized Assessment of Phonological Process: Version 1.0 (Apple II Series Computer Program). Danville, IL: Interstate Printers and Publishers.
- Hodson, B. W. (1986). Assessment of Phonological Process. Revised ed. Danville, IL: Interstate Printers and Publishers.
- Hodson, B. W. and Paden, E. P. (1983). *Targeting Intelligible Speech: A Phonological Approach to Remediation*. San Diego, CA: College-Hill Press.
- Ingram, D. (1981). Procedures for the Phonological Analysis of Children's Language. Baltimore: University Park Press.
- Islam, R., Hiroshige, M., Miyanaga, Y. and Tochinai, K. (1995). Phoneme Recognition Using Modified TDNN and a Self-Organizing Clustering Network. *Proceedings of the 1995 IEEE International Symposium on Circuits and Systems*. 1816-1819.

- Johnson, W. (1961). Measurement of Oral Reading and Speaking rate and Disfluency of Adult Male and Female stutterers and nonstutterers. *Journal of Speech and Hearing Disorders*. Monograph Supplement Number. 7: 1-20.
- Kamhi, A. G. (1992). Clinical forum: Phonological Assessment and Treatment. The Need for a Broad-based Model of Phonological Disorders. *Language, Speech and Hearing Services in Schools*. 23: 261-268.
- Karim, N. S., Onn, F. M., Musa, H., Mahmood, A. H. (1995). *Tatabahasa Dewan*. New Ed. Kuala Lumpur, Malaysia: Dewan Bahasa dan Pustaka.
- Kent, R. D. (1992). Research Needs in the Assessment of Speech Motor Disorders. In: Assessment of Speech and Voice Production: Research and Clinical Applications. Bethesda: National Institute on Deafness and Other Communication Disorders. 17-28.
- Kent, R. D. and Read, C. (1992). The Acoustic Analysis of Speech. San Diego: Singular Publishing Group, Inc.
- Khan, L. and Lewis, N. (1986). *Khan-Lewis Phonological Analysis*. Circle Pines, MN: American Guidance Service.
- Khan, L. and Lewis, N. (2002). *Khan-Lewis Phonological Analysis 2nd Edition* (*KLPA-2*). Circle Pines, MN: American Guidance Service.
- Kronvall, E. and Deihl, C. (1954). The Relationship of Auditory Discrimination to Articulatory Defects of Children with No Known Organic Impairment. *Journal of Speech and Hearing Disorders*. 19: 335-338.
- Langemore, S. E., Schatz, K. and Olson, M. (1988). Fiberoptic Endoscopic Examination of Swallowing Safety: A New Procedure. *Dysphagia*. 2: 216-219.
- Laurene, F. (1994). Fundamentals of Neural Networks: Architecture, Algorithm and Applications. New Jersey: Prentice-Hall, Inc.

- Lippmann, R. P. (1987). An Introduction to Computing with Neural Nets. *IEEE* ASSP Magazine. 4: 4-22.
- Logemann, J. A. (1998). *Evaluation and Treatment of Swallowing Disorders*. 2nd ed. Austin, TX: Pro-Ed.
- Long, S., and Fey, M. (1993). Computerized Profiling: Version 7.0 (MS-DOS Computer Program). San Antonio, Tex.: The Psychological Corporation.
- Lowe, R. J. (1986). *Assessment Link Between Phonology and Articulation (ALPHA)*. East Moline, IL: LinguiSystems.
- Masters, T. (1993). *Practical Neural Network Recipes in C++*. San Diego: Academic Press, Inc.
- Masterson, J. and Pagan, F. (1993). Interactive System for Phonological Analysis: Version 1.0 (Macintosh Computer Program). San Antonio, Tex.: The Psychological Corporation.
- Masterson, J. and Rvachew, S. (1999). Use of Technology in Phonological Intervention. *Seminars in Speech and Language*. 20(3): 233-250.
- McGuire, R. A. (1995). Computer-based Instrumentation: Issues in Clinical Applications. *Language, Speech and Hearing Services in Schools*. 26: 223-231.
- Moon, J. B. (1993). Evaluation of Velopharyngeal Function. In: Moller, K. T. and Starr, C. D., *Cleft palate: Interdisciplinary Issues and Treatment*. Austin, TX: Pro-Ed. 251-306.
- Nakamura, S., Sawai, H. and Sugiyama, M. (1992). Speaker-independent Phoneme Recognition Using Large Scale Neural Networks. *Proceedings of the IEEE 1992 International Conference on Acoustics, Speech and Signal Processing*. 409-412.

- Nordin, Nor Azizah (1999). Kajian Awal Pemkembangan Fonologi Kanak-kanak Melayu Berusia 4 Tahun. Universiti Kebangsaan Malaysia: Bachelor Thesis.
- Oller, K. and R. Delgado (1990). Logical International Phonetic Programs: Version 1.03 (MS-DOS Computer Program). Miami, Fla.: Intelligent Hearing Systems.
- Oller, K., et al. (1972). *Five Studies in Abnormal Phonology*.. University of Washington. Unpublished
- Parlaktuna, O., Cakici, T., Tora, H. And Barkana, A. (1994). Vowel and Consonant Recognition in Turkish Using Neural Networks Towards Continuous Speech Recognition. *Proceedings of the 7th Mediterranean Electrotechnical Conference*. 55-56.
- Pendergest, K., Dickey, S., Selmar, J. and Sudar, A. (1984). *Photo Articulation Test*.
 2nd ed. Danville, IL: Institute Printers and Publishers.
- Poo, G.S. and Ou, Y.Z. (1994). A Large Phonemic Time-Delay Neural Network Technique for all Mandarin Consonants Recognition. *Proceedings of the 1994 IEEE Region 10 International Conference on Electrical and Electronic Engineering*. 521-525.
- Prather, E., Hedrick, D. and Kent, C. (1975). Articulation Development in Children Aged Two to Four Years. *Journal of Speech and Hearing Research*. 40: 179-191.
- Prather, E., Miner, A., Addicott, M. A. and Sunderland, L. (1971). Washington Speech Sound Discrimination Test. Danville, Illinois: The Interstate Printers & Publishers, Inc.
- Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. *Proceedings of the IEEE*. 77(2): 257-286.
- Rabiner, L. and Juang, B.H. (1993). *Fundamentals of Speech Recognition*. Englewood Cliffs, NJ: Prentice-Hall.

- Reid, G. (1947). The Efficiency of Speech Re-education of Functional Articulatory Defectives in Elementary School. *Journal of Speech and Hearing Disorders*. 12: 301-313.
- Ritterman, S. and Freeman, N. (1974). Distinctive Phonetic Features as Relevant and Irrelevant Stimulus Dimensions in Speech Sound Discrimination Learning. *Journal of Speech and Hearing Research*. 17: 417-425.
- Rosenbek, J. and La Pointe, L. (1978). The Dysarthrias: Description, Diagnosis, and Treatment. In: Johns, D. F. ed. *Clinical Management of Neurogenic Communicative Disorders*. Boston: Little, Brown.
- Ruscello, D. M. (2001). *Tests and Measurements in Speech-language Pathology*. MA: Butterworth-Heinemann.
- Sakoe, H. and Chiba, S. (1978). Dynamic Programming Algorithm Optimization for Spoken Word Recognition. *IEEE Transactions on Acoustics, Speech and Signal Processing.* 26(1): 43-49.
- Salam, M. S., Mohamad, D. and Salleh, S. H. S. (2001). Neural Network Speaker Dependent Isolated Malay Speech Recognition System: Handicrafted vs Genetic Algorithm. *Proceedings of the International Symposium on Signal Processing* and its Application. 731-734.
- Salleh, S. H., Sha'ameri, A. Z., Abdul Rahman, A. I. and Mohd. Yusoff, Z. (1999). "Computer Assisted Speaker Indentification (CASIS)." *Jurnal Teknologi*. 31(D): 29-43.
- Schiavetti, N. (1992). Scaling Procedures for the Measurement of Speech Intelligibility. In: Kent, R. D. ed. Intelligibility in Speech Disorders: Theory, Measurement and Management. Amsterdam: John Benjamins.

- Schwarz, P., Materja, P. and Cernocky, J. (2006). Hierarchical Structures of Neural Networks for Phoneme Recognition. *Proceedings of the 2006 International Conference on Acoustics, Speech and Signal Processings*. 325-328.
- Sheard, C., Adams, R. D. and Davis, P. J. (1991). Reliability and Agreement of Ratings of Ataxic Dysathric Speech Samples with Varying Intelligibility. *Journal* of Speech and Hearing Research. 34: 285-293.
- Sherman, D. and Geith, A. (1967). Speech Sound Discrimination and Articulation Skill. *Journal of Speech and Hearing Disorders*. 10: 277-280.
- Shipley, K. G. and McAfee, J. G. (1998). Assessment in Speech-Language Pathology- A Resource Manual. 2nd ed. San Diego: Singular Publishing Group, Inc.
- Shriberg, L. D. (1986). Program to Examine Phonetic and Phonological Evaluation Records, Version 4.0 (MS-DOS Computer Program). Hillsdale, NJ: Erlbaum.
- Shriberg, L. D. and Kent, R. D. (1995). *Clinical Phonetics*. 2nd ed. MA: Allyn & Bacon.
- Shriberg, L. D. and Kwiatkowski, J. (1980). *Natural Process Analysis*. New York: John Wiley & Sons.
- Shriberg, L. D. and Kwiatkowski, J. (1982). Phonological Disorders III: A Procedure for Assessing Severity of Involvement. *Journal of Speech and Hearing Disorders*. 47: 256-270.
- Shriberg, L. D. and Kwiatkowski, J. (1983). Computer-assisted Natural Process Analysis (NPA): Recent Issues and Data. Seminar in Speech and Hearing Disorders. 4: 389-406
- Shuster, L. I. (1993). Interpretation of Speech Science Measures. *Clinics in Communication Disorder*. 3: 26-35.

- Smith, N. (1973). *The Acquisition of Phonology*. Cambridge, UK: Cambridge University Press.
- Southwood, J. (1990). *Bizarreness, Acceptability, Naturalness and Normalcy of Speech of ALS Speakers*. University of Wisconsin-Madison: Ph. D. Thesis. unpublished.
- Stampe, D. (1969). A Dissertation on Natural Phonology. Unplished dissertation, University of Chicago.
- Sussman, H. M., Marquardt, T. P., MachNeilage, P. F. and Hutchinson, J. A. (1988). Anticipatory Coarticulation in Aphasia: Some Methodological Considerations. *Brain and Language*. 35: 369-379.
- Tan, B. H., Fu, M.Y., Spray, A. and Sermody, P. (1996). The Use of Wavelet Transforms in Phoneme Recognition. *Proceedings of the Fourth International Conference on Spoken Language*. 2431-2434.
- Templin, M. (1957). Certain Language Skills in Children: Their Development and Interrelationships. Institution of Child Welfare, Monograph 26. Minneapolis: The University of Minnesota Press.
- Templin, M. C. and Darley, F. L. (1969). *Templin-Darley Test of Articulation*. 2nd ed. Iowa City: University of Iowa.
- Thomas, P. J. and Carmack, F.F.(1990). *Speech and Language: Detecting and Correcting Special Needs*. MA: Allyn & Bacon.
- Ting, H. N. (2002). Speech Analysis and Classification Using Neural Networks for Computer-based Malay Speech Therapy. Universiti Teknologi Malaysia: Master Thesis.

- Ting, H. N., Yunus, J. and Salleh, S. H. S. (2001). Speaker-Independent Malay Syllable Recognition Using Singular and Modular Neural Networks, *Jurnal Teknologi*. 35(D): 65-76.
- Ting, H. N., Yunus, J., Salleh, S.H.S. and Vandort, S. (2002) Articulation Therapy for Malay Plosives. *Proceedings of the International Congress on Biological and Medical Engineering (ICBME 2002)*. 4-7 Dec. Singapore.
- Ting, H.N., Yunus, J., Vandort, S. and Wong, L. C. (2003). Computer-based Malay Articulation Training for Malay Plosives at Isolated, syllable and Word Level, *Proceedings of the 4th International Conference on Information Communications* and Signal Processing and 4th Pacific-Rim Conference on Multimedia (ICICS-PCM 2003). 15-18 December. Singapore.
- Travis, L and Rasmus, B. (1980). The Speech Sound Discrimination Ability of Cases with Functional Disorders of Articulation. *Quarterly Journal of Speech*. 17: 217-226.
- Vaich, T. and Cohen, A. (1995). HMM Phoneme Recognition with Supervised Training and Viterbi Algorithn. Proceedings of the 8th Convention of Electrical and Electronics Engineers in Israel.
- Van Riper, C and Erickson, R. L. (1996). Speech Correction: An Introduction to Speech Pathology and Audiology. 9th ed. MA: Allyn & Bacon.
- Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. and Lang, K.J. (1989). Phoneme Recognition Using Time-Delay Neural Networks. *IEEE Transactions on Acoustics, Speech and Signal Processings*. 37(3): 328-339.
- Weiner, F. F. (1979). *Phonological Process Analysis*. Baltimore: University Park Press.
- Weiss, C., Gordon, M. and Lillywhite, H. (1987). Clinical Mangement of Articulatory and Phonologic Disorders. 2nd ed. Baltimore, MD: Williams and Wilkins.

- Wellman, B., Case, I., Mengurt, I., and Bradbury, D. (1931). Speech Sounds of Young Children. University of Iowa Studies in Child Welfare. 5(2).
- Wepman, J. (1973). Wepman Auditory Discrimination Test. Chicago: Language Research Association.
- Wilson, D (1987). Voice Problem of Children. 3rd ed. Baltimore: Williams and Wilkins.
- Winitz, H. (1984). Auditory Considerations in Articulation Training. In: Winitz, H.
 ed. *Treating Articulation Disorders: For Clinicians by Clinicians*. Baltimore: University Park Press.
- Ziegler, W. and Von Cramon, D. (1986). Disturbed Coarticulation in Apraxia of Speech: Acoustic Evidence. *Brain and Language*. 29: 34-47.
- Zyski, B. J. and Weisiger, B. E. (1987). Identification of Dysathria types based on Perceptual Analysis. *Journal of Communication Disorders*. 20: 367-378.