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Abstract

The least-absolute error with variable forgetting
factor (LAE+VFF) estimation method is proposed in
this paper to estimate the parameters of time-varying
continuous-time (C-T) systems. The algorithm
includes an instrumental variable (IV) element to reduce
estimation bias and a variable forgetting factor for good
parameter tracking and smooth steady state.

1. Introduction

Advances in digital computers have contributed to
the popularity of discrete-time (D-T) approaches in the
area of system identification. However, real-world
systems are continuous in nature and a D-T model does
not have direct physical interpretation of a system
compared to a C-T model. There are also problems
associated with control and identification of C-T
systems in D-T such as those described in [1].
Therefore, parameter estimation based on C-T system
models have been developed. Most of them, however,
deal only with open-loop systems. When data for
parameter estimation process are obtained from systems
operating in closed loop, such as in feedback control
systems, the estimates are biased because the input and
the noise signal (measurement or process noise) are
correlated due to feedback [2]. To overcome bias
problem, method such as in [3] has been suggested.
This method however, requires measurement of
additional excitation signal, which may not available in
the system under consideration. If this extra signal is
introduced, its effects on the overall system may not be
desirable. Another approach is to use an IV technique

[4], which is also effective in overcoming bias problems.

The least absolute error (LAE) method has an IV-like
element, inherent in the algorithm that can reduce bias
in the estimates. It is originally designed for
time-invariant systems but the inclusion of variable
forgetting factor (VFF) in this paper allows it to deal
with systems experiencing infrequent abrupt parameter
changes.

2. System description
A C-T model described by Eq. (1) is considered.
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s is the differential operator, d/dt, and n>m>0. In the
C-T domain, Eq. (1) can be written as
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where y;(t)= and u;(t) =

Including #(t), which represents the measurement
noise affecting the output, Eq. (2) can then be written in
the following regression model form:
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To estimate 6 that contains parameters to be
identified, the derivatives of the input and output signals
are needed, but differentiating the possibly noisy signals
would only accentuate the noise. To avoid direct
differentiation of noisy data, the dynamical system
described by differential equations (Eq. (2)), has to be
converted into a system described by algebraic
equations. This approach is known as ‘linear dynamic
operation’ [5], where sampled input and output signals
are passed through the linear dynamic operator (LD) and
the operator’s outputs can be used directly in the
estimation algorithm as for D-T systems (Fig. 1).
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Fig. 1: Linear dynamic operation for C-T parameter
estimation

This is a ‘direct’ identification method of C-T
systems and does not involve any conversion of
continuous- to discrete-time model or vice-versa. One
manifestation of LD operation to handle time-derivative



terms in the regression vector, ¢@(t), is by using the
Linear Integral Filter (LIF) [6], which is a digital
implementation of multiple integral operations via
numerical integration such as trapezoidal rule,
rectangular (Euler’s) approximation and parabolic
(Simpson’s) rule.

Firstly, ¢(t) containing multiple integrals instead of
the derivatives of the input and output signals are used.
To do this, a finite horizon n"- order integration
operator, I'", is introduced and multiple integrations
over the time interval [#-[T, t) are performed on both
sides of Eq. (3), giving Eq. (4). T is the step size (taken
the same as the sampling interval, T) and [ is called a
length factor of the LIF (a natural number).
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The C-T multiple integrals in the regression vector,
#t), of Eq. (4) can be replaced with their D-T
equivalent using ‘normal method of numerical
integration utilizing spline-based interpolation of
sampled input and output data’ [7], which is actually the
generalization of the LIF method. The proposed
LAE+VFF algorithm will then be derived, and is based
on the regression model of the system, given by Eq. (4).

3. Least-absolute error with variable

forgetting factor (LAE+VFF) estimation
3.1 Continuous-time LAE+VFF The C-T LAE +
VFF estimation method minimises the criterion given
by Eq. (5)
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where &(7)= y(7) —¢1—T ()8, t and 7 are normalised
quantities of the same independent time variable and u
is the C-T VFF that has a value between O and 1.
Minimisation of Eq. (5) with respect to 8 gives
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where &(7) = yr (z’)—¢1-T (r)@ . Since 4t) is not
known a priori, it is assumed that the current estimate
of &gt), €(t), is available, say from another predictor.
Therefore, the approximate C-T LAE solution of Eq. (6)
can be derived as
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Letting M -! )= f’(t) = parameter covariance matrix,
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The time derivative of @ in Eq. (7) can be written as
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Therefore, the C-T LAE estimator is as follows:
(i) Model error is evaluated

£(t) = y(t)—¢" (HO(1) (12)
(i) Parameter covariance matrix is updated (from Eq.

(10))
dP(t) = — P(z)lny+P(t)|‘f( )| oT (OP@) |dr (13)

(iii) The estimates are corrected (from Eq. (11))

Y
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3.2 Discretisation of the regression vector An
n"-order multiple integration, I'", of a C-T signal,
x(t),over the time interval [#-I7, t) yields
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Thus, the elements of ¢-(f) can be evaluated using an
operator polynomial, J; "(q_l) [7] as Eq. (15).
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I, =length of the discrete - time integration window
i=01,...,n
n = system order

a,b =orders of the input and output signal interpolation
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= certain 'normal' polynomial of degree (b-1)
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Replacing the time index k7 in Eq. (15) with k only
and omitting the subscript I' associated with the
multiple integral of the output signal and the regression

vector, the D-T regression model of Eq. (4) can be
written as

y(k) = ¢" (k)0 +n(k) (16)
where,
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is the system’s natural

frequency. I is chosen so that the frequency response
of the LIF matches as closely as possible the frequency
band of the system to be identified.

3.3 Discretisation of the estimator Rectangular
approximation is then used to discretise the C-T LAE +
VFF estimator given by Eq. (12) to Eq. (14) and the
D-T regression model in Eq. (16) can be directly
utilised. The rectangular integration scheme is applied
to Eq. (8) to Eq. (9) to give

k
Mk)=T Y u* T EbPT (i) = M (k=) +TEGR)GT (k)
i=1

A7)

k
NG =T T E@) v (@) = N (=) + TEWR) y(k)

i=l

(18)
80 = B0k —1)+ TM ™ ERyd) " (06K 1]
(19)
where &£(k) = ?(k) and 7:,uT i.e the T"-power of
o)

the continuous-time VFF, g, representing its
discrete-time equivalent. Applying Matrix Inversion
Lemma (MIL) to Equation (17), M_l(t) = ﬁ(t) can be
evaluated as Eq. (20).
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Then, taking P(k)= Tﬁ(k) =parameter covariance
matrix scaled by the sampling period, the recursive D-T
LAE can be summarized as follows:

O(k) = O(k = 1)+ P(k)E(k)e(k)
P(k—1) (21)
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Eq. (21) and Eq. (22) show that the discretised LAE
estimator has a similar recursive representation as in the
discrete-time framework of IV estimation scheme
known from discrete-time identification literature (e.g.
[4]), which has the general form

0(k) = O(k — 1)+ Q(k)E(k)e(k) (23)
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The on-line evaluation of the a posteriori prediction
error, £(k), can be expressed as

Q(k)

= gain matrix

E (k) = (k) —%qﬂ (k) P(k ~ 1k sgnle(h)] (24)

To track time-varying parameters, the choice of Q
in Eq. (23) is crucial. Large Q results in good
parameter tracking but the estimator becomes more
sensitive to noise. In contrast, small Q makes it less
sensitive to noise, leading to smooth steady-state
performance but giving poor parameter tracking. Thus,
a variable gain is needed. Employing a VFF method in
[8], the following RLAE + VFF algorithm is proposed:

(i) Calculate the a priori prediction error
e(k) = y(k)—¢" (k)O(k 1) (259)
(i) Calculate the a posteriori prediction error
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(ii1) Evaluate the IV vector,
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(iv) Generate the new estimate
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(vi) Decide the value of % which is the D-T equivalent
of the C-T VFF, u
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Kis a design variable that balances the tracking rate
and steady-state smoothness of the parameter estimates.
By running the estimator with known, fixed system
parameters several times, the choice of x can be based
on the estimation error. For example it can be chosen
to be greater than the average estimation error so that
when the error is greater than the average, changes in
system parameters are suspected, so g (which is < )
is chosen and Q is made larger for good parameter
tracking. Else, the error is assumed to be resulting
from noise and 4 is chosen for smaller Q, making the
algorithm less sensitive to the noise for smooth steady
state. &, 1s a threshold value used to maintain the
values of previous € and P when the current generated
errors are sufficiently small.

The RLAE + VFF algorithm proposed in Eq. (25a)
to Eq. (25f) combines the LAE identification that has an
IV element to overcome bias problem and the VFF
method for fast tracking and smooth steady-state
estimation. Next, the property of the proposed LAE +
VFF estimation algorithm is investigated.

4. Property of the LAE+VFF algorithm
4.1 Theorem 1 Consider a system described by Eq.
(16) with the LAE + VFF estimation and
069, =6, —6,_, , where subscript k represents a
discrete-time index. For x>0, O<g <u, <1 and
Y= ,uT , we have
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for some constants Z;,Z, >0, 0<a <1 andallk,
subject to Assumption 1 and Assumption 2.

Assumption 1

There exist some constants 0< Z;,, < Z,; <o such that
for all k,

0<Z,, <|éc| < Zs @7

The upper bound on ¢, , in Eq. (27), is guaranteed
if the system is stable and noise are bounded. The
lower bound only indicates the fact that if ¢, is zero or
very small, no or very little information on the unknown
parameter vector can be extracted.

Assumption 2
The regressor is persistently exciting i.e.
Ko+l -1

Bi< 2 00, <Bl (28)

k =k,
for some 0< B, <p,, [, >0 andall k>0. Thisis
a standard assumption for the convergence in the
adaptive literature.

4.2 Proof of Theorem 1  For the discrete-time LAE +
VFF estimator algorithm given in Eq. (25e), let

06, =6, —6,_,, indicating parameter change (29)

ék =6, - ék = estimation error (30)
Multiplying and adding both sides of Eq. (25e) by -1
and @, , respectively, we have
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Consider the homogeneous part of Eq. (32) i.e.
~ P L I
6, = {1 ——k-lik‘”k ]ek_l (33)
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From Equation (22),
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Notice that the right-hand side term of Equation (34) is
similar to the bracketed term of Equation (33). Thus,
Equation (33) can be written as

6, =7 PPy 'O (34a)
(7nP)'6. =P8, (34b)
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Introduce a Lyapunov function, V,,
Vi :HkT(?/k_lpk_l)gk (35)
Its first difference is,
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Since P,_; is a non-singular diagonal matrix with
all its main diagonal elements having positive values
and 0< ;.7 <1, the term, Q;,,, in Eq. (36) is a
negative definite matrix.  This concludes that the
homogeneous part of Equation (32) is exponentially
stable. Also, from Equation (34a),

- i
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Using Schwartz inequality and noting that from
Assumption 2, Pk_1 is uniformly bounded above and
below i.e. there exist some constants 0 <oy <0, so
that o,/ <P,”' <o,1, from Eq. (37),
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S. Simulation

To evaluate the effectiveness of the LAE+VFF
method, the algorithm is applied to a solid-axle railway
wheelset system.  The wheelset consists of two
coned/profiled wheels rigidly connected by an axle.
Two of the wheelset parameters can vary significantly:
the ‘creep coefficient’, f, and the ‘conicity’, 4. fis a
parameter that is nonlinearly dependent on the normal
force between wheel and rail, and its value can vary
between 5 — 10 MN, whereas A, which is a term related
to the coning of the wheel tread, in practice has its value

varying between 0.05 and 0.5.

The solid-axle wheelset suspended to ground via
lateral springs and dampers as shown in Fig. 2 is
considered.

Actuator
Lateral spring

Lateral damper

Fig. 2: Solid-axle wheelset arrangement for
simulation

The wheelset is assumed to be traveling at 83 m/s
along a straight track with lateral irregularities. It is
controlled using an active yaw damping technique, in
which a rotary actuator provides the yaw torque. The
control input signal is provided by a linear quadratic
regulator (LQR) designed to minimise the wheelset’s
lateral displacement relative to the track. The transfer
function of the wheelset system, whose output is taken
as the wheelset’s lateral velocity, is given by Eq. (38).
Symbols and values used are given in the Appendix.

2
b,s

G(s) =— 3 3 2 (3%)
s”+aus” +ass” +aysT +ais+ag
where
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a4=i+_f+_l , Ox = f 5 +ﬂ+_l
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a2= ﬂ L ,a1= f ﬁ,a0=0,b2=—f.
mlv mlr, ml
The LAE+VFF estimator ~ was used to estimate a;

A and f were calculated from any
Monte Carlo

and b;. Then
suitable combination of b, to ay.
simulations have been done to investigate the
effectiveness of the method. Firstly, the normal
recursive least-squares error (RLSE) [2] and LAE
estimation methods using fixed forgetting factor i.e.
M=15=0.99, are compared. f=1/T;=300 Hz, [=3,
k=e,,;,=0.01 are used. The RLSE algorithm is similar
to LAE algorithm but with &, =¢,. Fig. 3 shows the
parameter tracking performance of both estimators. It
can be seen that the LAE estimator tracks the changes in
system parameters much more quickly. Moreover, the
estimate of A using RLSE contains significant bias
whereas the estimates of both f and A using LAE
estimator converge to true values.

For the LAE+VFF, 1,=0.80, 1,=0.99 have been
used. Fig. 4 shows that LAE+VFF estimator takes less
than a second to reach the new value of f compared to
the LAE estimator that takes longer time and Table 1
shows that LAE+VFF estimator is superior to both
RLSE and LAE.

Table 2 shows the effect of the choices of f; and I,
values on the effectiveness of the LAE+VFF method.
It is observed from Table 2 that proper choices of f; and
Ir are important for good estimation results, and the pair



/=300 Hz and /=3 gives the best estimates because with
these values, the frequency response of the LIF then lies
exactly between the least stable (with /=5MN, 4=0.05)
and the most stable (with f=10MN, A=0.5) wheelset
system’s frequency bands, as shown in Fig. 5.

Estimates of wheelset parameters

— Estimated
---- Actual

Canicity

5
Time (s)

Fig. 3: RLSE versus LAE using fixed forgetting factor
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Fig. 4: LAE versus LAE+VFF

---- LIF, fs =300 Hz

— Wheelset system 4
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Table 2: Effects of different combinations of f; and I,
on the estimates for LAE+VFF

f,=300 Hz =3

I A.EE (%) . A.EE (%)
f p) Hz f p)

1 | 17.5£2.5 | 30.0+£2.1 | 100 | 28.9+2.8 43.1£3.2

3 5.5%1.0 9.7t1.4 | 300 5.5%1.0 9.7+1.4

8 | 36.3+3.3 | 48.844.0 | 800 | 23.443.2 21.4+1.2

6. Conclusions

The LAE with fixed forgetting factor gives better
parameter estimates compared to the RLSE, whereas the
LAE+VFF offers even better estimation and tracking of
system parameters that are subject to abrupt changes,
provided that the f; and I, values are chosen accordingly.
It has also been proven that the estimation error of the
proposed LAE+VFF estimation algorithm is bounded.
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Frequency (radfs) AppendiX
Fig. 5: Frequency responses of the LIF and the wheelset Symbol | Parameter Value
system / Half-gauge length 0.7m
7, Wheel radius 0.45 m
Table 1: Average estimation error (A.E.E) of RLSE, C, Lateral damping per wheelset | 50 kNs/m
LAE & LAE+VFF estimators K; Lateral stiffness per wheelset 200 kN/m
RLSE LAE LAE+VFF 1 Wheelset inertia 700 kg m”
fo| 137412 % 7.840.8 % 5.58+1.0 % m Wheelset mass 1250 kg
A | 325825% | 157t13% | 9.72t14 % v Forward speed 83.3 m/s






