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Abstract 

The least-absolute error with variable forgetting 
factor (LAE+VFF) estimation method is proposed in 
this paper to estimate the parameters of time-varying 
continuous-time (C-T) systems.  The algorithm 
includes an instrumental variable (IV) element to reduce 
estimation bias and a variable forgetting factor for good 
parameter tracking and smooth steady state. 

 

1. Introduction 
Advances in digital computers have contributed to 

the popularity of discrete-time (D-T) approaches in the 
area of system identification.  However, real-world 
systems are continuous in nature and a D-T model does 
not have direct physical interpretation of a system 
compared to a C-T model.  There are also problems 
associated with control and identification of C-T 
systems in D-T such as those described in [1].  
Therefore, parameter estimation based on C-T system 
models have been developed.  Most of them, however, 
deal only with open-loop systems.  When data for 
parameter estimation process are obtained from systems 
operating in closed loop, such as in feedback control 
systems, the estimates are biased because the input and 
the noise signal (measurement or process noise) are 
correlated due to feedback [2].  To overcome bias 
problem, method such as in [3] has been suggested.  
This method however, requires measurement of 
additional excitation signal, which may not available in 
the system under consideration.  If this extra signal is 
introduced, its effects on the overall system may not be 
desirable.  Another approach is to use an IV technique 
[4], which is also effective in overcoming bias problems.  
The least absolute error (LAE) method has an IV-like 
element, inherent in the algorithm that can reduce bias 
in the estimates.  It is originally designed for 
time-invariant systems but the inclusion of variable 
forgetting factor (VFF) in this paper allows it to deal 
with systems experiencing infrequent abrupt parameter 
changes. 
 

2. System description 
 A C-T model described by Eq. (1) is considered. 
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s is the differential operator, d/dt, and n>m≥0.  In the 
C-T domain, Eq. (1) can be written as 
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 Including η(t), which represents the measurement 
noise affecting the output, Eq. (2) can then be written in 
the following regression model form: 
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 To estimate θ that contains parameters to be 
identified, the derivatives of the input and output signals 
are needed, but differentiating the possibly noisy signals 
would only accentuate the noise.  To avoid direct 
differentiation of noisy data, the dynamical system 
described by differential equations (Eq. (2)), has to be 
converted into a system described by algebraic 
equations.  This approach is known as ‘linear dynamic 
operation’ [5], where sampled input and output signals 
are passed through the linear dynamic operator (LDLDLDLD) and 
the operator’s outputs can be used directly in the 
estimation algorithm as for D-T systems (Fig. 1).   

 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Linear dynamic operation for C-T parameter 
estimation 

 
 This is a ‘direct’ identification method of C-T 
systems and does not involve any conversion of 
continuous- to discrete-time model or vice-versa.  One 
manifestation of LD operation to handle time-derivative 
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terms in the regression vector, φ(t), is by using the 
Linear Integral Filter (LIF) [6], which is a digital 
implementation of multiple integral operations via 
numerical integration such as trapezoidal rule, 
rectangular (Euler’s) approximation and parabolic 
(Simpson’s) rule. 
 Firstly, φ(t) containing multiple integrals instead of 
the derivatives of the input and output signals are used.  
To do this, a finite horizon n

th
- order integration 

operator, Γn
, is introduced and multiple integrations 

over the time interval [t-lfT, t) are performed on both 
sides of Eq. (3), giving Eq. (4).  T is the step size (taken 
the same as the sampling interval, Ts) and lf is called a 
length factor of the LIF (a natural number).  
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 The C-T multiple integrals in the regression vector, 
φ(t), of Eq. (4) can be replaced with their D-T 
equivalent using ‘normal method of numerical 
integration utilizing spline-based interpolation of 
sampled input and output data’ [7], which is actually the 
generalization of the LIF method.  The proposed 
LAE+VFF algorithm will then be derived, and is based 
on the regression model of the system, given by Eq. (4). 

 

3. Least-absolute error with variable 
forgetting factor (LAE+VFF) estimation 

3.1 Continuous-time LAE+VFF   The C-T LAE + 
VFF estimation method minimises the criterion given 
by Eq. (5) 
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where θτφττε )()()(
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y ΓΓ −= , t and τ are normalised 
quantities of the same independent time variable and µ 
is the C-T VFF that has a value between 0 and 1.  
Minimisation of Eq. (5) with respect to θ gives  

0
)(

)(
)(

)(

0

==
∂

∂
∫ Γ

−

t

tLAE d
J

τ
τε

τε
τφµ

θ

θ τ
  (6) 

where θτφττε )()()(
T

y ΓΓ −= .  Since ε(t) is not 
known a priori, it is assumed that the current estimate 
of ε(t), )(~ tε , is available, say from another predictor.  
Therefore, the approximate C-T LAE solution of Eq. (6) 
can be derived as 
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The time derivative of θ̂  in Eq. (7) can be written as 
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Therefore, the C-T LAE estimator is as follows:  
(i) Model error is evaluated 

 )(ˆ)()()( tttyt T θφε −=            (12) 

(ii) Parameter covariance matrix is updated (from Eq. 
(10)) 
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(iii) The estimates are corrected (from Eq. (11)) 
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3.2 Discretisation of the regression vector   An 
n

th
-order multiple integration, Γn

, of a C-T signal, 
x(t),over the time interval [t-lT, t) yields 
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Thus, the elements of )(tΓφ  can be evaluated using an 

operator polynomial, )( 1−qJ
n

i  [7] as Eq. (15). 
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 Replacing the time index kT in Eq. (15) with k only 
and omitting the subscript Γ associated with the 
multiple integral of the output signal and the regression 
vector, the D-T regression model of Eq. (4) can be 
written as 
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 T is generally selected according to 
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<< , where  nω  is the system’s natural 

frequency.  lf is chosen so that the frequency response 
of the LIF matches as closely as possible the frequency 
band of the system to be identified. 
 
3.3 Discretisation of the estimator   Rectangular 
approximation is then used to discretise the C-T LAE + 
VFF estimator given by Eq. (12) to Eq. (14) and the 
D-T regression model in Eq. (16) can be directly 
utilised.  The rectangular integration scheme is applied 
to Eq. (8) to Eq. (9) to give 
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the continuous-time VFF, µ, representing its 

discrete-time equivalent.  Applying Matrix Inversion 

Lemma (MIL) to Equation (17), )(
~

)(1 tPtM =−  can be 

evaluated as Eq. (20). 
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 Then, taking == )(
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)( kPTkP parameter covariance 

matrix scaled by the sampling period, the recursive D-T 

LAE can be summarized as follows: 
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 Eq. (21) and Eq. (22) show that the discretised LAE 
estimator has a similar recursive representation as in the 
discrete-time framework of IV estimation scheme 
known from discrete-time identification literature (e.g. 
[4]), which has the general form 
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 The on-line evaluation of the a posteriori prediction 
error, )(~ kε , can be expressed as 
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 To track time-varying parameters, the choice of Ω 
in Eq. (23) is crucial.  Large Ω results in good 
parameter tracking but the estimator becomes more 
sensitive to noise.  In contrast, small Ω makes it less 
sensitive to noise, leading to smooth steady-state 
performance but giving poor parameter tracking.  Thus, 
a variable gain is needed.  Employing a VFF method in 
[8], the following RLAE + VFF algorithm is proposed: 
 
(i) Calculate the a priori prediction error 

 )1(ˆ)()()( −−= kkkyk T θφε          (25a) 

(ii) Calculate the a posteriori prediction error 
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(iii) Evaluate the IV vector, 
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(iv) Generate the new estimate 
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(v) Update the parameter covariance matrix 
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(vi) Decide the value of γ, which is the D-T equivalent 

of the C-T VFF, µ 
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 κ is a design variable that balances the tracking rate 
and steady-state smoothness of the parameter estimates.  
By running the estimator with known, fixed system 
parameters several times, the choice of κ can be based 
on the estimation error.  For example it can be chosen 
to be greater than the average estimation error so that 
when the error is greater than the average, changes in 
system parameters are suspected, so µ1 (which is < µ2) 
is chosen and Ω is made larger for good parameter 
tracking.  Else, the error is assumed to be resulting 
from noise and µ2 is chosen for smaller Ω, making the 
algorithm less sensitive to the noise for smooth steady 
state.  εmin is a threshold value used to maintain the 
values of previous θ̂  and P when the current generated 
errors are sufficiently small. 
 The RLAE + VFF algorithm proposed in Eq. (25a) 
to Eq. (25f) combines the LAE identification that has an 
IV element to overcome bias problem and the VFF 
method for fast tracking and smooth steady-state 
estimation.  Next, the property of the proposed LAE + 
VFF estimation algorithm is investigated. 
 

4. Property of the LAE+VFF algorithm 
4.1 Theorem 1   Consider a system described by Eq. 
(16) with the LAE + VFF estimation and 

1−−= kkk θθδθ , where subscript k represents a 
discrete-time index.  For 0>κ , 10 21 <<< µµ  and 

Tµγ = , we have 
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subject to Assumption 1 and Assumption 2. 
Assumption 1 
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 The upper bound on kφ , in Eq. (27), is guaranteed 
if the system is stable and noise are bounded.  The 
lower bound only indicates the fact that if kφ  is zero or 
very small, no or very little information on the unknown 
parameter vector can be extracted. 
Assumption 2 
The regressor is persistently exciting i.e. 
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for some 210 ββ ≤< , 0>kl  and all 0≥k .  This is 
a standard assumption for the convergence in the 
adaptive literature. 
 
4.2 Proof of Theorem 1   For the discrete-time LAE + 
VFF estimator algorithm given in Eq. (25e), let 

changeparameter  indicating  ,1−−= kkk θθδθ       (29) 
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Multiplying and adding both sides of Eq. (25e) by -1 
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Consider the homogeneous part of Eq. (32) i.e. 
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Notice that the right-hand side term of Equation (34) is 
similar to the bracketed term of Equation (33).  Thus, 
Equation (33) can be written as 
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Introduce a Lyapunov function, Vt, 

( ) kkk
T

kt PV θγθ
~

 
~ 11 −−=            (35) 
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 Since 1−kP  is a non-singular diagonal matrix with 
all its main diagonal elements having positive values 
and 1,0 1 << −kk γγ , the term, QLyap in Eq. (36) is a 
negative definite matrix.  This concludes that the 
homogeneous part of Equation (32) is exponentially 
stable. Also, from Equation (34a), 
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 Using Schwartz inequality and noting that from 
Assumption 2, 

1−
kP  is uniformly bounded above and 

below i.e. there exist some constants 210 σσ <<  so 
that IPI k 2

1
1 σσ ≤≤ −

, from Eq. (37), 
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5. Simulation 

To evaluate the effectiveness of the LAE+VFF 
method, the algorithm is applied to a solid-axle railway 
wheelset system.  The wheelset consists of two 
coned/profiled wheels rigidly connected by an axle.  
Two of the wheelset parameters can vary significantly: 
the ‘creep coefficient’, f, and the ‘conicity’, λ.  f is a 
parameter that is nonlinearly dependent on the normal 
force between wheel and rail, and its value can vary 
between 5 – 10 MN, whereas λ, which is a term related 
to the coning of the wheel tread, in practice has its value 

varying between 0.05 and 0.5. 
The solid-axle wheelset suspended to ground via 

lateral springs and dampers as shown in Fig. 2 is 
considered. 

 
 
 
 
 
 
 
 
 

Fig. 2: Solid-axle wheelset arrangement for 
simulation 

 
 The wheelset is assumed to be traveling at 83 m/s 
along a straight track with lateral irregularities.  It is 
controlled using an active yaw damping technique, in 
which a rotary actuator provides the yaw torque.  The 
control input signal is provided by a linear quadratic 
regulator (LQR) designed to minimise the wheelset’s 
lateral displacement relative to the track.  The transfer 
function of the wheelset system, whose output is taken 
as the wheelset’s lateral velocity, is given by Eq. (38).  
Symbols and values used are given in the Appendix. 
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 The LAE+VFF estimator  was used to estimate ai 

and bi.  Then  λ̂  and f̂  were calculated  from any 
suitable combination of b2 to a4.  Monte Carlo 
simulations have been done to investigate the 
effectiveness of the method.  Firstly, the normal 
recursive least-squares error (RLSE) [2] and LAE 
estimation methods using fixed forgetting factor i.e. 
µ1=µ2=0.99, are compared.  fs=1/Ts=300 Hz, lf=3, 
κ=emin=0.01 are used.  The RLSE algorithm is similar 
to LAE algorithm but with kk φξ = .  Fig. 3 shows the 
parameter tracking performance of both estimators.  It 
can be seen that the LAE estimator tracks the changes in 
system parameters much more quickly.  Moreover, the 
estimate of λ using RLSE contains significant bias 
whereas the estimates of both f and λ using LAE 
estimator converge to true values. 
 For the LAE+VFF, µ1=0.80, µ2=0.99 have been 
used.  Fig. 4 shows that LAE+VFF estimator takes less 
than a second to reach the new value of f compared to 
the LAE estimator that takes longer time and Table 1 
shows that LAE+VFF estimator is superior to both 
RLSE and LAE. 
 Table 2 shows the effect of the choices of fs and lf 
values on the effectiveness of the LAE+VFF method.  
It is observed from Table 2 that proper choices of fs and 
lf are important for good estimation results, and the pair 

Lateral spring 

Lateral damper 

Actuator 



fs=300 Hz and lf=3 gives the best estimates because with 
these values, the frequency response of the LIF then lies 
exactly between the least stable (with f=5MN, λ=0.05) 
and the most stable (with f=10MN, λ=0.5) wheelset 
system’s frequency bands, as shown in Fig. 5. 

Fig. 3: RLSE versus LAE using fixed forgetting factor 

 

 
Fig. 4: LAE versus LAE+VFF 

 

Fig. 5: Frequency responses of the LIF and the wheelset 
system 

 
Table 1: Average estimation error (A.E.E) of RLSE, 

LAE & LAE+VFF estimators 

 RLSE LAE LAE+VFF 

f̂  13.7±1.2 % 7.8±0.8 % 5.58±1.0 % 

λ̂  32.5±2.5 % 15.7±1.3 % 9.72±1.4 % 

Table 2: Effects of different combinations of fs and lf  
on the estimates for LAE+VFF 

fs= 300 Hz lf= 3 

A.E.E (%) A.E.E (%) lf 

f̂  λ̂  

fs, 
Hz 

f̂  λ̂  

1 17.5±2.5 30.0±2.1 100 28.9±2.8 43.1±3.2 

3 5.5±1.0 9.7±1.4 300 5.5±1.0 9.7±1.4 

8 36.3±3.3 48.8±4.0 800 23.4±3.2 21.4±1.2 

 
6. Conclusions 

The LAE with fixed forgetting factor gives better 
parameter estimates compared to the RLSE, whereas the 
LAE+VFF offers even better estimation and tracking of 
system parameters that are subject to abrupt changes, 
provided that the fs and lf values are chosen accordingly.  
It has also been proven that the estimation error of the 
proposed LAE+VFF estimation algorithm is bounded. 
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Appendix 
Symbol Parameter Value 

l Half-gauge length 0.7 m 

ro Wheel radius 0.45 m 

Cl,  Lateral damping per wheelset 50 kNs/m 

Kl Lateral stiffness per wheelset 200 kN/m 

I Wheelset inertia 700 kg m
2
 

m Wheelset mass 1250 kg 

v Forward speed 83.3 m/s 




