

A FRAMEWORK FOR COMPONENT-BASED REUSE FOR AUTONOMOUS

MOBILE ROBOT SOFTWARE

DAYANG NORHAYATI ABANG JAWAWI

UNIVERSITI TEKNOLOGI MALAYSIA

A FRAMEWORK FOR COMPONENT-BASED REUSE FOR AUTONOMOUS

MOBILE ROBOT SOFTWARE

DAYANG NORHAYATI ABANG JAWAWI

A thesis submitted in fulfilment of the

 requirements for the award of the degree of

Doctor of Philosophy

Faculty of Computer Science and Information System

Universiti Teknologi Malaysia

DECEMBER 2006

 iii

Specially dedicated to my family

 iv

ACKNOWLEDGEMENTS

I wish to express my thanks and gratitude to my supervisor, Professor Dr.

Safaai Deris, for his guidance during course of this work.

I would like to acknowledge the Public Service Department of Malaysia and

Universiti Teknologi Malaysia for their financial support.

I would like to thanks the Mobile Robotics Research Group in Universiti

Teknologi Malaysia for their helps and support.

Finally, my special thanks to my parents for their love and care, my husband,

Rosbi Mamat, for his patience and love, and my kids, Munirah, Adibah, Ismael and

Muhammad for cheering me up at those difficult time.

 v

ABSTRACT

Applying software reuse to Embedded Real-Time (ERT) systems poses

significant challenges to industrial software processes due to the resource-

constrained and real-time requirements of the systems. Autonomous Mobile Robot

(AMR) system is a class of ERT systems, hence, inherits the challenge of applying

software reuse in general ERT systems. Furthermore, software reuse in AMR

systems is challenged by the diversities in terms of robot physical size and shape,

environmental interaction and implementation platform. Thus, it is foresee that

component-based reuse will be the suitable way to promote software reuse in AMR

systems with consideration to three AMR general requirements to be self-contained,

platform-independence and real-time predictable. In this thesis, a framework for

component-based reuse of AMR software has been developed to enable a systematic

reuse through component-based software engineering. The aim of the framework is

to outline the strategies for software reuse in software development of AMR

applications. The developed framework consists of four main elements: AMR

component-based analysis patterns, a modified component model, a component-

based timing analysis approach, and a component-oriented programming framework.

The results of implementing the framework in developing software for real AMR

show that the strategies and processes proposed in the framework can fulfill the three

AMR general requirements. To quantify the effectiveness of the reuse approach in

the developed framework, the component reusability and the amount of reuse were

measured using software metrics. The measurement results show high component

reusability on those interested components, and up to 74% of reuse rate was achieved

on real AMR tested. The implementation results and software reuse measurements

indicate that the developed framework promotes systematic reuse and reuse qualities.

 vi

ABSTRAK

Perlaksanaan guna-semula perisian dalam sistem terbenam masa-nyata (ERT)

merupakan cabaran penting kepada proses perisian di industri. Ini disebabkan oleh

sumber yang terhad dan keperluan masa-nyata sistem ERT. Sistem robot bergerak

berautonomi (AMR) mewarisi cabaran ini kerana ia adalah daripada kelas sistem

TMN. Cabaran ini ditambah pula dengan kepelbagaian dalam sistem robot dari segi

saiz, bentuk, interaksi dengan persekitaran dan pelantar perlaksanaan. Oleh itu,

guna-semula berasaskan-komponen dilihat sebagai satu cara yang sesuai untuk

menggalakkan guna-semula perisian dalam sistem ERT dengan mempertimbangkan

tiga keperluan umum AMR iaitu pemprosesan dalaman, ketidakbergantungan kepada

pelantar perlaksanaan, dan masa-nyata yang boleh diramal. Dalam tesis ini, satu

rangka kerja guna-semula berasaskan-komponen bagi perisian RBB telah

dibangunkan untuk membolehkan guna-semula yang sistematik melalui kejuruteraan

perisian berasaskan-komponen. Rangka kerja ini bertujuan untuk memberi panduan

dalam strategi guna-semula perisian dalam aplikasi RBB. Rangka kerja ini

mengandungi empat unsur utama: corak analisis berasaskan-komponen AMR, model

komponen yang diubah-suai, pendekatan analisis pemasaan berasaskan-komponen,

dan rangka kerja pengaturcaraan berorientasikan-komponen. Hasil perlaksanaan

rangka kerja ini dalam membangunkan perisian RBB menunjukkan strategi dan

proses yang dicadangkan dalam rangka kerja ini boleh memenuhi keperluan umum

RBB. Untuk menentukan keberkesanan pendekatan guna-semula pada rangka kerja

ini, pengukuran kebolehgunaan-semula komponen dan kadar guna-semula dibuat

dengan menggunakan metrik perisian. Hasil pengukuran menunjukkan kadar

kebolehgunaan-semula adalah tinggi pada komponen yang dikehendaki dan kadar

guna-semula mencapai sehingga 74% dalam RBB yang diuji. Hasil perlaksanaan

dan pengukuran guna-semula menunjukkan rangka kerja tersebut menggalakkan

guna-semula yang sistematik dan berkualiti.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

1 INTRODUCTION

1.1 Overview

1.2 Background of the Problem

1.2.1 Some Challenges in Embedded Real-Time

Software

1.2.2 Challenge in Autonomous Mobile Robot

Software

1.3 Statement of the Problem

1.4 Objectives

1.5 Scope of the Study

1.6 Thesis Outline

1

1

3

3

5

9

10

11

12

2 SOFTWARE REUSE AND COMPONENT-BASED

SOFTWARE ENGINEERING FOR AUTONOMOUS

MOBILE ROBOT SYSTEMS

2.1 Introduction

2.2 Software Reuse Strategies

2.2.1 Substance of Reuse and Product of Reuse

2.2.2 Technique of Reuse

2.2.3 Scope of Reuse

2.2.4 Mode of Reuse and Intention of Reuse

2.3 Software Reuse in Robotic Applications

2.3.1 Framework

2.3.2 Architecture

13

13

13

14

16

17

17

18

19

22

 viii

2.3.3 Software Patterns

2.3.4 Component-Oriented Programming

2.3.5 Component Reuse in Commercial Robotics

Product

2.3.6 Summary of Robotic Reuse Strategies

2.4 Component-based Software Engineering

2.4.1 Component Technology

2.4.2 Component Model for Resource-

Constrained Embedded Real-Time Systems

2.5 Software Patterns in Component Reuse

2.5.1 Pattern-Oriented Development

Methodology

2.6 Software Architecture in Component Reuse

2.7 Predictable Real-Time Software in Component-

Based Software Development

2.7.1 Real-Time Scheduling Theory as Analytical

Model

2.8 Discussion

2.9 Summary

25

27

28

29

30

31

33

35

37

39

40

41

44

47

3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Research Design

3.3 Research Processes

3.3.1 Determine Reusable Components

3.3.2 Evaluate and Enhance Embedded Real-

Time Component Model

3.3.3 Determine Timing Analysis Approach

3.3.4 Develop Framework for Component-Based

Reuse

3.4 The Software Engineering Research

3.5 Autonomous Mobile Robot Case Studies

3.5.1 IMR71848 Robot

48

48

49

50

50

52

53

53

55

56

58

 ix

3.5.2 APIBOT Robot

3.6 Summary

59

61

4 COMPONENT-BASED ANALYSIS PATTERN FOR

AUTONOMOUS MOBILE ROBOT SYSTEMS

4.1 Introduction

4.2 Analysis Pattern for Autonomous Mobile Robot

Software

4.2.1 Analysis Patterns Mining Process

4.2.2 Defining Analysis Pattern at Reactive Layer

4.2.3 Defining Component-Based Analysis

Patterns

4.3 Deployment of the Analysis Patterns in

Component-Based Development

4.3.1 The Mobile Robot Software Analysis

4.3.2 The Mobile Robot Software Early Design

4.4 Application of the Analysis Patterns for Pattern-

Based Reverse Engineering

4.4.1 Reverse to Class Phase

4.4.2 Reverse to Pattern Phase

4.4.3 Reverse to Pattern Interface Phase

4.5 Discussion

4.5 Summary

62

62

63

65

66

69

71

72

75

77

79

80

82

85

86

5 COMPONENT-MODEL SELECTION AND A

COMPONENT-ORIENTED PROGRAMMING

FRAMEWORK

5.1 Introduction

5.2 Methodology for Evaluating the PECOS and

ReFlex Component Models

5.3 Evaluation of ReFlex and PECOS Component

Models

5.3.1 Component Model

87

87

88

91

91

 x

5.3.2 Connection Model

5.3.3 Deployment Model

5.3.4 Summary of the Evaluation

5.4 Assessing of PECOS Component Model

5.4.1 Component Integration

5.4.2 Component Composition

5.4.3 Implementation

5.5 Modification of PECOS Component Model

5.5.1 Allowing Constant Connection to Input

Ports

5.5.2 Mapping of Component Behavior to Tasks

5.6 Component-Oriented Programming Framework

with PECOS

5.6.1 Component Engineering

5.6.2 Application Engineering

5.7 Implementation Results

5.8 Discussion

5.9 Summary

95

98

99

100

102

103

105

106

106

107

109

110

112

116

116

117

6 AN APPROACH FOR PREDICTABLE REAL-TIME

PERFORMANCE OF AUTONOMOUS MOBILE

ROBOT SOFTWARE

6.1 Introduction

6.2 Experiences from a Predictable Assembly of

Component

6.3 Temporal Modeling of Autonomous Mobile Robot

Software

6.3.1 Temporal Properties in Analysis Models

6.3.2 Temporal Properties in Design Models

6.4 An Approach for Prediction of Robot Behaviors

from Components Assembly

6.4.1 Utilization Feasibility Analysis

6.4.2 Exact Feasibility Analysis

118

118

119

121

122

126

128

129

130

 xi

6.5 Experimental Results

6.5.1 Utilization Feasibility Analysis

6.5.2 Exact Feasibility Analysis

6.6 Discussion

6.7 Summary

131

132

134

136

137

7 A FRAMEWORK FOR COMPONENT-BASED

REUSE

7.1 Introduction

7.2 A Framework for Software Reuse

7.3 Transforming POAD Pattern-oriented Models to

PECOS Component-based Models

7.3.1 The Enhanced POAD Construct

7.3.2 The Modified PECOS Component Model

7.3.3 Mapping POAD to PECOS Model

7.4 Application of the Framework

7.4.1 Analysis Phase

7.4.2 Early Design Phase

7.4.3 Detailed Design Phase

7.4.4 Implementation Phase

7.5 Discussion

7.6 Summary

138

138

139

141

141

145

147

149

150

153

157

160

161

162

8 MEASUREMENT OF SOFTWARE REUSE AND

RESULTS ON THE DEVELOPED FRAMEWORK

8.1 Introduction

8.2 Measurement of Software Reuse through Metrics

8.3 Measuring Component Reusability

8.4 Measuring Component Amount of Reuse

8.4.1 Platform Independent Components

8.4.2 Platform-Independence Components with

Platform-Dependence Modules

8.5 Discussion

163

163

163

165

169

172

174

175

 xii

8.6 Summary

176

9 CONCLUSION

9.1 Summary

9.2 Research Conclusion

9.3 Research Contribution

9.4 Future Works

177

177

180

182

183

 REFERENCES

APPENDICES A-C

185

197

 xiii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Summary on two previous evaluations on ERT

component model

35

2.2 PECT technology for different prediction

activities

 41

3.1 Summary of the research process 54

3.2 Research strategies for this research in Shaw’s

model

 55

4.1 Summary of purpose for each pattern 67

4.2 Number of components from the pattern used in

both software

 85

5.1 Evaluation summary 100

5.2 The result of PECOS component mapping for the

AMR system

 104

5.4 Performance and price of the short listed RTK. 108

6.1 The AMR threads and their timing properties 126

6.2 The mapping between UML-RT and PECOS

model elements

 127

6.3 Various setting for Ta and Tb 132

6.4 Intersection point of Ta group when u1 and u2 133

6.5 MobileRobot’s temporal properties 134

6.6 The timing results 135

7.1 General mapping of POAD and PECOS model

elements

 147

7.2 The APIBOT threads and their timing properties 157

7.3 The timing properties for APIBOT components 159

 xiv

8.1 Washizaki’s metrics applied on the AMR

component-based analysis pattern

 168

8.2 The AMR systems processor platform and size 170

8.3 The AMR systems sensors and actuators 170

8.4 APIBOT LOC by components 171

 xv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Examples of embedded systems 3

2.1 VRF limiting the effects of diversity 19

2.2 Component-based framework for AMR 20

2.3 CLARAty architecture 23

2.4 LAAS architecture 24

2.5 The STESCA pattern overview 26

2.6 Software architecture of the pattern-oriented

framework

 26

2.7 PBO component model 27

2.8 Two main activities in CBSE 31

2.9 Relations between basic concepts of component

technology

 32

3.1 Overview of the research processes in

developing the framework

 51

3.2 The IMR71848 robot 58

3.3 Block Diagram of the IMR71848 robot

controller

 59

3.4 The APIBOT robot 60

3.5 Block Diagram of the APIBOT 60

4.1 Analysis patterns in the software development

process

 64

4.2 Behavior-based robotic control 67

4.3 Analysis pattern for reactive layer 68

4.4 Behavior-based control pattern catalogue 70

4.5 The AMR use case diagram 73

 xvi

4.6 Analyzed subsystems and AMR patterns

matching

 74

4.7 Pattern-level diagram for the AMR software 75

4.8 Pattern-level with interface diagram for AMR

intelligence behavior

 76

4.9 Detailed internal classes representation of the

AMR for intelligence behavior

 76

4.10 Pattern-level with control interface diagram for

intelligence behavior

 77

4.11 Fire Marshal Bill class diagram 79

4.12 The Arbitration and Motor packages 81

4.13 Pattern Level diagram for Fire Marshal Bill

mobile robot

 81

4.14 Pattern-Level with Functional Interface diagram

for the AMR

 83

4.15 Pattern-Level with Control nterface diagram for

the intelligent mobile robot

 83

5.1 Behavior Layers in AMR software 89

5.2 Components assembly for the AMR case study 90

5.3 The ReFlex component model 92

5.4 The PECOS component model 93

5.5 Definitions of ports and interfaces using ART-

ML for PI component

 94

5.6 PI task and PI component using ART-ML in

ReFlex

 94

5.7 PI component definition using PECOS

diagrammatical expression

 94

5.8 PI component definition using PECOS CoCo

language

 95

5.9 Component instances and components’

connection using ART-ML

 96

5.10 Example of components assembled for motor

speed control subsystem in PECOS

 97

 xvii

5.11 MSC component definition using PECOS CoCo

language

 97

5.12 Petri net of motor speed control subsystem 97

5.13 Components integration using PECOS model 102

5.14 Hierarchical view of the AMR components 103

5.15 Components integration of an AMR application

case study

 107

5.16 Hardware and RTOS abstraction layers of the

proposed COP framework

 110

5.17 A PID component documented in block form 111

5.18 MotorControl composite component 112

5.19 Code template for MotorControl composite

component

 112

5.20 The code skeleton for MobileRobot component

task execution

 113

6.1 The predictable assembly of components

approach based on PECT

 119

6.2 The AMR behavior layer architecture 120

6.3 Relationship between the capsules in the AMR

system

 123

6.4 UML-RT structure model of the AMR system 123

6.5 Sequence diagram representing message

sequences between the capsules

 123

6.6 Protocol used to connect ports between Switches

and Stop capsules

 127

6.7 Components composition of the AMR using

PECOS model

 128

6.8 Solution for number of maximum Nb for the

case-study AMR in terms of utilization U and

100% for nine various setting of Ta and Tb

 133

6.9 MobileRobot’s task schedule 135

7.1 The Framework overview 140

7.2 Overview of POAD Metamodel 142

 xviii

7.3 An application engineering activities based on

the framework

 150

7.4 The APIBOT use case diagram 151

7.5 Pattern-level diagram for the APIBOT software 152

7.6 Pattern-level diagram with interface for the

APIBOT software

 153

7.7 The APIBOT classes in pattern component

group

 154

7.8 Pattern-level diagram with control interface for

the APIBOT software

 154

7.9 Relationship between capsules 155

7.10 Structure model of the APIBOT system 156

7.11 State machine to define Avoid behavior of the

APIBOT system

 156

7.12 APIBOT component integration using PECOS

model

 158

7.13 The APIBOT composition based in design

components artifact

 158

8.1 Actuator pattern component 168

8.2 Reuse on APIBOT system 171

8.3 Components and modules in APIBOT software

composition

 172

8.4 APIBOT platform-independence software 173

8.5 Percentage of components in each APIBOT

component groups

 174

8.6 APIBOT platform-independence with platform

dependent software

 175

8.7 Percentage reuse of components in each

APIBOT component group with platform-

dependence component

 175

 xix

LIST OF ABBREVIATIONS

ERT - Embedded Real-Time

AMR - Autonomous Mobile Robot

ART-ML - Architecture and Real-Time behavior Modeling Language

BBC - Behavior-Based Control

CBD - Component-Based software Development

CBSE - Component-Based Software Engineering

CCM - CORBA Component Model

CLARAty - Coupled Layered Architecture for Robotic Autonomy

CoCo - Component Composition

COM - Component Object Model

CoolBOT - Component-Oriented Programming Framework for Robotics

COP - Component-Oriented programming

CORBA - Common Object Request Broker Architecture

COTS - Commercial off-the-shelf

DC - Direct-Current

DCOM - Distributed Component Object Model

DX - Data Exchange

EDF - Earliest Deadline First

EJB - Enterprise JavaBeans

FBD - Function Block Diagram

HAL - Hardware Abstraction Layer

HLRC - High Level Robot Control

HRI - Human-Robot Interface

IDL - Interface Definition Language

IR - Infra-Red

JVM - Java Virtual Machine

 xx

LCD - Liquid Crystal Display

LOC - Line Of Code

NiMH - Nickel-Metal Hydride

OO - Object-Oriented

OPEN-R - open architecture

OROCOS - Robot Control Software

OSCAR - Operating System for the Control of Autonomous Robots

PBO - Port-based Object

PD - Proportional-Derivative

PDMA - Pattern-Driven Modeling and Analysis

PECOS - PErvasive COmponent Systems

PECT - Predictable Enable Component Technology

PID - Proportional-Integral-Derivative

POAD - Pattern-Oriented Analysis and Design

PWM - Pulse-Width Modulation

QoS - Quality of Services

RCC - Rate of Component Customizability

RCO - Rate of Component Observability

ReFlex - Flexible real-time component model

rHAL - robotic Hardware Abstraction Layer

RMA - Rate Monotonic Algorithm

ROPES - Rapid Object-Oriented processing for Embedded Systems

RTE - RunTime Environment

RTEMS - Real Time Executive for Multiprocessor Systems

RTK - Real-Time Kernel

RTOS - Real-Time Operating System

RWI - Real World Interface

SEI - Software Engineering Institute

STESCA - Strategic-Tactical-Execution Software Control Architecture

UML - Unified Modeling Language

UML-RT - Unified Modeling Language for Real-Time

UTM - Universiti Teknologi Malaysia

VLSI - Very Large-Scale Integrated

 xxi

VRF - Virtual Robot Framework

WCET - Worst-Case Execution Times

XML - eXtensible Markup Language

 xxii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Autonomous Mobile Robot Component-Based

Analysis Pattern

 197

B Autonomous Mobile Robot Design Components 202

C Paper Published from This Thesis Work 206

CHAPTER 1

INTRODUCTION

1.1 Overview

The trend of software system development is changing from traditional

software development approach, which focuses on building software systems from

scratch to extension and integration with preexisting systems software development

approach (Finkelstein and Kramer, 2000). This is due to the rapid changes in

modern software requirements, which make the software becoming large, complex

and highly unmaintainable. The increment in the scale and the complexity of

software may lead to problems such as failure of software projects to meet their

deadline, budget, quality requirements and the continual increase of the costs

associated with software maintenance.

The same phenomenon is faced by Embedded Real-Time (ERT) systems due

to the need for more sophisticated products. The machines and equipment controlled

by ERT systems have becoming more sophisticated and intelligent, often

incorporating many functions in one product. As ERT products increasingly adopt

digital technology, the use of advanced microprocessors enable more processing to

be implemented in software, making the development of software for ERT systems

more important. Also, the shift from full hardware implementation of ERT systems

to mixed software and hardware implementation makes the software developer jobs

more challenging. A common characteristic of all ERT systems now is increasing

demand on software. For example, currently the software development costs for

2

industrial robots is about 75% of total costs, while in car industry is about 30% of

total costs (Crnkovic, 2004). Ten to fifteen years ago this number was about 25% for

industrial robots and insignificant for cars.

Implementing every system from scratch does not guarantee the productivity

and quality of the software systems. Software reuse has been promoted as a

promising approach to improve quality and productivity. Software reuse is the use of

existing software or software knowledge to construct new software (Frakes and

Kang, 2005). Software reuse has been practiced and studied for a long time, and a

broad reuse classification and approaches have been proposed in the area (Prieto-

Diaz, 1993; Frakes and Kang, 2005). Despite the variety approaches and strategies,

systematic reuse and component-based reuse are among the promising ways to

improve software development efficiency and quality (Prieto-Diaz, 1993; Jacobson

et al., 1997; Rothenberger et al., 2003; Ravichandran, and Marcus, 2003).

The commitment to quality is the focus of any engineering approach and in

software engineering, integration of process, methods and tools for the development

of quality software is also the practice (Pressman, 2005). Component-Based

Software Engineering (CBSE) is a sub-discipline of software engineering, which

share same strengths and weaknesses of software engineering. The general purpose

of CBSE is to decrease development time and costs by creating application from

reusable, easily connectable and exchangeable components. The systematic reuse

can benefit from CBSE discipline by considering software component technology

(Bachmann, et al., 2000) in tools, methods and processes for development of

systematic reuse framework. The component-based reuse refers to bottom-up

development or compositional reuse approach using reusable asset components.

CBSE solutions also receive increasing attentions in ensuring the success of

ERT products (Müller et al., 2001; Crnkovic, 2004; Rastofer and Bellosa, 2001). In

ERT software development, CBSE offers advantages such as software reuse,

improved maintainability, and ability to easily fine-tune a real-time application’s

timing properties. The rapidly changing market makes investment in CBSE for ERT

systems not only viable but also essential. Encapsulated domain expertise is another

characteristic of ERT systems that motivates the use of CBSE. Even small programs

3

in ERT systems may contain highly sophisticated algorithms, require a deep

understanding in the domain and support technologies, such as the signal processing.

The reuse of the domain specialized software knowledge can reduce the software

development curve.

1.2 Background of the Problem

1.2.1 Some Challenges in Embedded Real-Time Software

Embedded system is a system, which contains microcomputer as a

component to perform some of the requirements of that system, but the user does not

see the system as a computer. Most embedded systems are real-time systems. In

real-time systems timing correctness is critically important in majority of these

systems as failure to meet the timing requirement can result in system malfunction or

disaster. ERT systems cover a broad range of applications ranging from small–scale

microwave ovens and watches to telecommunication network management and

mission critical military control systems; some examples of embedded systems are

given in Figure 1.1.

EMBEDDED SYSTEMStransportation

home appliances

advanced
equipment

communication
equipment

office equipment

Figure 1.1: Examples of embedded systems

4

Due to the diversified nature of the ERT systems domain, as can be seen in

Figure 1.1, the requirement placed on the software of ERT systems will be different

from one application to another application. For example, the software requirements

for consumer products, telecom switches, and avionics are quite different. The

diversified nature of the ERT systems is also a reason why the software development

support tools for ERT systems are much more primitive compare to the data

processing domain. Tools vendors will not make much profit in a diversified ERT

markets with scattered platforms and different software requirements compared to

data processing market running on a uniform platform such as Windows.

In many ERT systems, requirement on low product cost is paramount. The

customers are very cost sensitive, thus the developer of the hardware rarely takes the

extra cost to extend the hardware resources, since the margin of profit on electronics

development usually is low. Therefore the hardware is designed just enough for

anticipated use but not more. Consequently, many ERT systems are resource

constrained to lower the production cost and thereby increase profit. The resources

here refer to power, memory consumption, computation (CPU) power, execution

(CPU) time communication bandwidth etc. In their work on component technologies

for Volvo vehicular industry, Möller et al. (2004) stated that resource-constrained is

an important industrial requirement for automotive industries. Strong requirements

for low and controlled consumption of these resource constraints create new

challenges for software development in ERT systems. Coupled with the timing

constraints in ERT systems, resource-constrained and timing constraints have

becoming extra-functional properties which need to be addressed in the software

development for many ERT systems. Many works (Ota, 2006; Hanninen and Maki-

Turja, 2004; Malek et al. 2005; Cnrkovic, 2004; Nierstrasz, 2002; Hammer and

Chaudron, 2001; Ommering et al. 2000) have been conducted to address the

resource-constrained issue in the software development of ERT systems.

Applying component-based reuse to general ERT systems poses significant

challenges to industrial software processes due to the resource-constrained and real-

time requirements of the systems (Crnkovic, 2004; Rastofer and Bellosa, 2001;

Hammer and Chaudron, 2001). State-of-the-art of component-based reuse solutions

such as OMG’s CORBA Component Model (CCM), Microsoft’s Component Object

5

Model (COM+) or Distributed COM (DCOM) family, and SUN Microsystems’

JavaBeans and Enterprise JavaBeans (EJB) are generally complex, require large

resources such as memory and computation power, and are platform dependent for

ERT component-based development (Lüders, 2003; Rastofer and Bellosa, 2001).

Furthermore, they do not address the non-functional properties such as how much

memory it consumes and timing constraints which are important in ERT systems.

Consequently, a number of component technologies such as Port-based Object

(PBO) (Stewart et al., 1997), Koala (Ommering et al., 2000), PErvasive COmponent

Systems (PECOS) (Nierstrasz et al., 2002) and ReFlex (Wall, 2003) have been

developed to address requirements of ERT software. All these ERT component

models have their own unique strengths to support their nature of ERT problem

domain.

1.2.2 Challenges in Autonomous Mobile Robot Software

Autonomous Mobile Robot (AMR) system is a class of ERT system with

many possible applications and markets. An AMR is an autonomous system capable

of traversing a terrain, performs its designated tasks, senses its environment and

intelligently reacts to it. The technologies involve in the AMR system served as the

basis for commercial mobile personal robots and service robots. Personal robot is

used to educate, entertain or assist in the home includes for example the Lego’s

Mindstorms, Sony’s Aibo robot dog and Hasbro’s Fur Real Friends robot that assists

the disabled and elderly in the home. Service robots assist humans, service

equipment and perform other autonomous functions in almost every industry and

military applications such as unmanned ground vehicles. According to the United

Nations Economic Commission and International Federation of Robotics (Kara,

2005), the personal and service robotics market roughly double between 2002 and

2005, reaching USD5.2 billion in 2005; and the number of personal and service

robots sold increase ten folds between 2002 and 2005. Sales for domestic robots

(vacuum cleaning, lawn mowing, window cleaning and other types) is expected to

reach over 800,000 units, while sales for toy and entertainment robots will exceed

one million units. As occurred in the general ERT systems, growth and competition

6

in the markets will force the mobile robots manufacturers to reduce the cost while at

the same time try to satisfy more functionalities demands from users. This in return

will increase the reliance on software.

AMR systems share similar requirements with ERT systems, hence inherit

the challenge in applying software reuse for general ERT systems. As the complexity

and functionality of the AMR is increased, such as adding more sensors to the robot

so as to increase its reactivity and intelligence, designing and developing software for

this type of robot can be very difficult and a challenging task. As, AMR systems and

software are becoming more and more complex (Mallet et al, 2002), the need of

highly modular software design is desirable (Seward and Garman, 1996; Messina et

al., 1999; Oreback and Christensen, 2003). On top of this, software development in

AMR systems is challenged by the diversities in terms of robot designated tasks,

robot physical size and shape, environmental interaction and implementation

platform such as real-time operating systems, hardware and communication protocol.

Furthermore, to develop AMR software involves multi-disciplines of expert

knowledge which include embedded systems, real-time software, mechanics, control

theories and artificial intelligence aspects. Thus, it is envision that component-based

reuse will be the suitable way to capture software models in this multi-disciplines

domain in order to allow reuse across applications, particularly at the early stage of

software development process. Reuse of early life-cycle of ERT systems is more

effective and it allows engineering teams to tailor reused components and designs to

fit their needs (Leveson and Weiss, 2004).

Most robot researchers are specialized in one of the area. Few robotics

research groups have the resources to build, from scratch, every component of their

robot. Nevertheless, a complete system is needed to prove any work in a special

field. Consequently, the majority of current mobile robot research platforms in use

today could not operate in a fully self-contained mode since they rely on an off-board

infrastructure, using AMR as ‘sensors with wheels’ only (Brega et al., 2000; Pont

and Siegwart, 2005). This is understandable as many researchers try to avoid

software implementation complexity in the embedded environment. However, as

argued by Brega et al. (2000) and Pont and Siegwart (2005), this off-board

processing approach is not acceptable for many applications where operating

7

environment size, economical aspects and safety issues do not allow off-board

computing. They further emphasized that real-world AMR must be self-contained

and able to meet timing constraints. Autonomy with respect to perception, energy

and processing for fully self-contained autonomous decision-making is not an option

but should be addressed in its full complexity already as a research topic. When on-

board or embedded computation is required AMR software development is typically

confronted with limited resources such as computing power and memory. Hence,

meeting timing constraints becomes a problem which is present but only hidden

when using off-board processing (Brega et al., 2000). Resource-constrained are

especially relevant for self-contained AMR systems. Limited computing power is a

typical complexity need to be confronted by on-board computation of AMR systems.

With the limited computing power, a precise observation of the timing constraints of

the AMR systems is a necessary to make complex robot systems more reliable. Most

important, a predictable real-time performance on a robotic system is a necessary

condition for guaranteeing a stable behavior of the robot (Buttazzo, 1996).

A component-based reuse solution would help in the following aspects of

AMR software development (Oreback and Christensen, 2003):

i. exchange of software parts or components between robotics labs, allowing

specialists to focus on their particular field,

ii. comparison of different solutions would be possible from the available

components,

iii. startup in robot research can be accelerated using the available components, and

iv. speed up the transfer of research labs works in mobile robot to commercial

business application.

Some of the results from component-based reuse works are hard to reuse

because the solution is not coherent and simple to be used by the mechatronics and

robotics engineers and researchers which are not from software engineering or

computer science background (Oreback, 2004). In order to be widely accepted by

robotic community, a solution for coping with systems complexity problem and

software reuse for AMR should at least fulfill the following requirements (Pont and

Siegwart, 2005):

8

i. Embeddable and self-contained. Typically, the AMR software or firmware is

embedded in the on-board controller. A self-contained AMR system requires

on-board computation and the system is typically constrained by limited

processing power and memories.

ii. Modular or component-based software. Component modularity is to provide

artifact to be reused that contain domain knowledge from different disciplines.

iii. Portable across different platform. Platform-independent where the

component implementation does not depends on hardware, Real-Time Operating

System (RTOS) or communications protocol.

iv. Predictable real-time performance. The abilities to predict and analyze timing

are key requirements for AMR system. The reliability and reactivity of the robot

behavior depend on how the robot responses to the dynamic environment events

by executing a set of concurrent tasks with its timing requirements.

One of the major problem in AMR software reuse is lacking of framework

that enable the domain experts to document their knowledge and plug their work in a

reusable artifact and a systematic reuse process for the application robotic engineer

to develop their AMR software from the reuse artifacts (Oreback, 2004; Domínguez-

Brito et al., 2004). Based on the literature review conducted so far, most of the

existing frameworks do not address in parallel the three issues: self-contained,

platform-independent and real-time predictable, for resource-constrained AMR

systems in their reuse framework.

Portability of AMR components across different hardware, RTOS and

communications platform is important to enable software reuse in AMR software.

This can be done by minimizing the dependencies of the components with the

platforms. The set of hardware component types for a robot composition is

extensive. For example the input that a robot receives can be derived from a wide

variety of sensors (infrared sensor, sonar sensor, video camera etc.) and each kind of

sensors there are typically many variations.

According to Frakes and Kang (2005) there are nine active research areas

under software reuse category. They are: business and finance; measurement and

experimentation; componentry; domain engineering; programming languages;

9

libraries; architectures; generative methods; and reliability and safety. From these

nine areas, three research areas were identified to be important in developing a

framework for AMR component-based reuse, i.e. componentry, domain engineering

and reliability. Componentry concerns with CBSE technologies to provide important

platform or framework on which reusable AMR components can be developed and

applications can be created by integrating the components. Domain engineering

enables building of AMR system variants repeatedly within the same domain. The

ability to predict the reliability of the integrated AMR components through timing

performance analysis is one of key success of software reuse in AMR software. The

research problems in these three software reuse research areas need to be solved

before the AMR framework can be developed.

1.3 Statement of the Problem

In order to develop the component-based reuse framework for AMR domain

there are numbers of software reuse research problems need to be solved in the three

research areas: componentry, domain engineering and reliability, as identified above.

The research problems need to be answered in determining how to support robotics

programmers and engineers in creating reusable artifacts, and in the application of

the reuse artifact. The problems to be solved are:

i. What should be made reusable in AMR software?

ii. What are the methods to specify reuse components and how to use the reuse

components in developing AMR software?

iii. How to predict the reliability of AMR component composition?

Applying component-based reuse to ERT mobile systems poses a significant

challenge due to the resource-constrained and real-time requirements of ERT

systems and the degree of diversity in AMR systems. The existing works on

component-based reuse have not addressed both ERT and AMR requirements

concurrently, and proposed solution frequently hard to be used by the domain

experts. To obtain an acceptable component-based reuse solution for ERT mobile

10

robot systems the solution must have a systematic reuse framework to enable the

robotic engineers to plug their work in the framework with consideration to the three

basic requirements: self-contained, platform-independent and real-time predictable

AMR systems. Thus, the research goal is:

To develop a framework for component-based systematic reuse of autonomous

mobile robots (AMR) software which emphasized on requirements to be self-

contained, platform-independent and real-time predictable.

Software framework is a general word whose meaning depends heavily on

the context in software engineering discipline. There are different types of

frameworks in various software discipline literature which include conceptual

framework (Schneider, 1999), architecture framework (Zachman, 1987), application

framework (Fayad and Schmidt, 1997), development framework (Bass et al., 1994)

and component framework (Bachmann et al., 2000). The development framework as

proposed by Bass et al. (1994) work is suitable to support systematic reuse in AMR

CBSE since the development framework translates application-specific system

specifications using methods that familiar to developers and optimal for the

application. The development framework can be used to emphasize the optimization

of the three AMR requirements: self-contained, platform-independent and real-time

predictable. The framework covers at least three phases of software development:

specification, design and implementation and the framework highlights the software

techniques, strategies and tools in order to achieve the optimizations aimed in using

the framework.

1.4 Objectives

The main objectives of this research work reported in this thesis are:

1. To determine the reusable components of AMR software and framework

to document them.

11

2. To assess and evaluate the applicability of the existing ERT component

models and their implementation frameworks for the use in AMR

software development.

3. To determine how existing real-time theories can be used for predicting

timing performance of an AMR components composition.

4. To develop a CBSE framework that consists of AMR reuse artifacts,

ERT component model and timing analysis approach.

5. To experimentally evaluate effectiveness of the proposed framework on

some real existing AMR systems, and to measure some of the reuse

qualities produce by the framework.

1.5 Scope of the Study

The scope of this research will be limited to the following:

• This research focuses on resource-constrained AMR applications.

• The AMR reusable asset documented in this thesis is assumed to be a

starting set of reuse components. These components will continue to

evolve as the domain expert from academia and industry involve in the

assets development.

• The modeling of the reuse components will only consider structural

modeling and real-time behavior modeling in order to illustrate the

component-level modeling.

• The implementations on the existing AMR systems in this work are aimed

to prove experimentally the proposed framework and the applicability of

the elements in the framework.

• This research is focusing in reactive layer of hybrid model, since; software

at reactive layer is typically constrained by limited resources and real-time

12

requirements.

1.6 Thesis Outline

Chapter 2 discusses strategies and challenges in software reuse and CBSE in

ERT generally and AMR specifically. The state-of-the-art of software reuse and

CBSE in AMR software is reviewed in Chapter 2.

In Chapter 3, the research methodology conducted in achieving the objectives

of this research is presented. Specifications two real AMR systems which were used

in case studies, implementation of embedded software and verifications of techniques

proposed are described in this chapter.

The three main elements supporting the developed component-based reuse

framework in this thesis are described in details in Chapter 4 through 6. Chapter 4

describes the component-based AMR analysis patterns. The evaluation of a

component model and the extension to the component model to support the required

AMR software development environment are discussed in Chapter 5. In Chapter 6 a

detailed timing analysis based on component-based reuse for AMR timing prediction

at design phase is proposed.

The integration of the elements proposed in Chapter 4 through 6 to form the

developed CBSE framework will be discussed in detail in Chapter 7. The

application of the framework to develop AMR software will be illustrated in Chapter

7. To validate some of the reuse qualities resulting from the proposed framework,

measurement of reusability and amount of reuse qualities were conducted on the

developed software. The validation process and results are discussed in Chapter 8.

Finally in Chapter 9, the conclusions and some suggestions for future work are given.

REFERENCES

Åkerholm, M. and Fredriksson, J. (2004). A Sample of Component Technologies for

Embedded Systems. Mälardalen Research and Technology Centre (MRTC),

Mälardalen University: Technical Report.

Alami, R., Chatila, R., Fleury, S., Ghallab, M. and Ingrand, F. (1998). Architecture

for Autonomy. Journal of Robotics Research. 17(4): 315-337.

Amin S. H. M., Mamat R., Khessal N. O. and Rudas I. J. (1999) Intelligent

Behaviour-Based Climbing-Robot. Proceeding of IEEE International

Conference on Intelligent Engineering System 1999 (INES’99). November 1999.

Slovak Republic. 78-92.

Amnell, T., E. Fersman, L. Mokrushin, P. Pettersson, and Yi, W. (2003). TIMES: a

Tool for Schedulability Analysis and Code Generation of Real-Time Systems. in

Proceedings of the 1st International Workshop on Formal Modeling and

Analysis of Timed Systems FORMATS 2003. September 6-7. Marseille,

France:IEEE, 60-72.

Audsley, N., Burns, A., Richardson, M., Tindell, K. and Wellings, A. (1993).

Applying New Scheduling Theory to Static Priority Pre-emptive Scheduling.

Software Engineering Journal. 8(5): 284-292.

Bachmann, F., Bass, L., Buhman, S., Comella-Dorda L. S., Seacord, R. C. and

Wallnau, K. C. (2000). Technical Concept of Component-Based Software

Engineering. Software Engineering Institute, Carnegie Mellon University:

Technical Report CMU/SEI-2000-TR-008.

Bass, J. M., Browne, A. R., Hajji, M. S., Marriott, D. G., Croll, P. R. and Fleming, P.

J. (1994). Automating the Development of Distributed Control Software. IEEE

Parallel and Distributed Technology. 9-19.

 186

Bass, L., Clements, P. and Kazman, R. (1998). Software Architecture in Practice,

Reading: Addison-Wesley.

Blum, S. (2001). Towards a Component-based System Architecture for Autonomous

Mobile Robots. Proceedings of IASTED International Conference Robotics and

Applications (RA’01). November 19-22. Tampa, Florida, 220-225.

Bouyssounouse, B. and Sifakis, J. (2005). Embedded Systems Design: The ARTIST

Roadmap for Research and Development. In: Bouyssounouse, B. and Sifakis, J.

Lecture Notes in Computer Science. Volume 3436/2005, Berlin,

Heidelberg:Springer-Verlag GmbH. 160-194.

Braunl, T. (2003). Embedded Robotics: Mobile Robot Design and Applications with

Embedded Systems. New York: Springer-Verlag.

Brega, R., Tomatis, N. and Arras, K.O. (2000). The Need for Autonomy and Real-

Time in Mobile Robotics: A Case Study of XO/2 and Pygmalion. Proceedings

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

2000), Volume 2. October 30- November 5. Takamatsu, Japan:IEEE, 1422 –

1427.

Brooks, A., Kaupp, T., Makarenko, A., Orebäck, A. and Williams, S. (2005)

Towards Component-Based Robotics. IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2005). August 2-6. Edmonton, Alberta:

IEEE, 163 – 168.

Brooks, R.A. (1986). A Robust Layered Control System for a Mobile Robot, IEEE

Journal of Robotics and Automation. RA-2(1): 14-23.

Brown, A.W. and Wallnau, K.C. (1998). The Current State of Component Based

Software Engineering. IEEE Software. 15(5): 37 –46.

Bruyninckx, H. (2001). Open Robot Control Software: the OROCOS Project.

Proceedings IEEE International Conference on Robotics and Automation

(ICRA) 2001, Volume 3. May 21-26. Seoul, Korea: IEEE, 2523 – 2528.

Buschmann, F, Meunier, R., Rohnert, H. Sommerlad, P. and Stal, M. (1996).

Pattern-Oriented Software Architecture A System of Pattern. England: John

Wiley and Sons.

Buttazzo, G. C. (1996). Real-time Issues in Advanced Robotics Applications.

Proceedings of the 8th IEEE Euromicro Workshop on Real-time Systems. June

1996. L’Aquila, Italy:IEEE, 133-138.

 187

Buttazzo, G. C. (2005). Rate Monotonic vs. EDF: Judgment Day. Real-Time

Systems Journal, 29: 5–26.

Cheesman, J. and Daniels, J. (2001). UML Components. Boston: Addison-Wesley.

Chikofsky, E. J. and Cross II, J. H. (1990). Reverse Engineering and Design

Recovery: A Taxonomy. IEEE Software, 7(1), 13-17.

Coad, P., North, D. and Mayfield, M. (1997). Object Models: Strategies, Patterns,

and Applications, New Jersey: Yourdon Press.

Creps, R. E. (1992). The STARS Conceptual Framework for Reuse Processes.

Software Engineering Notes for The Fifth Annual Workshop on Institutionalizing

Software Reuse (WlSB’92). 18(2): 74-85.

Crnkovic, I. (2004). Component-based Approach for Embedded Systems,

Proceedings of the Ninth International Workshop on Component-oriented

Programming, Session 4 – Application of CBSE. June 14–18. Oslo, Norway.

Crnkovic, I., and Larsson, M. (2002). Building Reliable Component-based Software

Systems. Norwood: Artech House, 2002.

Crnkovic, I., Hnich, B. Jonsson, T. and Kiziltan, Z. (2002). Specification,

Implementation, and Deployment of COMPONENTS. Communication of the

ACM. 45(10): 35-40.

 Cybulski, J. L., Neal, R. D., Kram, A. and Allen J. C. (1998). Reuse of Early Life-

Cycle Artifacts: Workproducts, Methods and Tools. Annals of Software

Engineering. 5: 227–251.

Domínguez-Brito, A. C. (2003). CoolBOT: a Component-Oriented Programming

Framework for Robotics. Univiversity de Las Palmas de Gran Canaria: Ph.D.

Thesis.

Dominguez-Brito, A.C., Hernandez-Sosa, D., Isern-Gonzalez, J., and Cabrera-

Gamez, J. (2004). Component software in robotics. Proceedings of the 2nd

International IEEE Conference Intelligent Systems 2004, Volume 2. 22-24 June

2004. Varna, Bulgaria: IEEE, 560 – 565.

Douglass, B. P. (2002). Real-Time Design Patterns: Robust Scalable Architecture for

Real-Time Systems. Boston: Addison Wesley.

Douglass, B. P. (2004). Real-Time UML. Boston: Addison Wesley. 2004.

Fenton, N. E. and Pfleeger, S.L. (1997). Software Metrics: A Rigorous and Practical

Approach. 2nd Edition. Boston, Mass: PWS.

 188

Fernandez, J.A. and Gonzalez, J. (1998). NEXUS: a flexible, efficient and robust

framework for integrating software components of a robotic system,

Proceedings of the IEEE International Conference on Robotics and Automation,

Volume 1. May 16-20. Leuven, Belgium:IEEE, 524 – 529.

Finkelstein, A. and Kramer, J. (2000) Software Engineering: A Roadmap.

Proceedings of the conference on The future of Software Engineering. May

2000. Limerick, Ireland:ACM, 5-22.

Fire Marshall Bill (2004). at www.dragonflyhollow.org/matt/robots/firemarshallbill/

available August 2004.

Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Boston: Addison-

Wesley.

Frakes, W. B., and Kang, K. (2005). Software Reuse Research: Status and Future.

IEEE Transaction On Software Engineering. 31(7): 529-536.

Frakes, W., and Terry C. (1996). Software Reuse: Metrics and Models. ACM

Computing Surveys (CSUR). 28(2): 415 – 435.

Frakes, W.B. and Isoda, S. (1994). Success factors of systematic reuse. IEEE

Software. 11(5):14 – 19.

Fujita, M. and Kageyama, K. (1997). An Open Architecture for Robot

Entertainment. Proceedings of the First International Conference on

Autonomous Agents, February 5-8. Marina Del Rey, USA:ACM, 435-442.

Gamma, J., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns:

Elements of Reuse Object-Oriented Software. Reading: Addison-Wesley.

Genssler, T. Christoph., A., Schulz B, Winter, M., Stich, C. M., Zeidler C., Muller,

P., Stelter, A., Nierstrasz, O., Ducasse, S., Arevalo, G., Wuyts, R., Liang, P.,

Schonhage, B., van den Born, R. (2002). PECOS in a Nutshell. PECOS Project:

Technical Handbook.

George, R. and Kanayama, Y. (1996). A Rate-Monotonic Scheduler for Real-time

Control of Autonomous Robots. Proceeding of the 1996 IEEE International

Conference on Robotics and Automation. April 22-28. Minneapolis,

Minnesota:IEEE, 2804-2809.

Geyer-Schulz, A. and Hahsler, M. (2002). Software reuse with analysis patterns.

Proceedings of the 8th Association for Information Systems (AMCIS). August 9-

11. Dallas, Taxes, 1156-1165.

 189

Goulão, M. and Brito-e-Abreu, F. (2004). Software Components Evaluation: an

Overview. Proceeding of the 5th Information Systems Portuguese Association

Conference (CAPSI'2004). November. Lisbon, Portugal.

Graves, A. R., and Czarnecki, C. (2000). Design Patterns for Behaviour-Based

Robotics. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems

and Human. 30(1): 36-41.

Gu, Z. and He, Z. (2005). “Real-Time Scheduling Techniques for Implementation

Synthesis from Component-Based Software Models”, In: Heineman, G. T.,

Crnkovic, I., Schmidt, H. W., Stafford, J. A., Szyperski, C. and Wallnau, K.

Component-Based Software Engineering 2005, Lecture Notes in Computer

Science 3489. Berlin, Heidelberg:Springer-Verlag, 235–250.

Hänninen, K. and Mäki-Turja J. (2004). Component technology in Resource

Constrained Embedded Real-Time Systems. Mälardalen Research and

Technology Centre (MRTC), Mälardalen University: Technical Report.

Hammer, D.K. and Chaudron, M.R.V. (2001). Component-Based Software

Engineering for Resource-Constraint Systems: What are the Needs?.

Proceedings of the Sixth International Workshop on Object-Oriented Real-Time

Dependable Systems. January 8-10. Rome, Italy:IEEE, 91 – 94.

Hassan, H., Simo, J. and Crespo A. (2001). Flexible Real-Time Mobile Robotic

Architecture Based on Behavioural Models. Journal of Engineering Applications

of Artificial Intelligence. 14(5): 685-702.

Heinenam, G. T. and Councill, W. T. (2001). Component-Based Software

Engineering. Canada: Addison-Wesley.

Hissam, S. and Ivers, J. (2002). PECT Infrastructure: A Rough Sketch. Software

Engineering Institute, Carnegie Mellon University: Technical Note CMU/SEI-

2002-TN-033.

Hissam, S., Moreno, G. Stafford, J. and Wallnau. K. (2003). Enabling Predictable

Assembly. The Journal of Systems and Software. 65: 185-198.

Hissam, S. A., Hudak J., Ivers J., Klein M., Larsson M., Moreno G. A., Northrop L.,

Plakosh D., Stafford J., Wallnau K. C., and Wood W. (2003b). Predictable

Assembly of Substation Automation Systems: An Experience Report, Second

Edition, Software Engineering Institute, Carnegie Mellon University: Technical

Report CMU/SEI-2002-TR- 031.

 190

IBM Rational Software Corporation, Rational Rose Real-Time, Available from

http:www-8.ibm.com/developerworks/rational/products/rosetechnicaldeveloper.

iRobot Corporation, (2002). Mobility Robot Integration Software User’s Guide,

Jaffrey: iRobot Corporation.

Isovic, D. and Norstrom, C. (2002). Components in Real-Time Systems. Proceeding

of the 8th International Conference on Real-Time Computing Systems and

Applications (RTCSA’2002). March 18-20. Tokyo, Japan.

Jacobson, I., Griss, M. and Jansson, P. (1997). Software Reuse: Architecture, Process

and Organization for Business Success. New York: ACM Press/Addison-

Wesley.

Jawawi D. N. A. (2000). The Development of Real-time Control Firmware for A

Wall Climbing Robot - A Small-Scale Embedded Hard Real-time System.

Universiti Teknologi Malaysia: Master Thesis.

Jones, L.J., Seiger, B.A., and Flynn, A.M. (1999). Mobile Robots Inspiration to

Implementation. Second edition. Natick: A K Peters.

Kara, D. (2005). Sizing and Seizing the Robotics Opportunity. Available from

http://www.robonexus.com/roboticsmarket.htm.

Kirchner L. (2005). Carnegie Mellon University in Qatar Launches First

International Botball Robotics Club. Carnegie Mellon Press Release at

http://www.cmu.edu/PR/releases05/050516_botball.html available May 16,

2005.

Klien, M., Ralya, T., Pollak, B. and Obenza, R. (1993). A Practitioner’s Handbook

for Real-time Analysis, Massachusetts: Kluwer Academic Publisher.

Konrad S., Cheng B. H. C. and Campbell L. A. (2004). Object Analysis Patterns for

Embedded Systems. IEEE Transactions on Software Engineering. 30(12): 970-

991.

Krueger, C. W. (1992). Software Reuse. ACM Computing Surveys. 24(2): 131-183.

Kwong T. C., Amin S. H. M., Mamat R. and Rudas I. J. (2004). An Intelligent

Voting Technique in Behavior-based Autonomous Mobile Robot for Goal-

Directed Navigation. In: Current Trends in Artificial Intelligence and

Application. Kuala Lumpur: UMS. 249-256.

Labrosse, J. J. (1999). MicroC/OS-II The Real-Time Kernel. 2nd ed. Berkeley: R&D

Books.

 191

Larsson, M. (2004). Predicting Quality Attributes in Component-based Software

Systems. Mälardalen University: Ph.D. Thesis.

Lehoczky, J., Sha, L. and Ding, Y. (1989). The Rate Monotonic Scheduling

Algorithm: Exact Characterization and Average Case Behavior. Proceedings of

Real Time Systems Symposium. December. Santa Monica, California:IEEE, 66 –

171.

Lehoczky, J.P. (1990). Fixed Priority Scheduling of Periodic Task Sets with

Arbitrary Deadlines. Proceedings of the 11th Real-Time Systems Symposium. 5-7

December, 201 – 209. Lake Buena Vista, Florida:IEEE, 201-213.

Leveson, N. G. and Weiss, K. A. (2004). Making Embedded Software Reuse

Practical and Safe. Proceedings of the 12th ACM SIGSOFT twelfth International

Symposium on Foundations of Software Engineering. November 2-4. Newport

Beach, California:ACM, 171 – 178.

Lim C. S. (2004). Development and Implementation of Internet-Based Task-Oriented

Telerobotic System. Universiti Teknologi Malaysia, Malaysia: Master Thesis.

Lüders, F. (2003). Adopting a Software Component Model in Real-Time Systems

Development. Proceedings 28th Annual NASA Goddard Software Engineering

Workshop. December 3-4. Greenbelt, Maryland:ACM, 114 – 119.

Lui, C. L. and Layland, J. (1973). Scheduling Algorithms for Multiprogramming in a

Hard Real-Time Environment. Journal of the ACM. 20(1): 46-61.

Majid A. M., Amin S. H. M. and Mamat R. (2001), Development of the Internet

Interface for Leg Motion Control of A Mobile Robot, Proceedings of the First

International Conference on Mechatronics (ICOM'01). 12th – 13th February

2001. Kuala Lumpur. 665-675.

Malek, S., Mikic-Rakic M. and Medvidovic N. (2005). A Style-Aware Architectural

Middleware for Resource-Constrained, Distributed Systems. IEEE Transactions

on Software Engineering. 31(3). 256-272.

Mallet, A. Fleury, S. and Bruyninckx, H. (2002). A Specification of Generic

Robotics Software Components: Future Evolutions of GenoM in the Orocos

Context. Procceding of the IEEE International Conference on Intelligent Robots

and System, Vol. 3. September 30 - October 4. EPFL, Switzerland:IEEE, 2292 –

2297.

Masse, J., Kim, S. and Hong, S. (2003). Tool Set Implementation for Scenario-based

Multithreading of UML-RT Models and Experimental Validation. IEEE

 192

Proceeding of Real-Time and Embedded Technology and Applications

Symposium. May 27–30. Toronto, Canada:IEEE, 70–77.

Messina, E., Horst, J., Kramer, T., Huang, H. and Michaloski, J. (1999). Component

Specifications for Robotics Integration, Autonomous Robots, 6: 247-264.

Minoura, T., Pargaonkar, S. and Rehfuss, K. (1993). Structural Active Object

Systems for Simulation. Proceedings of the Eighth Annual Conference on

Object-oriented Programming Systems, Languages, and Applications.

September 26 - October 1. Washington: SIGPLAN Notices, 338-355.

Mohd. Ridzuan Bin Ahmad (2003). Development of Reactive Control Algorithm for

Multi-Agent Robotics System in Cooperative Task Achievement. Universiti

Teknologi Malaysia: M.Eng. Thesis.

Möller, A., Åkerholm, M., Fredriksson, J. and Nolin, M. (2004). Evaluation of

Component Technologies with Respect to Industrial Requirements. Proceedings

of the 30th EUROMICRO Conference on Component-Based Software

Engineering Track. September 1 – 3. Rennes, France, 56-63.

Müller, P. Stich, C. and Zeidler, C. (2001). Components @ Work: Component

Technology for Embedded Systems. Proceedings of the 27th Euromicro

Conference 2001: A Net Odyssey. 4-6 September. Warsaw, Poland:IEEE, 64 –

71.

Nelson, M. L. (1999). A Design Pattern for Autonomous Vehicle Software Control

Architectures. Proceeding of 23rd International Conference on Computer

Software and Applications, October 27-29. Phoenix, AZ:IEEE, 172-177.

Nesnas, I.A., Volpe, R., Estlin, T., Das, H., Petras, R. and Mutz, D. (2001). Toward

Developing Reusable Software Components for Robotic Applications.

Proceedings of the International Conference on Intelligent Robots and Systems

(IROS). October 29 – November 3, Maui, Hawaii:IEEE, 2375 - 2383.

Nesnas, I.A., Wright, A., Bajracharya, M., Simmons, R., Estlin, T., Kim W. S.

(2003). CLARAty: An Architecture for Reusable Robotic Software. Proceedings

of SPIE Aerosense Conference, Volume 5083 - Unmanned Ground Vehicle

Technology V. April 21-25. Orlando, FL, 253-264.

Nierstrasz, O., Arévalo, G., Ducasse, S., Wuyts, R., Black, A., Müller, P., Zeidler,

C., Genssler, T., van den Born. R. (2002). A Component Model for Field

Devices. Proceedings First International IFIP/ACM Working Conference on

 193

Component Deployment. June 20-21. Berlin: Springer-Verlag Heidelberg, 200-

209.

Ota, J. (2006). Search Methodology with Goal State Optimization Considering

Computational Resource Constraints. Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA) 2006. May 15-19. Orlando,

Florida: IEEE, 2023 – 2028

OMG Object Management Group (2003). Reusable Asset Specification: Version 2.2.

Needham: Object Management Group.

OMG Object Management Group (2002). Unified Modeling Language

Specifications. Version 1.3. Needham: Object Management Group.

Ommering, R., Linden, F., Kramer, J. and Magee, J. (2000). The Koala component

model for consumer electronics software. IEEE Computer, 33(3): 78 –85.

Orebäck A. (2004). A Component Framework for Autonomous Mobile Robots. KTH

Stockholm: Ph.D. Thesis.

Orebäck, A., and Christensen, H. I. (2003). Evaluation of Architecture for Mobile

Robotics. Autonomous Robots. 14: 33-49.

Paradigm Systems (2000). Paradigm C++ Reference Manual Version 5.0, Endwell.

Pont, F., and Siegwart, R. (2005). A Real-Time Software Framework for Indoor

Navigation. Proceedings of the IEEE/RSJ Intenational Conference on Intelligent

Robots and Systems (IROS). August 2-6. Edmonton, Canada: IEEE, 2085 - 2090.

Pont, M. J. and Banner, M. P. (2004). Designing embedded systems using patterns:

A case study, Journal of Systems and Software, 71(3): 201-213.

Purnomo D. S. (2004). Active Force Control of A Nonholonomic Wheeled Mobile

Robot. Universiti Teknologi Malaysia, Malaysia: Master Thesis.

Poulin, J. S. (1997). Measuring Software are Reuse: Principles, Practices, and

EconomicModels. Reading: Addison-Wesley.

Pressman, R. S. (2005). Software Engineering: A Practitioner's Approach. 6th ed.

New York: McGraw-Hill Higher Education.

Prieto-Diaz, R. (1993). Status Report: Software Reusability. IEEE Software. 10(3).

61-66.

Rastofer, U. and Bellosa, F. (2001). Component-based Software Engineering for

Distributed Embedded Real-time Systems. IEE Proceeding- Software, 148(3):

99-103.

 194

Ravichandran, T. and Marcus, A. R. (2003). Software Reuse Strategies and

Component Markets. Communications of the ACM. 46(8): 109-114.

Redwine, S. T. and Riddle, W. E. (1985). Software Technology Maturation.

Proceedings of the 8th international Conference on Software Engineering

Conference. August 28-30. London, England: IEEE, 189 - 200.

Riehle, D. and Zullighoven, H. (1996). Understanding and Using Patterns in

Software Development. Theory and Practice of Object Systems, 2(1): 33-13.

Rine, D. C. and Nada, N. (2000). An empirical study of a software reuse reference

model. Information and Software Technology. 42(1): 47-65.

Rivero, D. M., Khamis A. Rodriguez F. J. and Salichs M. A. (2003). A Patterns-

Oriented Framework for the Development of Automatic and Deliberative Skills

for Mobile Robots. Proceedings of the 11th International Conference on

Advanced Robotics. June 30 - July 3. Portugal:IEEE, 3284 - 3289.

Rothenberger, M. A. and Hershauer, J. C. (1999). A Software Reuse Measure:

Monitoring an Enterprise-Level Model Driven Development Process. Journal of

Information & Management. 35(5): 283-293.

Rothenberger, M.A., Dooley, K.J., Kulkarni, U.R., and Nada, N. (2003). Strategies

for Software Reuse: A Principal Component Analysis of Reuse Practices. IEEE

Transactions on Software Engineering. 29(9). 825 – 837.

Saksena, M. and Karvelas, P. (2000). Designing for Schedulability: Integrating

Schedulability Analysis with Object-Oriented Design. IEEE Proceeding of

EuroMicro Conference on Real-Time Systems. June 19 - 21. Stockholm,

Sweden:IEEE, 101–108.

Schneider J. (1999). Components, Scripts, and Glue: A Conceptual Framework for

Software Composition. der Universit¨at Bern: Ph. D. Thesis.

Selic, B. and Ward, P. T. (1996). “The Challenges of Real-time Software Design.”

Embedded Systems Programming, 9.(11).

Seward, D. W. and Garman, A. (1996). The Software Development Process for an

Intelligent Robot. IEEE Computing and Control Engineering Journal, 7(2): 86 –

92.

Sha L. , Abdelzaher, T., Årzén, K., Cervin, A., Baker, T., Burns, A. Buttazzo, G.,

Caccamo, M., Lehoczky J. and Mok, A. K. (2004). Real-Time Scheduling

Theory: A Historical Perspective. Real-Time Systems Journal. 28: 101-155.

 195

Sha, L., Rajkumar, R. and Lehoczky, J. P. (1990). Priority Inhetitance Protocols: An

Approach of Real-Time Synchronization. IEEE Transaction Computer. 39(9):

175-185.

Shaw, M. (2002). What Makes Good Research in Software Engineering?.

International Journal of Software Tools for Technology Transfer. 4(1): 1-7.

Shi, J., Goddard, S., Lal, A., Dumpert, J. and Farritor, S. (2005). Global Control of

Robotic Highway Safety Markers: A Real-time Solution. Real-Time Systems

Journal. 29: 183-204.

Sindre G. and Conradi R. (1995). The REBOOT Approach to Software Reuse.

Journal of Systems Software. 30: 201-212.

Smith, G., Smith, R. and Wardhani, A. (2005). Software Reuse across Robotic

Platforms: Limiting the Effects of Diversity. Proceedings of the Australian

Software Engineering Conference. March 31 - April 1. Brisbane,

Australia:IEEE, 252 – 261.

Stankovic, J. A. and Ramamritham, K. (1990). What if Predictability for Real-Time

Systems. Real-Time Systems Journal. 2: 247–254.

Stewart, D. B., Volpe, R. A., and Khosla, P. K. (1997). Design of Dynamically

Reconfigurable Real-time Software Using Port-Based Objects, IEEE

Transaction on Software Engineering, 23(12): 759 –776.

Su E. L. M., Amin S. H. M., Mamat R. and Yeong C. F. (2005). Room Recognition

for Mobile Robot Using Appearance-Based Method. The Proceeding of 9th

International Conference on Mechatronics Technology 2005. 5-8 December

2005. Kuala Lumpur. ICMT-185.

Szyperski, C. (2002). Component Software: Beyond Object-Oriented Programming.

2nd Edition. London:Addison-Wesley / ACM Press.

Thrun S. (2000). Towards Programming Tools for Robots That Integrate

Probabilistic Computation and Learning. Proceedings of the IEEE International

Conference on Robotics and Automation. April 2000. San Francisco, CA: IEEE,

306-312.

Volpe R., Nesnas I.A.D., Estlin T., Mutz D., Petras R., and Das H. (2000). CLARAty:

Coupled Layer Architecture for Robotic Autonomy. Jet Propulsion Laboratory,

California Institute of Technology: Technical Report D-19975.

Wall, A. (2003). Architectural Modeling and Analysis of Complex Real-Time

Systems. Mälardalen University: Ph.D. Thesis.

 196

Wang, A. J. A. and Qian, K. (2005). Component-Oriented Programming. New

Jersey: John Wiley and Sons.

Washizaki, H., Yamamoto, H. and Fukazawa, Y. (2003). “A Metrics Suite for

Measuring Reusability of Software Components”, Proceedings of the Ninth

International Software Metrics Symposium. September 3-5. Sydney,

Australia:IEEE, 211 – 223.

Winn, T. and Calder, I. (2002). This a Pattern?. IEEE Software. 59-66.

WinAVR (2006). Available from http://sourceforge.net/projects/winavr/

Wuyts, R., Ducasse, S. and Nierstrasz, O. (2005). A Data-centric Approach to

Composing Embedded, Real-time Software Components. The Journal of

Systems and Software, 74: 25-34.

Yacoub, S. M. and Ammar, H. H. (2004). Pattern-Oriented Analysis and Design:

Composing Patterns to Design Software Systems. Boston: Addison-Wesley.

Yeong C. F., Amin S. H. M., Mamat R., Fisal N. and Su E. L. M. (2005).

Development and Evaluation of Various Modes of Human Robot Interface for

Mobile Robot. The Proceeding of 9th International Conference on Mechatronics

Technology 2005. 5-8 December 2005. Kuala Lumpur. ICMT-184.

Zachman J. A. (1987). A Framework for Information Systems Architecture. IBM

Systems Journal. 26(3). 276-292.

