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ABSTRACT 

 

 

 

Applying software reuse to Embedded Real-Time (ERT) systems poses 

significant challenges to industrial software processes due to the resource-

constrained and real-time requirements of the systems. Autonomous Mobile Robot 

(AMR) system is a class of ERT systems, hence, inherits the challenge of applying 

software reuse in general ERT systems. Furthermore, software reuse in AMR 

systems is challenged by the diversities in terms of robot physical size and shape, 

environmental interaction and implementation platform. Thus, it is foresee that 

component-based reuse will be the suitable way to promote software reuse in AMR 

systems with consideration to three AMR general requirements to be self-contained, 

platform-independence and real-time predictable. In this thesis, a framework for 

component-based reuse of AMR software has been developed to enable a systematic 

reuse through component-based software engineering.  The aim of the framework is 

to outline the strategies for software reuse in software development of AMR 

applications. The developed framework consists of four main elements: AMR 

component-based analysis patterns, a modified component model, a component-

based timing analysis approach, and a component-oriented programming framework. 

The results of implementing the framework in developing software for real AMR 

show that the strategies and processes proposed in the framework can fulfill the three 

AMR general requirements.  To quantify the effectiveness of the reuse approach in 

the developed framework, the component reusability and the amount of reuse were 

measured using software metrics.  The measurement results show high component 

reusability on those interested components, and up to 74% of reuse rate was achieved 

on real AMR tested.  The implementation results and software reuse measurements 

indicate that the developed framework promotes systematic reuse and reuse qualities. 
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ABSTRAK 

 

 

 

Perlaksanaan guna-semula perisian dalam sistem terbenam masa-nyata (ERT) 

merupakan cabaran penting kepada proses perisian di industri.  Ini disebabkan oleh 

sumber yang terhad dan keperluan masa-nyata sistem ERT.  Sistem robot bergerak 

berautonomi (AMR) mewarisi cabaran ini kerana ia adalah daripada kelas sistem 

TMN.  Cabaran ini ditambah pula dengan kepelbagaian dalam sistem robot dari segi 

saiz, bentuk, interaksi dengan persekitaran dan pelantar perlaksanaan.  Oleh itu, 

guna-semula berasaskan-komponen dilihat sebagai satu cara yang sesuai untuk 

menggalakkan guna-semula perisian dalam sistem ERT dengan mempertimbangkan 

tiga keperluan umum AMR iaitu pemprosesan dalaman, ketidakbergantungan kepada 

pelantar perlaksanaan, dan masa-nyata yang boleh diramal.  Dalam tesis ini, satu 

rangka kerja guna-semula berasaskan-komponen bagi perisian RBB telah 

dibangunkan untuk membolehkan guna-semula yang sistematik melalui kejuruteraan 

perisian berasaskan-komponen.  Rangka kerja ini bertujuan untuk memberi panduan 

dalam strategi guna-semula perisian dalam aplikasi RBB.  Rangka kerja ini 

mengandungi empat unsur utama: corak analisis berasaskan-komponen AMR, model 

komponen yang diubah-suai, pendekatan analisis pemasaan berasaskan-komponen, 

dan rangka kerja pengaturcaraan berorientasikan-komponen.  Hasil perlaksanaan 

rangka kerja ini dalam membangunkan perisian RBB menunjukkan strategi dan 

proses yang dicadangkan dalam rangka kerja ini boleh memenuhi keperluan umum 

RBB.  Untuk menentukan keberkesanan pendekatan guna-semula pada rangka kerja 

ini, pengukuran kebolehgunaan-semula komponen dan kadar guna-semula dibuat 

dengan menggunakan metrik perisian.  Hasil pengukuran menunjukkan kadar 

kebolehgunaan-semula adalah tinggi pada komponen yang dikehendaki dan kadar 

guna-semula mencapai sehingga 74% dalam RBB yang diuji.  Hasil perlaksanaan 

dan pengukuran guna-semula menunjukkan rangka kerja tersebut menggalakkan 

guna-semula yang sistematik dan berkualiti. 
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CHAPTER 1 
 

 

 

INTRODUCTION 
 

 

 

1.1 Overview 

 

The trend of software system development is changing from traditional 

software development approach, which focuses on building software systems from 

scratch to extension and integration with preexisting systems software development 

approach (Finkelstein and Kramer, 2000).  This is due to the rapid changes in 

modern software requirements, which make the software becoming large, complex 

and highly unmaintainable.  The increment in the scale and the complexity of 

software may lead to problems such as failure of software projects to meet their 

deadline, budget, quality requirements and the continual increase of the costs 

associated with software maintenance.  

 

The same phenomenon is faced by Embedded Real-Time (ERT) systems due 

to the need for more sophisticated products.  The machines and equipment controlled 

by ERT systems have becoming more sophisticated and intelligent, often 

incorporating many functions in one product.  As ERT products increasingly adopt 

digital technology, the use of advanced microprocessors enable more processing to 

be implemented in software, making the development of software for ERT systems 

more important.  Also, the shift from full hardware implementation of ERT systems 

to mixed software and hardware implementation makes the software developer jobs 

more challenging.  A common characteristic of all ERT systems now is increasing 

demand on software.  For example, currently the software development costs for 
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industrial robots is about 75% of total costs, while in car industry is about 30% of 

total costs (Crnkovic, 2004).  Ten to fifteen years ago this number was about 25% for 

industrial robots and insignificant for cars. 

 

Implementing every system from scratch does not guarantee the productivity 

and quality of the software systems.  Software reuse has been promoted as a 

promising approach to improve quality and productivity.  Software reuse is the use of 

existing software or software knowledge to construct new software (Frakes and 

Kang, 2005).  Software reuse has been practiced and studied for a long time, and a 

broad reuse classification and approaches have been proposed in the area (Prieto-

Diaz, 1993; Frakes and Kang, 2005).  Despite the variety approaches and strategies, 

systematic reuse and component-based reuse are among the promising ways to 

improve software development efficiency and quality (Prieto-Diaz, 1993; Jacobson 

et al., 1997; Rothenberger et al., 2003; Ravichandran, and Marcus, 2003). 

 

The commitment to quality is the focus of any engineering approach and in 

software engineering, integration of process, methods and tools for the development 

of quality software is also the practice (Pressman, 2005).  Component-Based 

Software Engineering (CBSE) is a sub-discipline of software engineering, which 

share same strengths and weaknesses of software engineering.  The general purpose 

of CBSE is to decrease development time and costs by creating application from 

reusable, easily connectable and exchangeable components.  The systematic reuse 

can benefit from CBSE discipline by considering software component technology 

(Bachmann, et al., 2000) in tools, methods and processes for development of 

systematic reuse framework.  The component-based reuse refers to bottom-up 

development or compositional reuse approach using reusable asset components.  

 

CBSE solutions also receive increasing attentions in ensuring the success of 

ERT products (Müller et al., 2001; Crnkovic, 2004; Rastofer and Bellosa, 2001). In 

ERT software development, CBSE offers advantages such as software reuse, 

improved maintainability, and ability to easily fine-tune a real-time application’s 

timing properties.  The rapidly changing market makes investment in CBSE for ERT 

systems not only viable but also essential.  Encapsulated domain expertise is another 

characteristic of ERT systems that motivates the use of CBSE.  Even small programs 
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in ERT systems may contain highly sophisticated algorithms, require a deep 

understanding in the domain and support technologies, such as the signal processing.  

The reuse of the domain specialized software knowledge can reduce the software 

development curve.  

 

 

 

1.2 Background of the Problem 

 

1.2.1 Some Challenges in Embedded Real-Time Software 

 

Embedded system is a system, which contains microcomputer as a 

component to perform some of the requirements of that system, but the user does not 

see the system as a computer.  Most embedded systems are real-time systems.  In 

real-time systems timing correctness is critically important in majority of these 

systems as failure to meet the timing requirement can result in system malfunction or 

disaster.  ERT systems cover a broad range of applications ranging from small–scale 

microwave ovens and watches to telecommunication network management and 

mission critical military control systems; some examples of embedded systems are 

given in Figure 1.1.  

 

EMBEDDED SYSTEMStransportation

home appliances

advanced
equipment

communication
equipment

office equipment

 
Figure 1.1: Examples of embedded systems 
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Due to the diversified nature of the ERT systems domain, as can be seen in 

Figure 1.1, the requirement placed on the software of ERT systems will be different 

from one application to another application.  For example, the software requirements 

for consumer products, telecom switches, and avionics are quite different.   The 

diversified nature of the ERT systems is also a reason why the software development 

support tools for ERT systems are much more primitive compare to the data 

processing domain.  Tools vendors will not make much profit in a diversified ERT 

markets with scattered platforms and different software requirements compared to 

data processing market running on a uniform platform such as Windows. 

 

In many ERT systems, requirement on low product cost is paramount. The 

customers are very cost sensitive, thus the developer of the hardware rarely takes the 

extra cost to extend the hardware resources, since the margin of profit on electronics 

development usually is low.  Therefore the hardware is designed just enough for 

anticipated use but not more.  Consequently, many ERT systems are resource 

constrained to lower the production cost and thereby increase profit.  The resources 

here refer to power, memory consumption, computation (CPU) power, execution 

(CPU) time communication bandwidth etc.  In their work on component technologies 

for Volvo vehicular industry, Möller et al. (2004) stated that resource-constrained is 

an important industrial requirement for automotive industries.   Strong requirements 

for low and controlled consumption of these resource constraints create new 

challenges for software development in ERT systems.  Coupled with the timing 

constraints in ERT systems, resource-constrained and timing constraints have 

becoming extra-functional properties which need to be addressed in the software 

development for many ERT systems.  Many works (Ota, 2006; Hanninen and Maki-

Turja, 2004; Malek et al. 2005; Cnrkovic, 2004; Nierstrasz, 2002; Hammer and 

Chaudron, 2001; Ommering et al. 2000) have been conducted to address the 

resource-constrained issue in the software development of ERT systems. 

 

Applying component-based reuse to general ERT systems poses significant 

challenges to industrial software processes due to the resource-constrained and real-

time requirements of the systems (Crnkovic, 2004;  Rastofer and Bellosa, 2001; 

Hammer and Chaudron, 2001).  State-of-the-art of component-based reuse solutions 

such as OMG’s CORBA Component Model (CCM), Microsoft’s Component Object 
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Model (COM+) or Distributed COM (DCOM) family, and SUN Microsystems’ 

JavaBeans and Enterprise JavaBeans (EJB) are generally complex, require large 

resources such as memory and computation power, and are platform dependent for 

ERT component-based development (Lüders, 2003; Rastofer and Bellosa, 2001).  

Furthermore, they do not address the non-functional properties such as how much 

memory it consumes and timing constraints which are important in ERT systems.  

Consequently, a number of component technologies such as Port-based Object 

(PBO) (Stewart et al., 1997), Koala (Ommering et al., 2000), PErvasive COmponent 

Systems (PECOS) (Nierstrasz et al., 2002) and ReFlex (Wall, 2003) have been 

developed to address requirements of ERT software.  All these ERT component 

models have their own unique strengths to support their nature of ERT problem 

domain.  

 

 

 

1.2.2 Challenges in Autonomous Mobile Robot Software 

 

Autonomous Mobile Robot (AMR) system is a class of ERT system with 

many possible applications and markets.  An AMR is an autonomous system capable 

of traversing a terrain, performs its designated tasks, senses its environment and 

intelligently reacts to it.  The technologies involve in the AMR system served as the 

basis for commercial mobile personal robots and service robots.  Personal robot is 

used to educate, entertain or assist in the home includes for example the Lego’s 

Mindstorms, Sony’s Aibo robot dog and Hasbro’s Fur Real Friends robot that assists 

the disabled and elderly in the home. Service robots assist humans, service 

equipment and perform other autonomous functions in almost every industry and 

military applications such as unmanned ground vehicles.  According to the United 

Nations Economic Commission and International Federation of Robotics (Kara, 

2005), the personal and service robotics market roughly double between 2002 and 

2005, reaching USD5.2 billion in 2005; and the number of personal and service 

robots sold increase ten folds between 2002 and 2005. Sales for domestic robots 

(vacuum cleaning, lawn mowing, window cleaning and other types) is expected to 

reach over 800,000 units, while sales for toy and entertainment robots will exceed 

one million units.  As occurred in the general ERT systems, growth and competition 
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in the markets will force the mobile robots manufacturers to reduce the cost while at 

the same time try to satisfy more functionalities demands from users. This in return 

will increase the reliance on software.  

 

AMR systems share similar requirements with ERT systems, hence inherit 

the challenge in applying software reuse for general ERT systems. As the complexity 

and functionality of the AMR is increased, such as adding more sensors to the robot 

so as to increase its reactivity and intelligence, designing and developing software for 

this type of robot can be very difficult and a challenging task.  As, AMR systems and 

software are becoming more and more complex (Mallet et al, 2002), the need of 

highly modular software design is desirable (Seward and Garman, 1996; Messina et 

al., 1999; Oreback and Christensen, 2003).  On top of this, software development in 

AMR systems is challenged by the diversities in terms of robot designated tasks, 

robot physical size and shape, environmental interaction and implementation 

platform such as real-time operating systems, hardware and communication protocol.  

Furthermore, to develop AMR software involves multi-disciplines of expert 

knowledge which include embedded systems, real-time software, mechanics, control 

theories and artificial intelligence aspects.  Thus, it is envision that component-based 

reuse will be the suitable way to capture software models in this multi-disciplines 

domain in order to allow reuse across applications, particularly at the early stage of 

software development process.  Reuse of early life-cycle of ERT systems is more 

effective and it allows engineering teams to tailor reused components and designs to 

fit their needs (Leveson and Weiss, 2004).   

 

Most robot researchers are specialized in one of the area.  Few robotics 

research groups have the resources to build, from scratch, every component of their 

robot.  Nevertheless, a complete system is needed to prove any work in a special 

field.  Consequently, the majority of current mobile robot research platforms in use 

today could not operate in a fully self-contained mode since they rely on an off-board 

infrastructure, using AMR as ‘sensors with wheels’ only (Brega et al., 2000; Pont 

and Siegwart, 2005).  This is understandable as many researchers try to avoid 

software implementation complexity in the embedded environment. However, as 

argued by Brega et al. (2000) and Pont and Siegwart (2005),  this off-board 

processing approach is not acceptable for many applications where operating 
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environment size, economical aspects and safety issues do not allow off-board 

computing.  They further emphasized that real-world AMR must be self-contained 

and able to meet timing constraints.  Autonomy with respect to perception, energy 

and processing for fully self-contained autonomous decision-making is not an option 

but should be addressed in its full complexity already as a research topic.  When on-

board or embedded computation is required AMR software development is typically 

confronted with limited resources such as computing power and memory.  Hence, 

meeting timing constraints becomes a problem which is present but only hidden 

when using off-board processing (Brega et al., 2000).  Resource-constrained are 

especially relevant for self-contained AMR systems.  Limited computing power is a 

typical complexity need to be confronted by on-board computation of AMR systems.  

With the limited computing power, a precise observation of the timing constraints of 

the AMR systems is a necessary to make complex robot systems more reliable.  Most 

important, a predictable real-time performance on a robotic system is a necessary 

condition for guaranteeing a stable behavior of the robot (Buttazzo, 1996). 

 

A component-based reuse solution would help in the following aspects of 

AMR software development (Oreback and Christensen, 2003): 

 

i. exchange of software parts or components between robotics labs, allowing 

specialists to focus on their particular field, 

ii. comparison of different solutions would be possible from the available 

components, 

iii. startup in robot research can be accelerated using the available components, and 

iv. speed up the transfer of research labs works in mobile robot to commercial 

business application.  

 

Some of the results from component-based reuse works are hard to reuse 

because the solution is not coherent and simple to be used by the mechatronics and 

robotics engineers and researchers which are not from software engineering or 

computer science background (Oreback, 2004).  In order to be widely accepted by 

robotic community, a solution for coping with systems complexity problem and 

software reuse for AMR should at least fulfill the following requirements (Pont and 

Siegwart, 2005):  
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i. Embeddable and self-contained.  Typically, the AMR software or firmware is 

embedded in the on-board controller.  A self-contained AMR system requires 

on-board computation and the system is typically constrained by limited 

processing power and memories.  

ii. Modular or component-based software.  Component modularity is to provide 

artifact to be reused that contain domain knowledge from different disciplines.  

iii. Portable across different platform.  Platform-independent where the 

component implementation does not depends on hardware, Real-Time Operating 

System (RTOS) or communications protocol.  

iv. Predictable real-time performance.  The abilities to predict and analyze timing 

are key requirements for AMR system.  The reliability and reactivity of the robot 

behavior depend on how the robot responses to the dynamic environment events 

by executing a set of concurrent tasks with its timing requirements.  

 

One of the major problem in AMR software reuse is lacking of framework 

that enable the domain experts to document their knowledge and plug their work in a 

reusable artifact and a systematic reuse process for the application robotic engineer 

to develop their AMR software from the reuse artifacts (Oreback, 2004; Domínguez-

Brito et al., 2004).  Based on the literature review conducted so far, most of the 

existing frameworks do not address in parallel the three issues: self-contained, 

platform-independent and real-time predictable, for resource-constrained AMR 

systems in their reuse framework.  

 

Portability of AMR components across different hardware, RTOS and 

communications platform is important to enable software reuse in AMR software.  

This can be done by minimizing the dependencies of the components with the 

platforms.  The set of hardware component types for a robot composition is 

extensive.  For example the input that a robot receives can be derived from a wide 

variety of sensors (infrared sensor, sonar sensor, video camera etc.) and each kind of 

sensors there are typically many variations.   

 

According to Frakes and Kang (2005) there are nine active research areas 

under software reuse category.  They are: business and finance; measurement and 

experimentation; componentry; domain engineering; programming languages; 
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libraries; architectures; generative methods; and reliability and safety.  From these 

nine areas, three research areas were identified to be important in developing a 

framework for AMR component-based reuse, i.e. componentry, domain engineering 

and reliability.  Componentry concerns with CBSE technologies to provide important 

platform or framework on which reusable AMR components can be developed and 

applications can be created by integrating the components.  Domain engineering 

enables building of AMR system variants repeatedly within the same domain.  The 

ability to predict the reliability of the integrated AMR components through timing 

performance analysis is one of key success of software reuse in AMR software.  The 

research problems in these three software reuse research areas need to be solved 

before the AMR framework can be developed. 

 

 

 

1.3 Statement of the Problem 

 

In order to develop the component-based reuse framework for AMR domain 

there are numbers of software reuse research problems need to be solved in the three 

research areas: componentry, domain engineering and reliability, as identified above.  

The research problems need to be answered in determining how to support robotics 

programmers and engineers in creating reusable artifacts, and in the application of 

the reuse artifact.  The problems to be solved are: 

 

i. What should be made reusable in AMR software? 

ii. What are the methods to specify reuse components and how to use the reuse 

components in developing AMR software? 

iii. How to predict the reliability of AMR component composition? 

 

Applying component-based reuse to ERT mobile systems poses a significant 

challenge due to the resource-constrained and real-time requirements of ERT 

systems and the degree of diversity in AMR systems.  The existing works on 

component-based reuse have not addressed both ERT and AMR requirements 

concurrently, and proposed solution frequently hard to be used by the domain 

experts.  To obtain an acceptable component-based reuse solution for ERT mobile 
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robot systems the solution must have a systematic reuse framework to enable the 

robotic engineers to plug their work in the framework with consideration to the three 

basic requirements:  self-contained, platform-independent and real-time predictable 

AMR systems.  Thus, the research goal is:  

 

To develop a framework for component-based systematic reuse of autonomous 

mobile robots (AMR) software which emphasized on requirements to be self-

contained, platform-independent and real-time predictable.  

 

Software framework is a general word whose meaning depends heavily on 

the context in software engineering discipline.  There are different types of 

frameworks in various software discipline literature which include conceptual 

framework (Schneider, 1999), architecture framework (Zachman, 1987), application 

framework (Fayad and Schmidt, 1997), development framework (Bass et al., 1994) 

and component framework (Bachmann et al., 2000).  The development framework as 

proposed by Bass et al. (1994) work is suitable to support systematic reuse in AMR 

CBSE since the development framework translates application-specific system 

specifications using methods that familiar to developers and optimal for the 

application.  The development framework can be used to emphasize the optimization 

of the three AMR requirements: self-contained, platform-independent and real-time 

predictable.  The framework covers at least three phases of software development: 

specification, design and implementation and the framework highlights the software 

techniques, strategies and tools in order to achieve the optimizations aimed in using 

the framework.  

 

 

 

1.4 Objectives 

 

The main objectives of this research work reported in this thesis are: 

 

1. To determine the reusable components of AMR software and framework 

to document them.  
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2. To assess and evaluate the applicability of the existing ERT component 

models and their implementation frameworks for the use in AMR 

software development.  

 

3. To determine how existing real-time theories can be used for predicting 

timing performance of an AMR components composition.  

 

4. To develop a CBSE framework that consists of AMR reuse artifacts, 

ERT component model and timing analysis approach.   

 

5. To experimentally evaluate effectiveness of the proposed framework on 

some real existing AMR systems, and to measure some of the reuse 

qualities produce by the framework. 

 

 

 

1.5 Scope of the Study 

 

The scope of this research will be limited to the following: 

 

• This research focuses on resource-constrained AMR applications.   

• The AMR reusable asset documented in this thesis is assumed to be a 

starting set of reuse components.  These components will continue to 

evolve as the domain expert from academia and industry involve in the 

assets development.  

• The modeling of the reuse components will only consider structural 

modeling and real-time behavior modeling in order to illustrate the 

component-level modeling. 

• The implementations on the existing AMR systems in this work are aimed 

to prove experimentally the proposed framework and the applicability of 

the elements in the framework.  

• This research is focusing in reactive layer of hybrid model, since; software 

at reactive layer is typically constrained by limited resources and real-time 
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requirements. 

 

 

 

1.6 Thesis Outline 

 

Chapter 2 discusses strategies and challenges in software reuse and CBSE in 

ERT generally and AMR specifically.  The state-of-the-art of software reuse and 

CBSE in AMR software is reviewed in Chapter 2.   

 

In Chapter 3, the research methodology conducted in achieving the objectives 

of this research is presented.  Specifications two real AMR systems which were used 

in case studies, implementation of embedded software and verifications of techniques 

proposed are described in this chapter. 

 

The three main elements supporting the developed component-based reuse 

framework in this thesis are described in details in Chapter 4 through 6.  Chapter 4 

describes the component-based AMR analysis patterns.  The evaluation of a 

component model and the extension to the component model to support the required 

AMR software development environment are discussed in Chapter 5.  In Chapter 6 a 

detailed timing analysis based on component-based reuse for AMR timing prediction 

at design phase is proposed.  

 

The integration of the elements proposed in Chapter 4 through 6 to form the 

developed CBSE framework will be discussed in detail in Chapter 7.  The 

application of the framework to develop AMR software will be illustrated in Chapter 

7.  To validate some of the reuse qualities resulting from the proposed framework, 

measurement of reusability and amount of reuse qualities were conducted on the 

developed software.  The validation process and results are discussed in Chapter 8.  

Finally in Chapter 9, the conclusions and some suggestions for future work are given.  
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