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Abstract 
 

The purpose of this paper is to construct an 
active suspension for a quarter car model with observer 
design. The proportional-integral sliding mode is chosen 
as a control strategy, and the road profile is estimated by 
using an observer design. The performance of the 
proposed controller will be compared with the linear 
quadratic regulator by performing extensive computer 
simulation.  

 
 

 
1. Introduction 

 
Comfort and road-handling performance are 

the characteristics have to be considered in order 
achieving good suspension system. Ideally the 
suspension should isolate the body from road 
disturbance and inertial disturbances associated with 
cornering and braking or acceleration [2]. The 
suspension must also be able to minimize the vertical 
force transmitted to the passengers for their comfort. 
This can be achieved by minimizing the vertical car 
body acceleration. The objective of the active 
suspension system is to improve the suspension system 
performance by directly controlling the suspension 
forces to suit with the performance characteristics. 
 There are various linear control strategies 
have been established by researchers in the design of the 
active suspension system. Amongst them are a fuzzy 
reasoning [4], robust linear control [7], H∞ [8], and 
adaptive observer [9]. The obtained active suspension 
systems provide more effective performance in the 
vibration isolation of the car body. 
 The purpose of this paper is to utilise the 
concept of proportional integral sliding mode in active 
suspension system [2, 5, 6, 10, 11]. Beside that, the road 
disturbance will be estimated by using an observer 

design. Therefore, the estimated road disturbance will 
be another state for the system. 
 

 
2. Dynamic model of the suspension 

 
The quarter car active suspension systems are 

developed based on Figure 1. From the Figure 1 the 
state space equation of the system can written as  
 
     )()()()( tDwtButAxtx ++=&             (1)
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where mb is a mass of car body and mw is a mass of 
wheel. xb and xw are the displacements of car body and 
wheel respectively, kb and kw are the spring coefficients. 
cb is the damper coefficient and w (t) is the road 
disturbance. The control force, u(t) from the hydraulic 
system is assumed as the control input to the suspension 
system. Equation (1) shows that the disturbance input is 



not in phase with the system input, therefore the system 
suffers from mismatched condition [3]. 
 
Hence, the proposed controller must be robust enough 
to overcome the mismatched condition so that the 
disturbance would not have significant effect on the 
performance of the system [2]. Equation 1 can be 
written as   
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Where  is the state vector, is the 
control input, and the continuous function f(x,t) 
represents the uncertainties with mismatched condition, 
i.e 

ntx ℜ=)( mtu ℜ=)(

][)]([ BranktfBrank ≠ . The following assumptions 
are taken as standard: 
  
Assumption 1. There exists a known positive constant 
such that β≤)(tf , where • denotes the standard 
Euclidean norm. 
 
Assumption 2. The pair (A, B) is controllable and the 
input matrix B has full rank.  
 

 
 
 
 
 
 
 
 
 

Figure 1: A quarter-car 

 

 

3. Switching surface and controller design  
 

In this study proportional integral sliding mode is 
chosen based its ability to overcome the steady state 
error in the system. The PI sliding surface is defined as 
follows [1, 2, 3]; 
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where and  are constant matrices. 
The matrix C is chosen such that CB  is 
nonsingular. The matrix K is chosen such that λ (A + 
BK) < 0. It is well known that if the system is fulfilled 
the sliding mode condition, hence σ(t) =0.  

nmC ×ℜ∈ nmK ×ℜ∈
nm

 
Then, the differential of Equation 4 gives, 
 
  )()()()( txCBKCAtxCt +−= &&σ               (5) 
 
 
Substituting Equation (3) into Equation (5) gives, 
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Equating Equation 6 to zero gives the equivalent control, 

as follows, )(tueq
 )(tu
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Substituting Equation 7 into Equation 3, gives the 
equivalent dynamics equation of the system in sliding 
mode as follows, 
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During the sliding mode, the uncertain system with 
mismatched condition is stable provided that the 
following theorem is satisfied [1, 2, 3]. 
 
Theorem 1 
 
The uncertain system equation (3) is bounded stable on 
the sliding surface, σ (t) =0 if, 
 
 

1),(
~

β≤txF , where ββ CCBBnI 1)(1
−−  

w 



and  
 
              (9) ),(}1)({),( txfCCBBnItxF −−=
 
Proof: 
 
For simplify, let 
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And rewrite Equations 10 and 11 as 
 

),(
~

)(
~

)( txFtxAtx +=&                (12) 
 
Let Lyapunov function candidate for the system is 
chosen as 
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Taking the derivative of V(t) and substituting into 
Equation 8, gives  
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where P is solution of QAPPTA −=+

~~
 for a given 

positive definite symmetric matrix Q. It can be shown 
that Equation (14) can be reduced to 
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Since λmin(Q)>0, consequently  for all t and 

, where is the complements of the 
closed ball B(η), centered at x=0 with 
radius

0)( <tV&
)(ηcBx∈ )(ηcB

)](min/[]12[ QP λβη = . Hence the system is 
boundedly stable.□  
 
Remark. For the system with uncertainties satisfy the 
matching condition, i.e. ][)]([ BranktfBrank ≠ , then 
equation (8) can be reduced to [10]. 
Thus asymptotic stability of the system during sliding 
mode is assured. 
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We now design the control scheme that drives the state 
trajectories of the system in Equation 3 onto the sliding 
surface σ(t) and the system remains in it thereafter. For 
the uncertain system in Equation 3 satisfying 
assumptions 1 and 2, the following control law is 
proposed: [1] 
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where δ is the boundary layer thickness that to be 
selected to reduce the chattering effect and ρ is a design 
parameter which will be specified by designer. 
 
Theorem 2  
 
The hitting condition of the sliding surface (4) is 
satisfied if 
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Proof. 
The reaching condition is evaluated as follows, 
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Substituting Equation 16 into Equation 18, gives 
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The sliding condition is established if 0>ρ  
 
 

 
4. Observer Design 

 
Assuming that the states wbwb are 

observable and w is unobservable in the state vector x, 
the algorithm of VSS observer [5, 6, 11] for estimating 
w is composed of the up-dating relation for the 
estimates of five state variables. It can be done by 
up-dating relation for the estimator of and w only 
[6] 
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                                          (21) 
where d21,d22,d51, and d52 are constants, and ε2 and ε5  
are small positive constants to compensate the 
chattering. The state of is replaced by the estimate 

 in the state vector. The state vector is replaced by 
w

�w x
$x  defined as 
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Then u(t) in equation 16 are respectively can be 
replaced as, 
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5. Simulation and discussion 
 

The mathematical models of the system as 
defined in equation 1 and proposed proportional-integral 
sliding mode controller (PISMC) in equation 22 were 
simulated on computer. The system assumed that the 
road disturbance as an input to the system. The 
parameter for the spring and the damper for the active 
suspension system are considered to be linear. 
 

For comparison purposes, the performance of 
the PISMC is compared to the linear quadratic regulator 
(LQR) control approach. Assumed a quadratic 
performance index in the form of 
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Where the matrix Q is symmetric positive semi-definite 
and R is positive symmetric definite. Then the optimal 
linear feedback control law is obtained as 
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Where K is the designed matrix gain.  
 
The typical road disturbance be in the form of 
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Figure 2 
shows the 
typical road 
disturbance 
that 
generated 
to the 
system. 
 
 

Figure 2: Typical Road disturbance 
 

Numerical value for the model parameters are as 
follows: 

 mb = 290 kg 
 mw = 59 kg 
 Kb = 16812 N/m 
 Kw = 190,000 N/m 
 Cb = 1000 N/(m/s) 

 
In the design of the LQR controller, 

weighting matrices Q and R are selected as Q = 
diag(q1,q2,q3,q4,q5) where q1 = q2 = q3 = q4 = q5 = 
1x102 and R = [0.1], respectively. Thus, the designed 
gains of the LQR controller are K= [0.5985,-0.4819, 
0.0307,-3.4870, 3.5103]. The value of the matrix K for 
PISMC is similar to the value of the designed gains in 
the LQR controller such that λ(A + BK) = {-8.7084 ± 
58.1974i, -1.4717 ± 7.2008i,-0.0000}. In this simulation 
the following value are selected for the PISMC: C = 
[200 10 7500 8000 3500], δ = 10 and ρ = 100. 

Figure 3 and 5 shows the estimated road 
disturbance for the system when using LQR and PISMC 
controller. Figure 4 and 6 shows the error between 
typical road disturbances with estimated road 
disturbance. The result shows that the error for purposed 
controller is less than LQR controller. 

The objective of designing an active 
suspension is to increase the ride comfort and road 
handling, there are three parameters to be observed in 
the simulation. The parameters are the wheel deflection, 
the body acceleration and the suspension travel. Figure 
7 shows the wheel deflection of both controllers for an 
active suspension system. The result shows the 
purposed controller perform better than LQR controller. 
Figure 8 illustrates clearly how the PISMC technique 
can effectively absorb the vehicle vibration in 
comparison to the LQR method. The body acceleration 
in the PISMC design system performs better, which 
guarantee better ride comfort. Figure 9 shows the 
suspension travel of both controllers for an active 
suspension system. The result shows that the active 
suspension utilizing the PISMC technique performs 
better as compared to the others. Therefore it can 
conclude the active suspension system with PISMC 
improves the ride comfort while retaining road handling 
characteristics, as compared to the LQR method. 



 
Figure 3: The estimated road disturbance using LQR 

controller 

 
Figure 4: The error between typical road disturbance 

and estimated road disturbance when using LQR 
controller  

 

 
 

Figure 5: The estimated road disturbance using PISMC 
controller 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 6: The error between typical road disturbance 
and estimated road disturbance when using PISMC 

 Controller 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Wheel deflection 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Body acceleration 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Suspension travel. 
 
 
 

6. Conclusion 
 

In this paper, the proportional integral sliding 
mode control is proposed to solve the mismatched 
condition problem. The road profile was estimated by 
using observer with good agreement between exact and 



estimated value. The performances of the active 
suspension system are evaluated by PISMC and LQR 
method and compared the result. The result shows that 
the purposed PISMC technique proved to be effective in 
controlling vehicle compared LQR method. 
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