
An Approach to Reusable Software for Mobile Robot Applications through
Analysis Patterns

Dayang N. A. Jawawi, Safaai Deris

Department of Software Engineering
Faculty of Computer Science and

Information System
Universiti Teknologi Malaysia
81310 UTM, Skudai, Malaysia

dayang@fsksm.utm.my

 Rosbi Mamat
Department of Mechatronics and Robotics

Engineering
Faculty of Electrical Engineering
 Universiti Teknologi Malaysia
81310 UTM, Skudai, Malaysia

Abstract
The use of software analysis patterns as a means to

facilitate Autonomous mobile robots (AMR) software
knowledge reuse through component-based software
engineering is proposed. The software analysis patterns
for AMR were obtained through a pattern mining
process, and documented using a standard catalogue
template. These analysis patterns are categorized
according to hybrid deliberate layered architecture of
robot software: reactive layer, supervisor layer and
deliberative layer. In this paper, the analysis patterns in
the reactive layer are highlighted and presented. The
deployment of the analysis patterns are illustrated and
discussed using an AMR software case study. The reuse
potential of these patterns is evaluated by measuring the
reusability of components in the analysis patterns.

1. Introduction
Autonomous mobile robots (AMR) have found

their applications in industries, education and research.
It represents a mechatronics system, which involves
expertise from multi-disciplines in the domains of
artificial intelligence, mechanical, electronics, computer
and software engineering to develop it. The software
aspect of AMR has been recognized as the most difficult
and challenging part [1,2] for fully functional and
successful AMR. Developing software for AMR
requires knowledge in embedded systems, real-time
software issues, control theories and artificial
intelligence aspects. Thus, reusing existing knowledge
from previous projects can significantly reduce the
efforts and speeding up the AMR software development
process. A widely accepted solution to this is software
reuse, in the form of components, framework or
software patterns.

Software patterns are used to identify recurring
problems and describe a generalized solution to the
problems and help software developers to understand
how to create an appropriate solution, giving certain
domain-specific problem. Software patterns can be
categorized according to three software development
levels: analysis patterns or conceptual patterns for
analysis level, design patterns for design level and
programming patterns for implementation level [3].

Previously, robotics research communities had
recognized and practiced software reuse in general
robotics software. The reuse approaches include reuse

architecture, framework, design patterns, code or library
components. However, the use of software patterns in
robotics research communities is limited to design
patterns only. Software analysis pattern has not yet
received much attention. Since the focus of this work
is on reuse of domain specific knowledge for analysis of
AMR software, it was decided that analysis pattern is
more appropriate here.

The focus of this paper is on analysis patterns as a
means to facilitate AMR software knowledge reuse. The
main reasons for concentrating on analysis patterns are:
1) analysis patterns speed up the development of
abstract analysis models that capture the main
requirements of the concrete problem by providing
reusable analysis models [4]; 2) due to multi-disciplines
nature of AMR software, conceptual models of experts
knowledge in a particular domain can be captured
independently using analysis patterns; 3) analysis
patterns can served as basis for development of
components and framework.

The main objectives of this paper are: to present
AMR analysis pattern and some important components
in the software analysis pattern as a result of our works
and experience in AMR software requirements; to
illustrate how the AMR software analysis patterns can
be used for analysis and early design of AMR software;
and to measure the reusability of components from the
analysis pattern.

This paper is organized as follows. Section 2
describes the pattern mining process and catalogues
some important AMR analysis patterns in a properly
documented form. Section 3 illustrates the deployment
of the AMR analysis patterns for analysis and design of
AMR software. In Section 4 the reusability of the
components from the analysis pattern were measured
using a metrics suite [5]. Finally, the conclusion is
presented in Section 5.

2. Analysis Pattern for AMR Software
In this paper, the use of analysis pattern for system

level view of AMR software is proposed. The AMR
analysis pattern consists of components and each
component’s pattern acts as a unit of analysis and the
pattern will facilitate the transformation of the analysis
model into design model.

The software analysis patterns for AMR were
obtained through a pattern mining process, and

documented using a standard catalogue template.
Cataloging these analysis patterns involves two main
processes: pattern mining process and documenting the
analysis pattern and the pattern’s components. These
processes are described as follow.
2.1 Analysis patterns mining process Pattern
mining process concerns with identification and
documentation of patterns. The patterns mining process
in this work is based on studies of numerous AMR
systems from books such as [1, 6], existing AMR
software architectures [7, 8], and experience from
research works on AMR systems at the Universiti
Teknologi Malaysia (UTM). Existing embedded and
real-time design patterns [9] is also analyzed in this
process.

As a result of this pattern mining process, currently
ten software components were identified in the analysis
pattern for typical AMR software. The components
identified are: input-output, actuator, sensor, signal
processing, motor control, communication,
Human-Robot Interface (HRI), Behavior-Based Control
(BBC), coordinator and planner. These components are
categorized according to hybrid deliberate layered
architecture of robot software.

The relationships between the components of the
analysis pattern in reactive layer are shown in Fig 1. All
the components in the reactive layer are organizes into a
hierarchical organization based on their level of
abstraction. This subsystem organization of AMR
domain represents the architecture pattern of the
systems. Each subsystem will be treated as
component-based analysis pattern to model the detail
requirement of each domain.

2.2 Defining Analysis pattern at reactive layer At
this stage we are focusing on defining patterns in
reactive layer using behavior-based control intelligent.
 The analysis pattern is documented based on
template for documenting analysis pattern as proposed
in [4]. The documentation of the AMR analysis pattern
includes the name of the pattern, the intent of the pattern,
the motivation for the pattern, the forces resolved by the
pattern, the solution brought by the pattern, the
consequences of the pattern, the important design points
to be considered, and the known uses of the pattern.

Fig. 1: The structure of reactive layer

2.3 Components of the AMR analysis pattern The
essential information in components of AMR analysis
pattern are cataloged base on guidelines of Gamma et al.
[10] and Douglass [9]. The components of the analysis

patterns are documented using six essential elements:
name – reference to the component patterns; context –
description of the context of the problem identified and
the solution presented; problem – statement of problem
solve by the component patterns; solution – structural
solution presented using class diagram, showing the
elements and properties in the component pattern, and
interface to enable the component pattern to
communicate with other components; related pattern –
component patterns that may relate or will have
interaction to this pattern during composition process;
example of reuse component – name of components that
can be reused in and with the component pattern. Fig. 2
shows the catalogue for the BBC component pattern
documented using these six essential elements.

The Unified Modeling Language (UML) structural
elements and diagrams were adopted in describing the
solution element of the patterns as UML provide a
convenient and a lingua franca graphical representation
in industry and academic software practice. Even
though the solution is described using object-oriented
technique, its implementation or realization need not be
in object-oriented approach.

BEHAVIOR-BASED CONTROL
Context
A mobile robot will have multiple behaviors, to react to
the robot’s environment while trying to achieve its’
goal. Behavior-based control will provide intelligent to
select the parallel behaviors.

Problem
How to provide intelligence to decide on which
behavior to select depending on the environment and the
robot’s goal.

Solution

• Behavior Layer – Responsible to select action based

on the fixed behavior-based architecture layers of
the robot behaviors.

• Behavior – A definition of a behavior in the robot
system.

• Action –Action that will affect the robot’s actuator.

Related Patterns
Motor control, sensor, poster, coordinator, input-output.

Example of Reuse Components
Subsumption, motor schema.

Fig. 2: Behavior-based control pattern catalogue

BEHAVIOR-BASED
CONTROL

HRICOMMUNICATION SIGNAL
PROCESSING

MOTOR
CONTROL

SENSOR ACTUATOR

INPUT-
OUTPUT

<<BBC>>
BBCInstance

*

Behavior Layer
Behaviors
Actions
Arbitrate()

Actuator Action
direction
desiredSpeed
setActuator()

1

Behavior

sensorData
getSensor()

*

1

Actuator Action

The component pattern solution is described using

both structural model and real-time behavior model.
The structural model describes classes that make up a
particular component pattern. The combination of
classes in the structural model is arranged in a package
to represent constructional component pattern.
Interconnection between the packages or components in
the analysis pattern is supported by interfaces which are
defined in the analysis pattern solution. The result of
wiring the pattern components using these interfaces is
the functional structure or structural model of the AMR
software system. The idea of packages to represent
constructional pattern and definition of pattern interface
in describing structural model were both available in the
Pattern-Oriented Analysis and Design methodology
[11].

For a real-time system such as the AMR software,
the functional structure description using structural
model alone is not enough. A real-time behavior model
is required to specify the real-time behavior of real-time
components in the software. The real-time behaviors for
classes are categorized in four: passive class, active
class, event class, and implementation dependence class.
A passive class is a class that does not has its own
thread of control, and it is marked with a stereotype “ ”.
An active class is a class with its own thread of control,
and it is marked with a stereotype “ ”. An event class
is an active class whose behavior in triggered by event,
and it is marked with a stereotype “ ”. An
implementation dependence class is a class whose
real-time behavior can only be specified or decided
during the implementation phase of the pattern
depending on the application. This class is not marked
with any stereotype. As illustrated in Fig. 2 for the BBC
component pattern, the Behavior Layer and Behavior
classes are active classes while the Actuator Action is a
passive class.

In the documentation of the AMR component
patterns, the typical reusable components in each pattern
are also suggested. This will facilitate the deployment of
any existing reusable black box or white box
components in that particular pattern. For example
Proportional-Integral-Derivative (PID) Controller
design patterns from [12] can be used as white box
component solution in AMR Motor Control component
pattern.

3. Deployment of the Analysis Patterns in
Component-Based Development

Based on two main tasks of analysis patterns
proposed by [4], the AMR analysis patterns tasks are: 1)
to speed up the analysis of structural model and identify
the real-time behavior of each object in the structural
model at analysis level, and 2) to facilitate the
transformation of structural analysis model into design
model by suggesting reuse component that can be used
to solve the identified problems in the analysis model.
The deployment of the AMR software analysis patterns
is illustrated using an AMR case study to show how the
analysis pattern performs its tasks in Component-Based
Development (CBD).

The AMR considered in this case study is a

wheeled AMR, capable of traversing in a structured
environment, which is surrounded by walls. The goal of
the robot software is to navigate the robot in finding a
passage and exiting through the passage while avoiding
obstacles during its motion. The AMR consists of a
body and a pair of wheels. Each drive wheel is move by
a Direct-Current (DC) motor. The speeds of the motors
are sensed using shaft encoders and fed back to the
on-board embedded controller for computation of
control signal to the DC motors every 100 milliseconds
using the Proportional-Integral (PI) control algorithm.
The embedded controller also monitors the robot
environment using four Infra Red (IR) proximity
sensors and a distance sensor.

The embedded software must support the
intelligence aspect of the robot in order to response to
the conditions in the environment in achieving the goal.
The intelligence of AMR is supported by a
behavior-based control using subsumption architecture
[13]. To support concurrent behavior in subsumption
architecture and to satisfy the multi-tasking
requirements for these major tasks, a pre-emptive
Real-Time Operating System (RTOS) is used in the
robot software. The embedded controller also
communicates with human through Liquid Crystal
Display (LCD) and switches.

3.1 The AMR software analysis and early design
using POAD methodology The POAD methodology
is used in the analysis and early design of the AMR
software using the software analysis patterns. The
choice of POAD methodology is due to several reasons:
1) POAD takes structural composition approach to glue
patterns at high-level; 2) POAD provides logical views
to represent AMR application analysis and design as a
composition of the patterns; and 3) POAD provides the
necessary means to trace participants of those patterns
into the application’s final class diagram.

In this analysis phase, suitable candidates from the
AMR analysis patterns that could capture the main
requirements of the problem are identified. The AMR
software requirements were modeled using the UML
use-case diagram as shown in Fig. 3.

Fig. 3. The AMR use case diagram

Wall

Operator

Obstacle

Display Robot
Status

Display Robot
Mode

Configure Display Battery
Status

Detect Obstacle
Occurence

Measure Object
Distance

Detect Wall
Existance

Monitor Environment

Control
MotorControl Robot

Movement

<<include>>

<<include>>

<<include>>

<<extend>>

<<include>>

By matching the decomposed use-case of Fig. 3
with the context and problem elements available in
AMR analysis patterns, a mapping of the application
requirements and the AMR analysis patterns is obtained.
From this, a POAD Pattern-Level Diagram which
specifies the AMR pattern instances and their
relationships for this case study is developed as shown
in Fig 4.

In CBD, interfaces are the means by which
components connect. The composition of the
components using AMR analysis patterns is supported
by interfaces defined in the analysis pattern solution.

The relationship between patterns instances in Fig.
4 can be further detailed out to lower-level design
relationships using interfaces in Pattern-Level with
Interface diagram. For example, Fig. 5 shows a section
of the Pattern-Level with Interface diagram relating the
four packages involve in the AMR intelligence
behavior: Switches, IR Distance Sensor, IR Proximity
Sensor, and Subsumption Architecture.

Once the Pattern-Level with Interface diagrams
similar to Fig. 5 were obtained, each of the generic
analysis patterns in the diagram needs to be renamed,
classes in the pattern need to be detailed out according
to the specific AMR system, and the tracing of pattern
interfaces to internal classes need to be defined. Fig. 6
shows the results obtained from Fig. 5 following those
processes. All function and classes defined as the
pattern interfaces are connected directly to show the
relationship between the internal classes in each pattern.

Fig. 4. Pattern-level diagram for the AMR software

Fig. 5. Pattern-level with interface diagram for AMR

intelligence behavior

Fig. 6. Detail internal classes representation of the
AMR for intelligence behavior

Concurrency and multitasking capabilities of the

AMR software are supported by the RTOS. The
real-time behavior of AMR components specified in
Figure 6, which require the RTOS services has to be
wired to a concurrency or RTOS design pattern as
proposed in [9]. Due to lack of support for real-time in
POAD, we introduced the control interface for wiring
real-time components to the RTOS design pattern as
shown in Fig. 7. The control interface defines the
attributes of real-time requirements of a pattern
component, and this is only necessary in active and
event classes. The control interface, however, is not
explicitly showed in a pattern solution, since services
required from RTOS design pattern can only be
specified during the wiring of pattern components.

Fig. 7. Pattern-level with control interface diagram

for intelligence behavior

The detail internal classes of Fig. 6 acts as the

initial class diagram for static design model of the AMR
software. Up to this point, POAD methodology provides
logical views to represent AMR application analysis and
design as a composition of the patterns using structural
elements of UML. Fig. 7 enhances the static design
model of Fig. 6 by detailing the real-time concurrency
support required in the design model.

Once the detail software behaviors of the AMR are
defined, the software implementers can choose any
appropriate ways and suitable programming languages
for implementing the AMR software. For this case study
the software implementation process includes writing
functions, modules and tasks in C programming

<<MotorControl>>
PI Control Left

<<Actuator>>
Motor Left

<<BBC>>
Subsumption
Architecture

<<Sensor>>
Encoder LeftUpdate current

motor value

Send new
control signal

Operator

Wall

<<Sensor.>>
Battery Sensor

<<IO>>
Robot Status

<<IO>>
Switches

Update switch
status

Update
battery level

Set desired
control value

<<Sensor>>
IR Distance

Sensor

Update object
existence

status

Update
distance
reading

Update
behavior

Obstacle

<<Sensor>>
IR Proximity

Sensor

<<MotorControl>>
PI Control Right

<<Actuator>>
Motor Right

<<Sensor>>
Encoder RightUpdate current

motor value

Send new
control signal

Set desired
control value

<<BBC>>
Subsumption
Architecture

<<IO>>
Switches

<<Sensor>>
IR Proximity

Sensor

<<Sensor>>
IR Distance

Sensor

stop
behaviorsetvalue()

update()

update()

actuator
action

cruise
behavior

avoid
behaviorfollow wall

behavior

find wall
behavior

Actuator
Action1

1
Selector
Arbiter

Find Wall
Avoid

Stop

Cruise

Follow Wall

IO driver Digital IO

setValue()

IR Distance
Sensor driver

IR Distance
Sensor

update()

IR Proximity
Sensor driver

IR Proximity
Sensor

update()

Subsumption
Architecture

IR Proximity
Sensor

IR Distance
Sensor

Switches

<<BBC>>
Subsumption Architecture

Behavior
Selector
Arbiter

Behavior
Stop

Behavior
Find Wall

Behavior
Follow
Wall

Behavior
Avoid

<<RTOS>>
Pre-emptive

Abstract
Thread

Shared
Resources

Behavior
Cruise

language, program translation into executable code,
testing and debugging. The software tools used for the
software implementation are Paradigm C/C++ compiler
[14] for generating ROMable code and µC/OS-II
real-time kernel [15] for multitasking support.

4. Reusability of the Analysis Components

To quantify the benefit of the used of the analysis
pattern, the reusability of the components from the
analysis pattern is measured using a metrics suite
proposed by Washizaki et al. [5]. This metrics suite is
suitable for measuring the usability of black-box
components in analysis patterns without the availability
of source codes.

The metrics suite consists of five metrics originally
for JavaBeans component reusability assessment. The
metrics suite however, was modified for assessing the
components of the AMR analysis pattern. The main
modification is made in trying to match the Facade class
features in the original metrics with the interfaces
proposed in each components of the AMR analysis
pattern.

Three relevant metrics were considered in the
measurement process. These metrics are: observability,
customizability and external dependency. The
description of these metrics as adapted for components
of the AMR analysis pattern are as follow.

(1) Observability
Objective: To measure how easy a component in terms
of its operational behavior, input parameters and output
parameters.
Definition: Rate of Component Observability (RCO),
RCO(c) is a percentage of readable attributes in all
attribute implemented within the interface class of a
component.
Formula:

where,
 Pr(c) : number of readable attributes in c
 A(c) : number of attributes in c’s interface class

(2) Customizability
Objective: Indicates the built-in capability for
supporting the customization and configuration of a
component’s internal functional features.
Definition: Rate of Component Customizability (RCC),
RCC(c) is a percentage of writable attributes in all
attribute implemented within the interface class of a
component.
Formula:

where,
 Pw(c) : number of readable attributes in c
 A(c) : number of attributes in c’s interface class

(3) External dependency
Objective: Indicates the component’s degree of
independence from the rest of the software which
originally used the component.
Definition 1: Self-Completeness of Component’s Return
Value (SCCr), SCCr(c) is a percentage of methods
without any return value in all method implemented
within a component c.
Formula:

where,
 Bv(c) : number of methods without return value in c
 B(c) : number of methods in c
Definition 2: Self-Completeness of Component’s
parameter (SCCp), SCCp(c) is a percentage of methods
without any parameter in all method implemented
within a component c.
Formula:

where,
 Bp(c) : number of methods without parameter in c
 B(c) : number of methods in c

The proposed metrics were applied to six

components of AMR analysis patterns. These six
components were used in the analysis and design
composition as shown in previous Section 3.1. For
each component the value of adapted Washizaki et al.’s
metrics can be computed as tabulated in Table 1.

Table 1. Washizaki et al.’s metrics applied on six

components of the AMR analysis pattern
Components RCO RCC SCCr SCCp

Input 1 0 1 1
Output 0 1 1 1
Sensor 1 0 1 1

Actuator 0 1 1 1
Motor

Control
0.25 0.75 1 1

BBC 0.66 0.33 1 1

From Table 1, it can be concluded that: (1) the

observability of component Input and Sensor is very
high; (2) the customizability of component Output and
Actuator is very high; and (3) External dependency of
all components are very high.

High observability for Input and Sensor
components, and high customizability for Output and
Actuator are due to the readable and writable attributes
in the component are provided by the interface of the
components. However, if the observability measurement
is too high, its will lead to difficulty for users to find
important readable properties from the interface, and if
the customizability measurement is too high, its will
leads to high possibility of misuse of components [5].

Pr() (() 0)
()

0 ()
()

c A c
A c

otherwise
RCO c

>⎧⎪= ⎨
⎪⎩

() (() 0)
()

0 ()
()

Pw c A c
A c

otherwise
RCC c

>⎧⎪= ⎨
⎪⎩

() (() 0)
()

1 ()
()

Bp c B c
B c

otherwise
SCCp c

>⎧⎪= ⎨
⎪⎩

() (() 0)
()

1 ()
()

Bv c B c
B c

otherwise
SCCr c

>⎧⎪= ⎨
⎪⎩

In the AMR domain it is important for the Input
and Sensor components to have very high obsevability,
and Output and Actuator components to have very high
customizability, since, the main objective of the
components are to observe its environment from
hardware reading and to configure the hardware in order
to react in environment.

The high external dependency of five components
of AMR analysis patterns are due to the implementation
of the operation in the interface class are without the use
of parameters or return values, this lead to
self-completed within component.

5. Conclusions

The use of software analysis patterns as a means to
facilitate AMR software knowledge reuse through
component-based software engineering is proposed. The
software analysis patterns for AMR were obtained
through a pattern mining process, and documented using
a standard catalogue template.

Based on this AMR software analysis pattern, the
pattern level analysis and design of AMR software case
study using the Pattern-Oriented Analysis and Design
(POAD) methodology is illustrated and discussed.

The results of this pattern level analysis and design
is the initial class diagram for static design model of the
AMR software system. Once the detail internal classes’
representation of AMR software is obtained, it will
serve as best starting point for two groups of software
implementer: 1) application software engineer who can
easily implementing the AMR software in any way, not
necessarily based on CBD; 2) software engineer who
develops component can develop black box or white
box version of components, which can later be used by
application software engineer to compose the AMR
software based on the black box or white box
components.

The reuse potential of the analysis pattern is
evaluated by measuring the reusability of components in
the analysis patterns using a metrics suite. From the
measurement the reusability of the component in the
patterns are found to be high. From this result it is
believe that further detail research on the benefits of
patterns as a means to reuse domain knowledge is
needed in domain such as AMR software.

 References

[1] Braunl. T., Embedded Robotics: Mobile Robot
Design and Applications with Embedded Systems,
Springer-Verlag, New York, 2003.
[2] Seward, D.W. and Garman, A., “The Software
Development Process for an Intelligent Robot”, IEEE
Computing and Control Engineering Journal, vol. 7, no.2,
(1996), pp. 86 –92.
[3] Riehle, D., and Zullighoven, H., “Understanding and
Using Patterns in Software Development”, Theory and
Practice of Object Systems, vol. 2, no. 1, (1996), pp.
33-13.
[4] A. Geyer-Schulz and M. Hahsler, “Software reuse
with analysis patterns”, In Proceedings of the 8th
Association for Information Systems (AMCIS), Dallas,
TX, (2002), pp. 1156-1165.

[5] Washizaki, H., Yamamoto, H., Fukazawa, Y., “A
Metrics Suite for Measuring Reusability of Software
Components”, Proceedings of the Ninth International
Software Metrics Symposium 2003, (2003), pp. 211 –
223.
[6] Jones, L.J., Seiger, B.A., and Flynn, A.M., Mobile
Robots Inspiration to Implementation, Second edition. A
K Peters, Natick, 1999.
[7] A. Oreback, and H. I. Christensen, “Evaluation of
Architecture for Mobile Robotics”, Autonomous Robots,
vol. 14, pp. 33-49, 2003.
[8] Alami, R., Chatila, R., Fleury, S., Ghallab, M. and
Ingrand, F., “Architecture for Autonomy”, Journal of
Robotics Research, vol. 17, no. 4, (1998), pp. 8315-337.
[9] Douglass, B. P., Real-Time Design Patterns: Robust
Scalable Architecture for Real-Time Systems, Addison
Wesley, Boston, 2002.
[10] Gamma, J., Helm, R., Johnson, R. and Vlissides, J.,
Design Patterns: Elements of Reuse Object-Oriented
Software, Addison-Wesley, Reading, 1995.
[11] Yacoub, S. M. and Ammar, H. H., Pattern-Oriented
Analysis and Design: Composing Patterns to Design
Software Systems, Addison-Wesley, Boston, 2004.
[12] Pont M.J., and Banner, M.P., Designing embedded
systems using patterns: A case study, Journal of Systems
and Software 71(3), (2004), pp. 201-213.
[13] Brooks, R.A., A Robust Layered Control System for
a Mobile Robot, IEEE Journal of Robotics and
Automation, vol. RA-2, no. 1, (1986.), pp. 14-23.
[14] Paradigm C++ Reference Manual Version 5.0,
Paradigm Systems, Endwell, 2000
[15] Labrosse, J. J.. MicroC/OS-II The Real-Time Kernel,
2nd edition, R&D Books, USA , 1999.

