ADSORPTION OF METALS FROM RECOVERED BASE OIL USING ZEOLITE

SUSIWI

UNIVERSITI TEKNOLOGI MALAYSIA

ADSORPTION OF METALS FROM RECOVERED BASE OIL USING ZEOLITE

SUSIWI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Chemical)

Faculty of Chemical and Natural Resources Engineering Universiti Teknologi Malaysia

JULY 2010

To My beloved husband, son, mother, father, brother and sisters....

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, and Most Merciful

Praise to Almighty Allah (Subhanahu Wa Ta'ala) who gave me the courage and patience to carry out this work. Blessing of Allah be upon his last prophet Mohammed SAW and all his companions who devoted their lives towards the prosperity and spread of Islam.

My deep appreciation and heartfelt gratitude goes to my supervisor, Assoc. Prof. Dr. M. Wijayanuddin Ali for his kindness, constant endeavor, guiding and the numerous moments of attention he devoted through out this work. I would like to extend my deepest gratitude to my co-supervisor, Assoc. Prof. Adnan Bin Ripin and Prof. Dr. Arshad Ahmad for providing their workstations to complete my work.

Furthermore, this study would have been impossible without technical support from Unit Operation Laboratory, Faculty of Chemical and Natural Resources Engineering UTM, special thanks for En. Arsad, En. Mior, En. Rafy, and En. Shairray for their assistance.

Many thanks also go to my research colleagues, staff of the department and my friend for their help, suggestion and discussion in this work. The financial support of Ministry of Science, Technology and Innovation (MOSTI) is gratefully acknowledged.

Finally, I would like to thank my parents, my husband Mohd. Khairudin Samsudin, and my son Fattah Ghiyas Khairi for their continuous support and understanding over the years.

ABSTRACT

Extraction process of used lubricating oil produces organic sludge and recovered base oil. However, the base oil contains metal components as impurities. The metal components need to be removed in order to obtain a base oil that is suitable for the formulation of new lubricants. In this study, metals such as calcium, zinc, and lead from the recovered base oil were removed by using adsorption process. The parameters of adsorption such as zeolite/oil ratio, temperature, and time were investigated. The experiments were carried out using the Full Factorial Design (FFD) and Non-Factorial Response Surface Design (NFRSD) methods. The experimental results were analyzed and developed by Response Surface Methodology (RSM) to obtain empirical models. The models were the FFD no interactions, the FFD two way interactions, the linear main effects only NFRSD, the linear main effects+2ways NFRSD, the linear and quadratic main effects NFRSD, the linear and quadratic main effects+2ways NFRSD. The goodness for fit of the models were evaluated by the coefficient determination and the analysis of variances The comparison study of those models shows that the linear and (ANOVA). quadratic main effects+2ways NFRSD was the best model. Furthermore, this model was used to obtain the optimum condition of the calcium, zinc and lead removal. The results showed that the highest value of calcium removal was found to be 35.18 % at 39.9 °C, 6.2 minutes, and 0.06 g/ml of zeolite/oil ratio. The zinc removal was 35.86 % at 34.1 °C, 6.6 minutes, and 0.063 g/ml of zeolite/oil ratio. The lead removal was 86.17 % at 52.1 °C, 5.8 minutes and 0.05 g/ml of zeolite/oil ratio. The average errors of metal removal of the linear and quadratic main effects+2ways NFRSD model were 6.4 %, 15.2 %, and 4.0 %, for calcium, zinc, and lead, respectively.

ABSTRAK

Proses pengekstrakan daripada minyak pelincir terpakai menghasilkan enapcemar organik dan minyak dasar yang dipulih semula, tetapi minyak dasar ini mengandungi bahagian-bahagian logam. Bahagian-bahagian logam tersebut perlu disingkirkan untuk memperoleh minyak dasar yang sesuai untuk perumusan minyak pelincir yang baru. Dalam kajian ini, logam-logam seperti kalsium, zink, dan plumbum daripada minyak dasar yang dipulih semula telah disingkirkan dengan Parameter-parameter daripada penjerapan seperti nisbah proses penjerapan. zeolit/minyak, suhu, dan masa telah diselidiki. Ujikaji telah dibuat dengan menggunakan reka bentuk faktorial penuh (FFD) dan reka bentuk permukaan gerak balas bukan faktorial (NFRSD). Hasil ujikaji telah dianalisis dan dikembangkan dengan kaedah permukaan gerak balas (RSM) untuk memperoleh model-model empirik. Model-model tersebut adalah FFD tiada interaksi, FFD dua hala interaksi, NFRSD linear kesan utama sahaja, NFRSD linear kesan utama + dua hala, NFRSD linear dan kuadratik kesan utama, NFRSD linear dan kuadratik kesan utama + dua hala. Model yang sesuai telah dinilai dengan pekali penentuan dan analisis varians Perbandingan kajian diantara model-model tersebut menunjukkan (ANOVA). NFRSD linear dan kuadratik kesan utama + dua hala merupakan model yang terbaik. Model terbaik tersebut telah digunakan untuk memperoleh keadaan optimum daripada penyingkiran kalsium, zink, dan plumbum. Hasil ujikaji menunjukkan nilai tertinggi penyingkiran kalsium adalah 35.18 % pada 39.9 °C, 6.2 minit, dan 0.06 g/ml nisbah zeolit/minyak. Penyingkiran zink adalah 35.86 % pada 34.1 °C, 6.6 minit, dan 0.063 g/ml nisbah zeolit/minyak. Penyingkiran plumbum adalah 86.17 % pada 52.1 °C, 5.8 minit, dan 0.05 g/ml nisbah zeolit/minyak. Purata ralat penyingkiran logam daripada model NFRSD linear dan kuadratik kesan utama + dua hala adalah 6.4 % 15.2 %, dan 4.0 %, untuk kalsium, zink, dan plumbum.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	TITI	LE PAGE	i
	DEC	LARATION PAGE	ii
	DED	ICATION PAGE	iii
	ACK	NOWLEDGEMENTS	iv
	ABS'	TRACT	V
	ABS'	TRAK	vi
	ТАВ	LE OF CONTENTS	vii
	LIST	TOF TABLES	х
	LIST	TOF FIGURES	xiv
	LIST	TOF SYMBOLS	xviii
	LIST	TOF ABBREVIATIONS	XX
	LIST	FOF APPENDICES	xxi
1	INTI	RODUCTION	1
	1.1	Background of the Problem	1
	1.2	Statement of the Problem	3
	1.3	Objectives of the Study	4
	1.4	Scopes of the Study	4
	1.5	Research Contributions	5
	1.6	The Organization of Thesis	5
•	FUN	DAMENTAL THEORY AND LITERATURE	
2	REV	IEW	7
	2.1	Adsorption	7
	2.2	Adsorbent	8

2.3	Zeolite	9
2.4	Equilibrium	14
2.5	Slurry Adsorption	15
2.6	Waste Oil Recycling	16
2.7	Metal Removal	20
2.8	Metal Removal by Zeolite	21
2.9	Factorial Design	24
2.10	Response Surface Methodology	27
2.11	Statistical Analysis	29
RESI	EARCH METHODOLOGY	30
3.1	Material and Equipment	30
3.2	Characterization of Zeolite	31
	3.2.1 X-Ray Diffraction (XRD)	31
	3.2.2 Scanning Electron Microscopy (SEM)	31
	3.2.3 BET Surface Area and Porosity	32
3.3	Overall Flow Diagram	32
3.4	Flow Diagram of Analysis for Full Factorial	
	Design (FFD) Model	33
3.5	Flow Diagram of Analysis of Response Surface	
	Design Model	35
3.6	Recovered Base Oil Preparation	36
3.7	Adsorption	37
3.8	Calculation of Metal Removal	38
3.9	Empirical Models Analysis	38
3.10	Analysis of Variance Table	40
3.11	Preliminary Stage	41
3.12	Investigation of Parameters	42
3.13	Experimental Design	43
3.14	Prediction of Optimum Condition	45
3.15	Percentage of Error	45

3

4	RESU	ULTS A	ND DISCUSSION	46
	4.1	Introd	uction	46
	4.2	Chara	cterization of Adsorbent	47
		4.2.1	Scanning Electron Microscopy (SEM)	47
		4.2.2	X-Ray Diffraction (XRD)	48
		4.2.3	BET Surface Area and Porosity	51
	4.3	Prelin	ninary Results	53
	4.4	Effect	s of Parameters	59
		4.4.1	Effect of Zeolite/Oil Ratio	59
		4.4.2	Effect of Temperature	61
		4.4.3	Effect of Time	62
	4.5	Empir	rical Model Development	63
		4.5.1	FFD no interactions Model	64
		4.5.2	FFD 2 way interactions Model	68
		4.5.3	Linear Main Effects only-NFRSD	
			Model	72
		4.5.4	Linear Main Effects+2ways-NFRSD	
			Model	76
		4.5.5	Linear/Quadratic Main Effects-NFRSD	
			Model	80
		4.5.6	Linear/Quadratic Main Effects+2ways-	
			NFRSD Model	86
	4.6	Resun	ne of Empirical Model	92
	4.7	Predic	eted Optimum Condition	95
	4.8	Percer	ntage of Error	97
5	CON	CLUSI	ONS AND RECOMMENDATIONS	101
	5.1	Concl	usions	101
	5.2	Recor	nmendations	102
REFERENC	ES			103-125
Appendices A	- V			126-190

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Metallic content of solvent extraction product	2
2.1	Adsorption equilibrium equations	15
2.2	Common commercial methods for adsorption separation	15
2.3	Various mode for metal removal	20
2.4	Various adsorbents used for metal removal	21
2.5	Some research on metal removal using zeolite	23
2.6	Cost comparison of common adsorbents	24
2.7	Some researches using factorial design	25
2.8	Sign table for a 2 ³ factorial experiment	27
2.9	Analysis and optimization of metal removal using RSM	28
3.1	Equipments for experimental process	30
3.2	The analysis of variance table	41
3.3	Factors and levels used in factorial design for	
	preliminary stage	42
3.4	Design of trial runs for preliminary stage	42
3.5	Factors and levels used in FFD	43
3.6	Design of trial runs for FFD	44
3.7	Design of trial runs for NFRSD	44
4.1	Characteristic of crystal of zeolite A and zeolite LTA	
	dehydrated	49
4.2	Classification of micropore zeolite (pore diameter < 2	
	nm)	52
4.3	Classification of mesopore zeolite (pore diameter: $2-50$	
	nm)	53

4.4	Effect estimates of calcium, zinc and lead removal (FFD	
	no interactions model)	64
4.5	Regression coefficients for calcium, zinc and lead	
	removal (FFD no interactions model)	66
4.6	The <i>p</i> -value and F-value for calcium removal (FFD no	
	interactions model)	67
4.7	The <i>p</i> -value and F-value for zinc removal (FFD no	
	interactions model)	67
4.8	The <i>p</i> -value and F-value for lead removal (FFD no	
	interactions model)	67
4.9	Effect estimates of calcium, zinc and lead removal (FFD	
	2 way interactions model)	68
4.10	Regression coefficients for calcium, zinc and lead	
	removal (FFD 2 way interactions model)	70
4.11	The <i>p</i> -value and F-value for calcium removal (FFD 2	
	way interactions model)	70
4.12	The <i>p</i> -value and F-value for zinc removal (model-FFD 2	
	way interactions)	71
4.13	The <i>p</i> -value and F-value for lead removal (model-FFD 2	
	way interactions)	71
4.14	Effect estimates of calcium, zinc and lead removal	
	(model-linear main effects only)	72
4.15	Regression coefficients for calcium, zinc and lead	
	removal (linear main effects only-NFRSD model)	73
4.16	The <i>p</i> -value and F-value for calcium removal (linear	
	main effects only-NFRSD model)	74
4.17	The <i>p</i> -value and F-value for zinc removal (linear main	
	effects only-NFRSD model)	74
4.18	The <i>p</i> -value and F-value for lead removal (linear main	
	effects only-NFRSD model)	74
4.19	Effect estimates of calcium, zinc and lead removal	
	(model-linear main effects+2ways)	76

4.20	Regression coefficients for calcium, zinc and lead	
	removal (model-linear main effects+2 ways)	77
4.21	The <i>p</i> -value and F-value for calcium removal (model-	
	linear main effects+2ways)	78
4.22	The <i>p</i> -value and F-value for zinc removal (model-linear	
	main effects+2ways)	79
4.23	The <i>p</i> -value and F-value for lead removal (model-linear	
	main effects+2ways)	79
4.24	Effect estimates of calcium, zinc and lead removal	
	(model-linear/quadratic main effects)	81
4.25	Regression coefficients for calcium, zinc and lead	
	removal (model-linear/quadratic main effects)	83
4.26	The <i>p</i> -value and F-value for calcium removal (model-	
	linear/quadratic main effects)	84
4.27	The <i>p</i> -value and F-value for zinc removal (model-	
	linear/quadratic main effects)	84
4.28	The <i>p</i> -value and F-value for lead removal (model-	
	linear/quadratic main effects)	85
4.29	Effect estimates of calcium, zinc and lead removal	
	(model- linear/quadratic main effects+2ways)	86
4.30	Regression coefficients for calcium, zinc and lead	
	removal (model-linear/quadratic main effects+2ways)	88
4.31	The <i>p</i> -value and F-value for calcium removal (model-	
	linear/quadratic main effects+2ways)	89
4.32	The <i>p</i> -value and F-value for zinc removal (model-	
	linear/quadratic main effects+2ways)	90
4.33	The <i>p</i> -value and F-value for lead removal (model-	
	linear/quadratic main effects+2ways)	91
4.34	Resume of empirical model (FFD-model)	93
4.35	Resume of empirical model (NFRSD-model)	94
4.36	Critical value on the calcium removal (model-	
	linear/quadratic main effect+2ways)	96

4.37	Critical value on the zinc removal (model-	
	linear/quadratic main effect+2ways)	96
4.38	Critical value on the lead removal (model-	
	linear/quadratic main effect+2ways)	97
4.39	Percentage of error (average) of linear model and	
	linear/quadratic model	97
4.40	Percentage of error of calcium removal (linear/quadratic	
	main effects +2ways model)	98
4.41	Percentage of error of zinc removal (linear/quadratic	
	main effects +2ways model)	99
4.42	Percentage of error of lead removal (linear/quadratic	
	main effects +2ways model)	100

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	A primary structural unit of AlO ₄ - and SiO ₄ tetrahedra	11
2.2	Fundamental units of Si or Al atoms in zeolite structures	11
2.3	Structure of molecular sieve zeolite A	12
2.4	Structure of molecular sieve zeolite X	14
3.1	The overall flow diagram	33
3.2	Flow diagram of Analysis for FFD Model	34
3.3	Flow diagram of analysis for NFRSD model	35
3.4	Equipment for separation of solvent and recovered base	
	oil	36
3.5	Flow diagram of recovered base oil preparation	37
4.1	The scanning electron microscope (SEM) for zeolite A	47
4.2	The powder X-ray diffraction (XRD) pattern for zeolite	
	А	48
4.3	The powder X-ray diffraction (XRD) pattern for zeolite	
	LTA dehydrated	48
4.4	Three varieties of cubic crystal system	50
4.5	Typical zeolite pore size illustrated with oxygen	
	packing model	51
4.6	Pore size distribution of zeolite A	52
4.7	Three-dimensional response surface graph showing	
	combined effect of zeolite/oil ratio and time on the	
	calcium removal (T=50°C)	53

4.8	Three-dimensional response surface graph showing	
	combined effect of zeolite/oil ratio and time on the zinc	
	removal (T=50°C)	54
4.9	Three-dimensional response surface graph showing	
	combined effect of zeolite/oil ratio and time on the lead	
	removal (T=50°C)	55
4.10	Three-dimensional response surface graph showing	
	combined effect of temperature and time on the calcium	
	removal (zeolite/oil=0.11 g/ml)	56
4.11	Three-dimensional response surface graph showing	
	combined effect of temperature and time on the zinc	
	removal (zeolite/oil=0.11 g/ml)	57
4.12	Three-dimensional response surface graph showing	
	combined effect of temperature and time on the lead	
	removal (zeolite/oil=0.11 g/ml)	58
4.13	Effect of zeolite/oil ratio on the metal removal (T=30°C,	
	t=10 minute)	59
4.14	Effect of temperature on the metal removal	
	(zeolite/oil=0.02 g/ml, t=10 minute)	61
4.15	Effect of time on the metal removal (zeolite/oil=0.02	
	g/ml, T=30°C)	62
4.16	Pareto chart of calcium removal (FFD no interactions	
	model)	64
4.17	Pareto chart of zinc removal (FFD no interactions	
	model)	65
4.18	Pareto chart of lead removal (FFD no interactions	
	model)	65
4.19	Pareto chart of calcium removal (FFD 2 way	
	interactions model)	69
4.20	Pareto chart of zinc removal (FFD 2 way interactions	
	model)	69

4.21	Pareto chart of lead removal (FFD 2 way interactions	
	model)	69
4.22	Pareto chart of calcium removal (model-linear main	
	effects only)	72
4.23	Pareto chart of zinc removal (model-linear main effects	
	only)	72
4.24	Pareto chart of lead removal (model-linear main effects	
	only)	73
4.25	The accuracy of the linear main effects only model for	
	calcium removal	75
4.26	The accuracy of the linear main effects only model for	
	zinc removal	75
4.27	The accuracy of the linear main effects only model for	
	lead removal	75
4.28	Pareto chart of calcium removal (model-linear main	
	effects+2ways)	76
4.29	Pareto chart of zinc removal (model-linear main	
	effects+2ways)	77
4.30	Pareto chart of lead removal (model-linear main	
	effects+2ways)	77
4.31	The accuracy of the linear main effects+2ways model	
	for calcium removal	80
4.32	The accuracy of the linear main effects+2ways model	
	for zinc removal	80
4.33	The accuracy of the linear main effects +2ways model	
	for lead removal	80
4.34	Pareto chart of calcium removal (model-linear/quadratic	
	main effects)	81
4.35	Pareto chart of zinc removal (model-linear/quadratic	
	main effects)	82
4.36	Pareto chart of lead removal (model-linear/quadratic	
	main effects)	82

4.37	The accuracy of the linear/quadratic main effects model	
	for calcium removal	85
4.38	The accuracy of the linear/quadratic main effects model	
	for zinc removal	85
4.39	The accuracy of the linear/quadratic main effects model	
	for lead removal	86
4.40	Pareto chart of calcium removal (model-linear/quadratic	
	main effects+2ways)	87
4.41	Pareto chart of zinc removal (model-linear/quadratic	
	main effects+2ways)	87
4.42	Pareto chart of lead removal (model-linear/quadratic	
	main effects+2ways)	88
4.43	The accuracy of the linear/quadratic main	
	effects+2ways model for calcium removal	91
4.44	The accuracy of the linear/quadratic main	
	effects+2ways model for zinc removal	92
4.45	The accuracy of the linear/quadratic main	
	effects+2ways model for lead removal	92
4.46	The metals removal for the low, middle, and high level	
	of parameters	95

LIST OF SYMBOLS

a	-	number of levels
α		level of significance
Å	-	Angstrom
A_0	-	intercept
A_{I}	-	coefficient of linear effect for parameter Z/O
A_2	-	coefficient of linear effect for parameter T
A_3	-	coefficient of linear effect for parameter t
A_4	-	coefficient of interaction effect for
		parameter (Z/O) and T
A_5	-	coefficient of interaction effect for
		parameter (Z/O) and t
A_6	-	coefficient of interaction effect for parameter T and t
A_7	-	coefficient of square effect for parameter (Z/O)
A_8	-	coefficient of square effect for parameter T
A_9	-	coefficient of square effect for parameter t
β_0	-	independent term of regression equation
β_i (<i>i</i> =1, 2, , <i>k</i>)	-	linear term of regression equation
β_{ii} (<i>i</i> =1, 2, , <i>k</i>)	-	second-order term of regression equation
β_{ij} (<i>i</i> =1,2, , <i>k</i> ;	-	interactive term of regression equation
j=1, 2,, k)		
С	-	concentration of metal after adsorption process
C_0	-	initial metal concentration
С	-	concentration
З	-	error
ΔG^o_{ads}	-	standard free energy of adsorption
H_0	-	null hypothesis

$H_{\rm A}$	-	alternative hypothesis	
k	-	number of factors	
MR	-	metal removal	
μm	-	micrometer	
Ν	-	total of observation	
nm	-	nanometer	
р	-	total of term in model	
р	-	probability	
q	-	amount adsorbed	
r	-	effective radius of the adsorbed ions	
R	-	gas constant	
R^2	-	coefficient determination	
$\overline{R}_{+,i}$	-	average values of <i>Y</i> for high (+) levels	
$\overline{R}_{-,i}$	-	average values of <i>Y</i> for low (–) levels	
SSE	-	sum squares of the residuals	
SSR	-	sum of squares due to regression of the fitted model	
SST	-	total variation in the data values	
Т	-	Temperature	
t	-	time	
U _{el}	-	electrostatic interaction	
$X_1, X_2, \dots X_k$	-	independent variables (factors), input variables	
Y	-	dependent variable (response)	
$Y_{u}s$	-	squares of the observed	
(\hat{Y}_u)	-	value predicted by the fitted model	
\overline{Y}	-	average value of <i>Y</i>	
Ζ/Ο	-	Zeolite/Oil ratio	
Γ_i	-	adsorption density	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Raw data from ICP (Preliminary stage)	126
В	Data of metals removal-I (FFD-preliminary	
	stage)	127
С	Raw data of metals removal-II (FFD)	128
D	Data of metals removal-II (FFD)	129
Е	Raw data of metals removal-II (NFRSD)	130
F	Data of metals removal-II (NFRSD)	133
G	Data experimental (effects of parameters)	136
Н	Data experimental and data predicted from	
	model-FFD	137
Ι	Data experimental and data predicted from	
	model-linear main effects (NFRSD)	140
J	Data experimental and data predicted from	
	model-linear/quadratic main effects (NFRSD)	146
K-1	Statistical data of calcium removal	
	model-FFD no interactions	152
K-2	Statistical data of calcium removal	
	model-FFD 2 way interactions	153
K-3	Statistical data of calcium removal	
	model-linear main effects (NFRSD)	154
K-4	Statistical data of calcium removal	
	model-linear main effects+2ways (NFRSD)	155
K-5	Statistical data of calcium removal	
	model-linear/quadratic main effects (NFRSD)	156

K-6	Statistical data of calcium removal model-	
	linear/quadratic main effects+2ways (NFRSD)	157
L-1	Statistical data of zinc removal	
	model-FFD no interactions	158
L-2	Statistical data of zinc removal	
	model-FFD 2 way interactions	159
L-3	Statistical data of zinc removal	
	model-linear main effects (NFRSD)	160
L-4	Statistical data of zinc removal	
	model-linear main effects+2ways (NFRSD)	161
L-5	Statistical data of zinc removal	
	model-linear/quadratic main effects (NFRSD)	162
L-6	Statistical data of zinc removal model-	
	linear/quadratic main effects+2ways (NFRSD)	163
M-1	Statistical data of lead removal	
	model-FFD no interactions	164
M-2	Statistical data of lead removal	
	model-FFD 2 way interactions	165
M-3	Statistical data of lead removal	
	model-linear main effects (NFRSD)	166
M-4	Statistical data of lead removal	
	model-linear main effects+2ways (NFRSD)	167
M-5	Statistical data of lead removal	
	model-linear/quadratic main effects (NFRSD)	168
M-6	Statistical data of lead removal model-	
	linear/quadratic main effects+2ways (NFRSD)	169
Ν	Determination F-table of empirical models	170
0	Percentage points of the F-distribution: upper 5%	
	points	173
P-1	RSM-result of calcium removal	
	(time = 7.25 minute)	174
P-2	RSM-result of calcium removal	
	(Temperature = $39.375 \circ C$)	175

P-3	RSM-result of calcium removal		
	(zeolite/oil = 0.0475)	176	
Q-1	RSM-result of zinc removal		
	(time = 7.25 minute)	177	
Q-2	RSM-result of zinc removal		
	(Temperature = 39.375 °C)	178	
Q-3	RSM-result of zinc removal		
	(zeolite/oil = 0.0475)	179	
R-1	RSM-result of lead removal		
	(time = 7.25 minute)	180	
R-2	RSM-result of lead removal		
	(Temperature = 39.375 °C)	181	
R-3	RSM-result of lead removal		
	(zeolite/oil = 0.0475)	182	
S1-S3	Data of zeolite A from XRD analysis	183-185	
Т	Data from analysis of BET surface area	186	
U	ASTM 5815	187-189	
V	List of Publications	190	

LIST OF ABBREVIATIONS

ANOVA	-	Analysis of Variances
ASTM	-	American Society for Testing and Materials
FFD	-	Full Factorial Design
ICP	-	Inductively Coupled Plasma
IUPAC	-	International Union of Pure and Applied Chemistry
MEK	-	Methyl Ethyl Ketone
MPK	-	Methyl n-Propyl Ketone
NFRSD	-	Non-Factorial Response Surface Design
ppm	-	parts per million
RSM	-	Response Surface Methodology

CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

Large quantity of used lubricating oil that is not being disposed of properly can degrade the environment. The re-refining of used oil is a better approach than dumping on the ground, in landfills and waterways. Normally, used oil contains about 75% recoverable base oil, higher than the base oil content of virgin crude oil, so the re-refining used oil requires less energy and has less of an impact on the environment (Voogd *et al.*, 2008). This re-refining process is carried out to remove contaminants. A large number of contaminants such as dirt, water, metals, incomplete products of combustion, or other materials, complicate the selection of appropriate treatment methods. Among the treatment methods proposed during recent years, solvent extraction process has received considerable attention from many researchers (van Grieken *et al.*, 2008) (Espada *et al.*, 2007) (Rincón *et al.*, 2006) (Rincón *et al.*, 2005a) (Hamad *et al.*, 2005) (Rincón *et al.*, 2003) (Elbashir *et al.*, 2002) (Wong and Wang, 2001).

Solvent extraction technology has the potential to produce oil products because this technology separates a large fraction of the impurities from the used oil. The bottoms from the solvent technology, which resemble a light asphalt product, may also be a marketable product such as asphalt. The solvent extraction process have many advantages, nevertheless, the recovered base oil still contains metals (Rincon *et al.*, 2005b). The list of metallic content of solvent extraction product is

presented in Table 1.1.

Solvent	Metallic Content (ppm)			References
Solvent	Zn	Fe	Pb	
2-propanol	333	11	246	- Lide, 1994
				- Smallwood, 1996
2-butanol	666	19	282	- Lide, 1994
				- Smallwood, 1996
2-pentanol	700	20	487	- Lide, 1994
				- Smallwood, 1996
Methyl Ethyl Keton	688	13	350	- Lide, 1994
(MEK)				- Smallwood, 1996
Methyl n-Propyl	936	18	443	- Lide, 1994
Ketone (MPK)				- Smallwood, 1996
Mixture of 2-propanol	155	23	163	Rincon <i>et al.</i> , 2005b
/MEK with KOH				
Propane	390	13	290	Rincon <i>et al.</i> , 2003
Mixture of 2-propanol/	312.56	69.13	0.10	Lim, 2001
n-hexane with KOH				

 Table 1.1: Metallic content of solvent extraction product

The metallic compounds are important used oil components that should be removed to obtain base oil suitable for the formulation of new lubricants. A few familiar methods in practice for removal of metals are chemical precipitation, ion exchange, solvent extraction, reverse osmosis, and adsorption. The process of adsorption has become one of the preferred methods for removal of toxic contaminants from water as it has been found to be very effective, economical, versatile and simple (Tran *et al.*, 1999). Adsorption has the additional advantages of applicability at very low concentrations, suitability for using batch and continuous processes, ease of operation, little sludge generation, possibility of regeneration and reuse, and low capital cost (Mohanty *et al.*, 2006).

Adsorption is a popular method for the removal of heavy metals from the waste water (Omer *et al.*, 2003; Heping *et al.*, 2006), particularly when natural materials that are available in large quantities or certain waste products from industrial or agricultural activities may have potential as inexpensive sorbents (Bailey *et al.*, 1999). Examples include dead biomass, blast furnace slag, fly ash, clay, tree bark, tea leaves and natural zeolite (Krishna and Susmita Sen, 2006; Ahmet *et al.*, 2007; Bailey *et al.*, 1999).

Zeolites are naturally occurring alumino-silicates with a 3 dimensional framework structure bearing AlO₄ and SiO₄ tetrahedra. These are linked to each other by sharing all of the oxygen to form interconnected cages and channels (Englert and Rubio, 2005). Zeolites with their chemical, physical and structural characteristics are suitable for a number of applications in various fields such as adsorption, separation, ion exchange and catalysis (Aiello *et al.*, 1980; Dwyer and Parish, 1983; Blanchard *et al.*, 1984; Mulligan *et al.*, 2001). The use of natural zeolite as an adsorbent has gained interest among researchers; mainly because its sorption properties provide a combination of ion exchange and molecular sieve properties which can also be easily modified (Cincotti et al., 2006).

In this study, adsorption of metals using zeolite with conventional method (one of the parameters is varied while maintaining other parameters fixed) was investigated. This method usually involves many experimental runs, ignoring interaction effects between the factors and low efficiency in process optimization. The limitations of this method can be avoided by applying the response surface methodology (RSM) (Cojocaru and Trznadel, 2007).

1.2 Statement of the Problem

The solvent extraction technique is a method for refining of used lubricating oil. In the end, extraction process produces organic sludge and the recovered base oil, but this oil is darkish in colour and has metallic content. The metals are important components that should be removed to obtain base oil suitable for the formulation of new lubricants. The adsorption process has become one of the preferred methods for metal removal from water as it has been found to be very effective, economical, versatile and simple.

1.3 **Objectives of the Study**

The aim of this study was to remove metal from recovered base oil using zeolite. This can be achieved by the following specific objectives:

- i. To investigate the effects of parameters on the adsorption of metals from recovered base oil using zeolite.
- ii. To obtain the empirical models of the metal removal.
- iii. To predict the optimum condition of the metal removal.

1.4 Scopes of the Study

This study focused on the adsorption of metals (calcium, zinc and lead) from recovered base oil using zeolite as an adsorbent. The recovered base oil was prepared from the refining used lubricating oil by solvent extraction. The 2-propanol and methyl ethyl ketone (MEK) were used as composite solvent and the potassium hydroxide (KOH) was used as flocculating agent. The effects of parameters investigated were zeolite/oil ratio, temperature, and time. The significances of effects were also analyzed. The experiment was carried out using the Full Factorial Design (FFD) and Non-Factorial Response Surface Design (NFRSD). The results of experimental were analyzed and developed by Response Surface Methodology (RSM) to obtain the empirical models. They were the FFD no interactions model, the FFD 2 way interactions model, the linear main effects only-NFRSD model, the linear main effects+2ways-NFRSD model, the linear/quadratic main effects-NFRSD model, and the linear/quadratic main effects+2ways-NFRSD model. The goodness of fit of the model was evaluated by the coefficient determination (R^2) and the analysis of variances (ANOVA), so the best model was obtained. The best model was used to predict the optimum condition of the calcium, zinc and lead removal.

1.5 Research Contributions

The research contributions are as follows:

- i. The new finding about effects of parameters on the adsorption of calcium, zinc, and lead from recovered base oil using zeolite.
- ii. The new empirical models of calcium, zinc, and lead removal from recovered base oil.
- iii. The optimum condition for calcium, zinc, and lead removal from recovered base oil predicted from the best model.

1.6 The Organization of Thesis

This thesis is organized into five chapters. Chapter 1 consists of background of the problem, statement of the problem, objectives of the study, scopes of the study and research contributions. The background of the problem presents an overview of the re-refining used oil, the metal content from solvent extraction product, and the methods of metal removal.

The fundamental theory and literature review about adsorption, adsorbent, zeolite, equilibrium, slurry adsorption, waste oil recycling, metal removal, metal removal by zeolite, factorial design, Response Surface Methodology (RSM) and statistical analysis are presented in Chapter 2.

Chapter 3 presents the research methodology used in this study, consist of material and equipment, experimental procedure, data analysis, Full Factorial Design

(FFD), Non-Factorial Response Surface Design (NFRSD), prediction of the optimum condition of metal removal, and overall flow diagram.

Chapter 4 presents the results of the experimental studies that have been described in Chapter 3. Findings are combined and discussed holistically in this chapter. The last chapter, Chapter 5, stated the conclusions of this study. Recommendations for future studies are also outlined in this chapter.