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ABSTRACT 

 

 

 

Chromium (Cr), especially Cr(VI) is of particular environmental concern 
owing to its high solubility, bioavailability and toxicity. The reduction of Cr(VI) to 
innocuous Cr(III) is an important step in the remediation of Cr(VI)-contaminated 
environments. The understanding of how microorganisms resist metals can provide 
insight into strategies for their detoxification or removal from the environment. The 
present investigation was undertaken to study the Cr(VI) resistance mechanisms by 
Acinetobacter haemolyticus, a strain isolated from Cr(VI)-containing textile 
wastewater. In preliminary studies, the strain was shown to be able to tolerate Cr(VI) 
concentrations of 30 and 90 mg L-1 in Luria-Bertani (LB) agar and broth 
respectively. The Cr(VI) reduction capacity of A. haemolyticus was found to be 
greater when grown in higher percentage of LB broth than minimal salts broth. The 
Cr(VI) reduction also increased with lower initial concentration of Cr(VI) added after 
5 hours. The x-ray absorption fine structure (XAFS) analysis displayed the ability of 
the strain to reduce Cr(VI) to Cr(III) which was octahedrally coordinated to oxygen. 
The Cr(III) was most likely to form complexes with carboxyl (COO-) groups from 
the biomass based on Fourier-transform infrared (FTIR) analysis. The FTIR analysis 
also showed interactions of chromium with amino and hydroxyl groups. Field-
emission scanning electron microscope (FESEM) showed that cells grown in the 
presence of Cr(VI) had a wrinkled appearance with a significant increase in size. No 
precipitates were found on the cell surface. However, precipitates were observed in 
the cytoplasmic region of the cells via transmission electron microscope (TEM) 
analysis, suggesting the transport of Cr(VI) into the cytoplasm and intracellular 
Cr(VI) reduction. Intracellular reduction of Cr(VI) was supported by a reductase test 
using soluble crude cell - free extracts. The specific reductase activity obtained was 
0.52 µg Cr(VI) reduced per mg of protein an hour at pH 7.2 and 37 ˚C. In plasmid 
screenings, the strain was found to harbor a plasmid of about 12 kb. The findings 
showed that Cr(VI) resistance mechanisms of A. haemolyticus include the reduction 
of Cr(VI) to Cr(III), and intra- and extracellular sequestration of chromium. 
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ABSTRAK 

 

 

 

Kromium (Cr), khasnya Cr(VI) merupakan ancaman utama kepada alam 
sekitar kerana mempunyai sifat keterlarutan, ketersediaan hayati dan ketoksikan yang 
tinggi. Penurunan Cr(VI) kepada Cr(III) adalah langkah penting dalam remediasi 
alam sekitar yang tercemar dengan Cr(VI). Kefahaman tentang mekanisme rintangan 
terhadap logam oleh mikroorganisma dapat memberi maklumat tentang cara 
detoksifikasi dan penyingkiran logam daripada alam sekitar. Kajian ini bertujuan 
untuk mengkaji mekanisme rintangan Acinetobacter haemolyticus terhadap Cr(VI), 
iaitu bakteria yang dipencilkan daripada air sisa tekstil yang mengandungi Cr(VI). 
Dalam kajian awal, A. haemolyticus didapati mempunyai kedayatahanan terhadap 
kepekatan Cr(VI) sebanyak 90 dan 30 mg L-1 dalam kaldu dan agar Luria-Bertani 
(LB). Kapasiti penurunan Cr(VI) oleh A. haemolyticus didapati lebih tinggi apabila 
dikulturkan di dalam medium yang mempunyai peratusan kaldu LB yang lebih tinggi 
berbanding kaldu garam minimal. Penurunan Cr(VI) juga meningkat apabila 
kepekatan asal Cr(VI) yang lebih rendah ditambah selepas 5 jam eraman. Analisis 
menggunakan spektroskopi serapan x-ray struktur halus (XAFS) menunjukkan 
keupayaan bakteria untuk menurunkan Cr(VI) kepada Cr(III) yang berkoordinat 
dengan oksigen secara oktahedral. Besar kemungkinan Cr(III) membentuk kompleks 
dengan kumpulan karboksil (COO-) berdasarkan analisis spektroskopi inframerah 
(FTIR). FTIR juga menunjukkan interaksi antara kromium dengan kumpulan amino 
dan hidroksil. Melalui mikroskop imbasan elektron emisi medan (FESEM), bakteria 
yang dikulturkan dalam kehadiran Cr(VI) menunjukkan perubahan morfologi dari 
segi pertambahan saiz dan permukaan yang berkedut. Tiada mendakan kelihatan 
pada permukaan bakteria melalui FESEM tetapi mendakan kelihatan di kawasan 
sitoplasma dalam sel bakteria melalui mikroskop transmisi elektron (TEM). Ini 
mencadangkan terdapat pergerakan Cr(VI) ke dalam sitoplasma sel dan penurunan 
Cr(VI) secara intrasel. Keputusan daripada ujian punurunan Cr(VI) menggunakan 
ekstrak bebas sel membuktikan bahawa penurunan Cr(VI) berlaku secara intrasel. 
Aktiviti enzim penurunan tentu yang diperolehi adalah 0.52 µg Cr(VI) diturunkan 
per mg protin dalam masa 1 jam pada pH 7.2 dan 37 ˚C. Melalui penyaringan 
plasmid, A. haemolyticus didapati mempunyai satu plasmid bersaiz 12 kb. Hasil 
keseluruhan kajian ini menunjukkan mekanisme rintangan Cr(VI) oleh A. 
haemolyticus termasuk penurunan Cr(VI) kepada Cr(III), dan sekuestrasi kromium 
secara intra- dan ekstrasel.   
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CHAPTER I 

 

 

 

GENERAL INTRODUCTION 

 

 

 

1.1 Introduction 

 

 A pollutant is defined as “a substance that occurs in the environment, at least 

in part as a result of human activities, and has a deleterious effect on the 

environment”. The term pollutant is a broad term that refers to a wide range of 

compounds, from a superabundance of nutrients giving rise to enrichment of 

ecosystems to toxic compounds that may be carcinogenic, mutagenic, or teratogenic. 

Pollutants can be divided into two major groups, namely, those that affect the 

physical environment and those that are directly toxic to organisms, including human 

beings. The movement of pollutant and toxic compounds through the environment is 

called pollution and is very similar to the movement of energy and nutrients within 

the ecosystem or, on a larger scale, through the biosphere. This has affected the 

ecosystem and has caused health problems for the inhabitants residing near the 

factories. Efforts were made to treat these wastes so as to make them innocuous 

before discharge into public systems as people become more aware of the toxic 

effects of this waste and as federal and local laws imposed more stringent discharge 

norms. Initially the treatment procedures were based on physical and chemical 

methods, which proved to be inadequate and costly. Biochemical methods, which 

have inherent advantages, are still in their early stages of development (Doble and 

Kumar, 2005). 
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1.1.1 Heavy metal contamination problem 

 

The term “heavy metal”, in spite of its widespread usage among professionals 

and laymen, does not have a rigorous scientific basis or a chemical definition. 

Although many of the elements listed under “heavy metals” have specific gravities 

greater than five, major exceptions to this rule remain. In hindsight, this group should 

preferably have been referred to as ‘toxic elements”, for they are all included in the 

United States Environmental Protection Agency’s (USEPA’s) list of priority 

pollutants. The periodic table containing the heavy metals that are of significant 

environmental concern is shown as in Figure 1.1. For comparison, commonly 

occurring light alkali and alkali-earth metals have also been included in the same 

figure. 
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Number in parenthesis represents the specific gravity of each element 
Letters at the top left corner of each cell denote 
L: Commonly occurring LIGHT metals 
M: USEPA regulated HEAVY METALS 
ML: USEPA regulated METALLOIDS 
 

 

Figure 1.1  A modified periodic table showing commonly encountered regulated 

  heavy metals, metalloids and unregulated light metals. 
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 Strictly from a chemical point of view, heavy metals constitute transition and 

post-transition elements along with metalloids, namely, arsenic and selenium. They 

are indeed significantly heavier (i.e., higher specific gravities) than sodium, calcium 

and other light metals. These heavy metal elements often exist in different oxidation 

states in soil, water and air. The reactivities, ionic charges and solubilities of these 

metals in water vary widely. For their short- and long-term toxic effects, the 

maximum permissible concentrations of these heavy metals in drinking water as well 

as in municipal and industrial discharges are closely regulated through legislation. 

Nevertheless, barring the exceptions of cadmium, mercury and lead, heavy metals are 

also required micronutrients, i.e., essential ingredients for living cells. Toxicity 

effects of these elements are, thus, largely a function of concentration. These 

elements are beneficial and have more nutritional values lower than some critical 

dosages but become inhibitory to toxic with an increase in concentration. The 

threshold toxic concentrations differ for each heavy metal and are governed primarily 

by the chemistry of each heavy metal in question and associated physiological effects 

(Sengupta, 1994). 

 

 

1.1.2 Chromium 

 

Chromium (Cr) was first discovered in the Siberian red lead ore (crocoite) in 

1798 by the French chemist Vauquelin. It is a transition element located in the group 

VI-B of the periodic table with a ground-state electronic configuration of Ar 3d5 4s1 

as shown in Figure 1.1 (Shanker et al., 2005). 

 

Chromium exists in nine valence states ranging from -2 to +6, but mainly 

occurs as Cr(VI) in the divalent oxyanion chromate form and Cr(III) as trivalent 

cation which are of major environmental significance because of their stability in the 

natural environment (Thacker et al., 2006; Srivastava and Thakur, 2006). Gains of 

electron (reduction) by electron-poor, hexavalent chromium (Cr(VI)) convert this 

toxic, soluble anion (negatively charged species e.g. CrO4
2-) to electron-rich, trivalent 

chromium (Cr(III)) cationic (positively charged, e.g. Cr3+) form (Srivastava and 

Thakur, 2006).  
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1.1.2.1 Hexavalent chromium 

 

The ground state electron configuration of the chromium atom is: 

 

1s2   2s22p6   3s23p6   3d5   4s1

 

Divalent chromium compounds are basic, trivalent chromium compounds are 

amphoteric, and hexavalent chromium compounds are acidic. The acid anhydride 

(CrO3), the acid chloride (CrO2Cl2), and a wide variety of metal chromates (MCrO4) 

and metal dichromates (MCr2O7) are typical hexavalent chromium compounds. The 

acid functions have been evaluated: 

 

H2CrO4 → H+ + HCrO4
-,  Ka1 = [H+][ HCrO4

-] / [ H2CrO4] 

HCrO4
- → H+ + CrO4

2-,  Ka2 = [H+][ CrO4
2-] / [CrO4

-] 

 

and has the chromate-dichromate equilibrium: 

 

2HCrO4
- ↔ Cr2O7

2- + H2O 

 [Cr2O7
2-] / [HCrO4

-]2 = Keq1 

 

or 

 

2CrO4
2- + 2H+ ↔ Cr2O7

2- + H2O 

 [Cr2O7
2-] / [CrO4

2-]2[H+]2= Keq2 

 

 

Frequently cited values for Ka1 range from 0.2 to 4, and those for Ka2 range 

from 1 x 10-6 to 4 x 10-7. Values for Keq1 and Keq2 range from 33 to 158, and from 1.2 

x 1014 to 4.2 x 1014, respectively. HCrO4
- ion is the dominant form of hexavalent 

chromium, 90% or more, in 1.00 x 10-3 to 1.00 x 10-5 M potassium dichromate 

solutions at pH 3 (Katz and Salem, 1994). Depending on pH, Cr6+ forms 

hydrochromate (HCrO4-), chromate (CrO4
2-) and dichromate (Cr2O7

2-) and is highly 

soluble in water. At pH values below 6.2, the hydrochromate anion is predominant 

while at pH above 7.8, the chromate ion dominates (Rodríguez et al., 2007). 
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 The chromate ion is tetrahedral, and the structure of the dichromate ion 

corresponds to two tetrahedra linked through a corner oxygen. The Cr-O-Cr bond 

angles in the polymeric species are about 120˚, and the Cr-O bond lengths in the 

chromate and in the dichromate ions are 166 and 163 pm, respectively. 

 

 Aqueous solutions of hexavalent chromium compounds absorb in the 

ultraviolet and violet regions of the spectrum. Those of the chromates are 

distinctively yellow, dichromates are orange and the higher polymers are red. 

Aqueous solutions of potassium chromate absorb strongly at wavelengths of 370-373 

nm and demonstrate a molar absorptivity of 4.5 x 103 L/(mol.cm). Aqueous solutions 

of potassium dichromate show absorption maxima near 350 and near 450 nm. The 

molar absorptivities are 2.5 x 103 and 3.7 x 102 L/(mol.cm), respectively (Katz and 

Salem, 1994). 

 

  

1.1.2.2 Trivalent chromium 

 

The major chemical properties of trivalent chromium compounds in aqueous 

solutions are characterized by the stability of the violet hexaaquochromium(III) ion, 

[Cr(H2O)6]3+, and the tendency of the hexaaquochromium(III) ion to precipitate as 

polymers formed through oxo- and/or hydroxo bridging. 

 

The electron configuration of trivalent chromium is: 

 

1s2   2s22p6   3s23p63d3

 

In aqueous solution, the hexaaquochromium(III) ion, [Cr(H2O)6]3+ 

demonstrates the octahedral geometry of d2sp3 hybridization and the kinetic inertness 

toward ligand exchange of the t2g
3 state. As the pH of the aqueous system is raised, 

the hexaaquochromium(III) ion, an acid with a pKa of approximately 4, is neutralized 

to species such as [Cr(H2O)5(OH)]2+ and [Cr(H2O)4(OH)2]+. These species 

polymerize through oxo- and hydroxo bridging. Further deprotonation and  
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polymerization produce the hydrated chromium(III) oxide. When freshly  

precipitated, the hydrated chromium(III) readily dissolves in both acids and bases: 

 

Cr2O3 . nH2O + 2OH- → 2CrO2
- + (n + 1)H2O 

Cr2O3 . nH2O + 6H- → 2[Cr(H2O)6]3+ + nH2O 

 

The hexaaquochromium(III) ion is violet, and its absorption spectrum shows 

maxima at 404 and 570 nm. The molar absorptivities at both wavelengths are low. 

The absorption maxima change as the coordinated water is replaced by other ligands 

(Katz and Salem, 1994). 

 

 

1.1.2.3 Essentiality of chromium 

 

Chromium is a naturally occurring element found in many foods and drinking 

water, thus it makes its way into the body mainly from dietary intake. In addition, 

intake of chromium results from airborne dusts and mists, and cigarette smoke as 

well as from industrial and occupational exposures (Katz and Salem, 1994). 

 

Chromium is an essential micronutrient required for the growth of many 

microorganisms for the maintenance of normal glucose, cholesterol and fatty acid 

metabolism (Thacker et al., 2006; Srivastava and Thakur, 2006). 

 

The deficiency of chromium has been implicated in impaired insulin action, 

which can cause glucose intolerance, elevated glucose blood levels, diabetes, 

elevated cholesterol levels, obesity and heart diseases, as well as other conditions not 

yet documented. Chromium is considered the cofactor for all the actions of the 

hormone insulin, primarily the regulation of carbohydrate, protein and fat 

metabolism.  Signs of chromium deficiency are widespread; they tend to be 

associated with aging, and are consistent with the progressive decline in body and 

organ content of chromium from birth onward. Chromium deficiency impairs 

glucose utilization and disturbs protein and lipid metabolism (Katz and Salem, 1994). 
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1.1.2.4 Chromium toxicity 

 

Some of the adverse effects of chromium compounds on human health were 

identified a century ago. Hexavalent chromium compounds are in general more toxic 

than trivalent chromium compounds. This observation is frequently interpreted as 

reflecting the stronger oxidizing power and the higher membrane transport of the 

former (Katz and Salem, 1994). Trivalent chromium on the other hand is largely 

insoluble and less toxic (Gonzalez et al., 2003). The solubility of trivalent chromium 

compounds is limited by the formation of several oxides and hydroxide species (Katz 

and Salem, 1994). However, at high concentration it is also toxic, carcinogenic and 

teratogenic (Thacker et al., 2006). 

 

The ingestion of hexavalent chromium causes death. Occupational exposures 

to some chromium compounds have been shown to cause bronchial asthma, lung and 

nasal cancers, nasal and skin ulcers, and allergic reactions in the skin (Katz and 

Salem, 1994). The chromate anion is highly soluble and therefore can overcome the 

cellular permeability barrier (Thacker et al., 2006). The heavy metals oxyanions 

interfere with the metabolism of the structurally related non-metals in the living cells 

(Srivastava and Thakur, 2006).  

 

Due to improper disposal, leakage and poor storage, chromate has become 

one of the most frequently detected contaminant at the waste sites (Thacker et al., 

2006). Not only that chromate is dangerously toxic, it is also difficult to contain and 

spreads rapidly through aquatic systems and subterranean waterways (Gonzalez et al., 

2003). Thus, chromium has been designated as the priority pollutant by USEPA 

(Thacker et al., 2006). 
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1.1.3 Chromium in the industries 
 

Chromium occurs mainly as a result of human activities through production 

of waste water in metal smelting, electroplating, tanning, metallurgy and dyestuff 

industries. After processing, chromium occurs in several chemical species such as 

metallic chromium (Cr(0)), trivalent chromium (Cr(III)), and hexavalent chromium 

(Cr(VI)) (Gómez and Callao, 2006).  

 

Metallic chromium is mainly found in alloys, such as stainless steel, but also 

in chrome-plated objects. It is the supreme additive, endowing alloys or materials 

with new properties, such as a resistance to corrosion, wear, temperature and decay, 

as well as strength, hardness, permanence, hygiene and colour (Gómez and Callao, 

2006). 

 

Chromium(III) exists in natural waters in hydrolyzed Cr(H2O)4.OH2
+ form 

and complexes, and even adsorbed on colloidal matter. It is an essential 

micronutrient in the body and combines with various enzymes to transform sugar, 

protein and fat. Chromium(III) is also used in a number of commercial products, 

including dyes, paint pigments and salts for leather tanning (Gómez and Callao, 

2006). The tendency for Cr(III) to form complexes with basic oxygen and/or nitrogen 

atoms in protein made possible the tanning of leather in hours rather than days, as 

was required with the vegetable tannins. The inertness of the trivalent oxide made 

chromium compounds useful as corrosion inhibitors and as agents for anodizing and 

plating metals (Katz and Salem, 1994). 

 

Chromium(VI) is found as CrO4
2- , HCrO4

- or Cr2O7
2-, depending on the pH 

of the medium. It occurs in a range of compounds used in industrial processes, such 

as chrome-plating (Gómez and Callao, 2006). The oxidizing properties of hexavalent 

chromium compounds have found applications in the synthesis of organic dyestuffs. 

The colours of trivalent and hexavalent chromium compounds coupled with 

appropriate solubility characteristics, made them attractive as pigments (Katz and 

Salem, 1994).  
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Chromium(VI) and Cr(III) enter the environment as a result of effluent 

discharged from industries and cooling-water towers. Chromium can also enter 

drinking water supply systems via corrosion inhibitors used in water pipes and 

containers or via contamination of underground water leaching from sanitary landfill. 

Chromium is an analyte of interest to the above industries and in the environment 

because, like other metals, it is not biodegradable. Once it enters the environment, its 

toxicity is determined to a large extent by its chemical form (e.g., Cr(VI) is much 

more toxic than Cr(III)). Changes in the oxidation state of an element can have a 

profound effect on bioavailability and toxicity (Gómez and Callao, 2006). 

 

 

1.1.4 Treatment of metal-contaminated waste 

 

Numerous industries (e.g. electroplating, metal-finishing operations, 

electronic-circuit production, steel and nonferrous processes, and fine-chemical and 

pharmaceutical production) discharge a variety of toxic heavy metals into the 

environment. Industry is compelled to treat waste liquids that contain appreciable 

quantities of heavy metals. For more than 35 years, legislation has required industry 

to remove metal pollutants from liquid discharges (Eccles, 1999). 

 

The effluent quality of any discharge from an industrial treatment process 

must meet the minimum requirements of the Environmental Quality Act 1974 (issued 

by the Department of Environment, Malaysia). The limits set down by the 

Environmental Quality (Sewage Industrial Effluent Regulations, 1979) are as 

presented in Table 1.1. 
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Table 1.1:   Parameters limits of effluent. 

 

 Standard 
 

Parameter Unit 
A B 

(i) Temperature °C 40 40 
(ii) pH value - 6.0-9.0 5.5-9.0 
(iii) BOD at 20°C mg L-1 20 50 
(iv) COD mg L-1 50 100 
(v) Suspended solids mg L-1 50 100 
(vi) Mercury mg L-1 0.005 0.05 
(vii) Cadmium mg L-1 0.01 0.02 
(viii) Chromium, Hexavalent mg L-1 0.05 0.05 
(ix) Arsenic mg L-1 0.05 0.10 
(x) Cyanide mg L-1 0.05 0.10 
(xi) Lead mg L-1 0.10 0.5 
(xii) Chromium trivalent mg L-1 0.20 1.0 
(xiii) Copper mg L-1 0.20 1.0 
(xiv) Manganese mg L-1 0.20 1.0 
(xv) Nickel mg L-1 0.20 1.0 
(xvi) Tin mg L-1 0.20 1.0 
(xvii) Zinc mg L-1 2.0 2.0 
(xviii) Boron mg L-1 1.0 4.0 
(xix) Iron (Fe) mg L-1 1.0 5.0 
(xx) Phenol mg L-1 0.001 1.0 
(xxi) Free Chlorine mg L-1 1.0 2.0 
(xxii) Sulphide mg L-1 0.50 0.50 
(xxiii) Oil and Grease mg L-1 Not detectable 10.0 
 

Standard A for discharge upstream of drinking water take-off 

Standard B for inland waters 

 

 

1.1.4.1 Conventional treatment 

 

The simplest and cheapest method of removing most heavy metals from 

solution is to increase the pH of the effluent, thus converting the soluble metal into 

an insoluble form (i.e. its hydroxide). Precipitation by adjusting the pH is, however, 

not selective. Any iron (ferric ion) present in the liquid effluent will be precipitated 

first, followed by other heavy metals (Cu, Pb, Zn, Cd). Consequently, precipitation 

by alkali addition (usually lime) produces large quantities of solid sludge for 

disposal. Nonetheless, precipitation processes can be highly efficient as they rely 

mainly on the insolubility of the precipitate, and secondarily on the effectiveness of 

solid–liquid separation. The former can be influenced by the presence of metal-
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complexing agents such as cyanide or the ability of the metal to exist in an anionic 

form, such as Cr as chromate (CrO4
2–). Solid-liquid separation can be improved 

either mechanically or chemically; in the latter case, polyelectrolytes or flocculants 

such as aluminium are generally used (Eccles, 1999). 

 

The most commonly used conventional processes to remove Cr(VI) are: (a) 

reduction to Cr(III) followed by precipitation as chromium hydroxide, (b) removal by 

ion exchange and (c) removal by adsorption. These methods are costly due to 

operational, treatment and sludge disposal costs (Fiol et al., 2008). 

 

According to Eccles (1999), the costs in using industrial waste-water 

treatment processes involve factors such as: (a) concentration of the metal in 

solution; (b) the operational mode of the equipment; (c) the need for secondary 

treatments, such as regeneration of the granulated activated carbon (GAC) or ion-

exchange resins; (d) the selectivity of GAC or ion-exchange resins, coupled with 

their respective capacities for the target metal(s); and (e) disposal of secondary 

wastes such as sludge. 

 

 

1.1.4.2 Biological treatment 

 

Recently, research for new and innovative technologies has centered on the 

biological treatment methods (Morales-Barrera et al., 2008). Bioremediation is the 

use of microorganisms to break down toxic and hazardous compounds in the 

environment (Acquaah, 2004). It generally utilizes microbes (bacteria, fungi, yeast, 

and algae), although higher plants are used in some applications. The two main 

biological treatment processes under investigation are: the adsorption of Cr(VI) onto 

microbial cells (i.e. biosorption), and the reduction of Cr(VI) to Cr(III) by enzymatic 

reaction or indirectly by reducing compounds produced by micro-organisms (i.e. 

biotransformation) (Cheung and Gu, 2003; Desjardin et al., 2003). The biological 

reduction of hexavalent chromium has attracted increased interest, since this process 

may not only relieve the toxicity of chromium that affect living organisms, but may 

also aid in the precipitation of chromium at near-neutral pH (mainly as Cr(OH)3) for 

further physical removal (Cheung and Gu, 2003). 
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Bioremediation has already proven itself to be a cost-effective and beneficial 

addition to chemical and physical methods of managing wastes and environmental 

pollutants. New bioremediation approaches are emerging based on advances in 

molecular biology and process engineering. Recently developed rapid-screening 

assays can identify organisms capable of degrading specific wastes and new gene-

probe methods can ascertain their abundance at specific sites. New tools and 

techniques for use of bioremediation in situ, in biofilters, and in bioreactors are 

contributing to the rapid growth of this field. (Bonaventura and Johnson, 1997).  

 

Microorganisms have the ability to accommodate a variety of pollutants, both 

organic and inorganic, it is important to appreciate from the outset that 

microorganisms cannot destroy metals. However, they can influence metals’ mobility 

in the environment by modifying their chemical and/or physical characteristics 

(Eccles, 1999). In addition, bioremediation may also play an increasing role in 

concentrating metals and radioactive materials to avoid toxicity or to recover metals 

for reuse. An added advantage of using microbes is that they can biodegrade organic 

chemicals; purposeful enhancement of this natural process can aid in pollutant 

degradation and waste-site cleanup operations (Bonaventura and Johnson, 1997). 

 

 

1.1.5 Metals and microorganisms 

 

Human activities, such as mining operations and the discharge of industrial 

wastes, have resulted in the accumulation of metals in the environment. It has been 

reported that microorganisms become adapted to these environments by the 

acquisition of specific resistance systems (Yilmaz, 2003). The interest in the 

interactions of heavy metals with microorganisms has increased.  

 

 

1.1.5.1 Heavy metal stress on microbial community  

 

Low concentrations of certain transition metals such as cobalt, copper, nickel 

and zinc are essential for many cellular processes of bacteria. However, higher 

concentrations of these metals often are cytotoxic. Other heavy metals, including 
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lead, cadmium, mercury, silver and chromium have no known beneficial effects to 

bacterial cells and are toxic even at low concentrations (Abou-Shanab et al., 2007).  

 

The study of the interaction between heavy metals and microorganisms has 

focused in particular on the selection of metal-resistant microorganisms from 

polluted environments (Hassen, 1998; Pal and Paul, 2004; Abou-Shanab et al., 

2007). The results by Akinbowale et al. (2007) indicate that aeromonads and 

pseudomonads resistant to antibiotics and heavy metals are easily recovered from 

farm-raised fish and sediments. The possibility of using these bacteria for detoxifying 

polluted environments (Srivastava et al., 2007; Congeevaram et al., 2007) was also 

looked into. Wastewater from aquaculture contributes to the antibiotic and metal 

resistance found in the environment (Akinbowale et al., 2007). The increase in 

tolerance towards toxic metals and antibiotic resistance among aquatic bacterial 

populations is also an indication of risk to the safety of the aquatic ecosystem, fish 

fauna, and ultimately human health (Pathak and Gopal, 2005).  

 

Past studies have shown that chronic metal stress affects the structure of 

microbial communities, resulting in decreased biomass, activity and microbial 

diversity. Despite toxic stress, microorganisms that tolerate toxic stress conditions or 

more rapidly decompose pollutants are more likely to survive (Francisco et al., 

2002). Consequently, metal-tolerant bacteria can be readily isolated from 

environments containing elevated levels of toxic metals. Some have adapted and 

some are endemic to their environment, while the environmental conditions may 

have selected for others (Clausen, 2000). In polluted soils, microbial survival 

depends on intrinsic biochemical and structural properties, physiological, and/or 

genetic adaptation including morphological, changes of cells, as well as 

environmental modifications of metal speciation. Microbes apply various types of 

resistance mechanisms in response to heavy metals. Bacterial communities in 

serpentine soil were reported to tolerate spiking of metals, such as nickel and zinc, 

more than those of unpolluted soils (Abou-Shanab et al., 2007).  

 

For example, Providencia sp. was isolated from the contaminated sites of 

chemical industries. The bacterial isolate could grow and reduce chromate at a 

concentration ranging from 100–300 mg L-1 and at a concentration of 400 mg L-1, pH 
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7 and temperature 37ºC. It also exhibited multiple heavy metal (Ni, Zn, Hg, Pb, Co) 

tolerance (Thacker et al., 2006). 

 

 

1.1.5.2 Mechanisms of metal resistance by bacteria 

 

 There are four known mechanisms of bacterial heavy metal resistances. The 

first mechanism is by keeping the toxic ion out of cell by altering a membrane 

transport system involved in initial cellular accumulation. The second mechanism is 

the intracellular or extracellular sequestration by specific mineral-ion binding 

components (analogous to the metallothioneins of eukaryotes and the phytochelatins 

of plants, but generally at the level of the cell wall in bacteria). The third method is 

the most commonly found mechanism of plasmid-controlled bacterial metal ion 

resistance, involving highly specific cation or anion efflux systems encoded by 

resistance genes (analogous to multidrug resistance of animal tumor cells). The 

fourth known mechanism involves detoxification of the toxic cation or anion by 

enzymatically converting it from a more toxic to a less toxic form. This last 

surprising mechanism does indeed occur, as best known for detoxification of 

inorganic and organomercurials. It may also be used for oxidation of As(III) and the 

reduction of Cr(VI) to less toxic forms, but these known microbial processes here 

have not been associated with plasmids (Silver, 1992). 

 

The largest group of resistance systems functions by energy-dependent efflux 

of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, 

methylation, and demethylation) or metal-binding proteins (for example, 

metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). 

Some of the efflux resistance systems are ATPases and others are chemiosmotic 

ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner 

membrane P-type ATPases or three polypeptide RND chemiosmotic complexes 

consisting of an inner membrane pump, a periplasmic-bridging protein and an outer 

membrane channel. In addition to the best studied three-polypeptide chemiosmotic 

system, Czc (Cd2+, Zn2+, and Co2+), others are known that efflux Ag+, Cu+, Ni2+, and 

Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as 

CH3Hg+ and phenylmercury) involve a series of metalbinding and membrane 
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transport proteins as well as the enzymes mercuric reductase and organomercurial 

lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and 

metabolizing systems occur in three patterns, the widely-found ars operon that is 

present in most bacterial genomes and many plasmids, the more recently recognized 

arr genes for the periplasmic arsenate reductase that functions in anaerobic 

respiration as a terminal electron acceptor, and the aso genes for the periplasmic 

arsenite oxidase that functions as an initial electron donor in aerobic resistance to 

arsenite (Silver and Phung, 2005). 

  

For chromate, the mechanism of resistance involves cellular uptake; it is not 

known as yet whether there is a block directly on uptake or accelerated chromate 

efflux (Silver, 1992).  

 

 

1.1.5.3 Plasmids conferring resistance to metals 

 

Bacterial plasmids contain specific genetically determined resistances to a 

wide range of toxic heavy metal ions, including Ag+, AsO2
-, AsO4

3-, Bi3+, Cd2+, Co2+, 

CrO4
2-, Cu2+, Hg2+, Ni2+, TeO3

2-, Tl+, Pb2+, Zn2+, and other metals of environmental 

concern (Silver, 1992). 

 

Plasmids found in enterobacteria can confer resistance to the ions of arsenic, 

silver, copper, mercury and tellurium. Staphylococcal plasmids can confer resistance 

to arsenic, bismuth, cadmium, copper, lead, mercury and zinc compounds; 

Pseudomonas plasmids can confer resistance to chromium, mercury and tellurium 

ions. Resistance to ions such as Hg2+, Ag+ or TeO3
2- can be increased more than 100-

fold by these plasmids (Hardy, 1981). 

 

Plasmid genes conferring resistance to mercuric ions are especially common. 

About 25% of conjugative R plasmids found in enterobacteria and about 75% of R 

plasmids from Pseudomonas aeruginosa confer resistance to Hg2+. Plasmids from P. 

aeruginosa strains isolated from patients are more likely to have genes coding for 

Hg2+ resistance than genes for antibiotic resistance (Hardy, 1981). 
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Resistance to mercuric ions is brought about by a plasmid-determined 

reductase which reduces Hg2+ to volatile Hg0. This is insoluble in water and is 

rapidly released as a vapour when mercuric-resistant bacteria are grown in liquid 

medium containing mercuric ions. The vapour can be collected in a condenser to 

yield liquid metallic mercury. Plasmids conferring mercuric-resistance also specify a 

mechanism for the uptake of mercuric ions. The genes for the reductase and for 

transport are part of an operon which is inducible by Hg2+. Transposon Tn 501 

confers resistance to mercuric ions. Resistance to cadmium and arsenate are caused 

by plasmid determined efflux mechanisms (Hardy, 1981). 

 

Plasmids are extra chromosomal DNA that are not associated with the 

nucleus of the cell. By altering the plasmids or adding to them, biodegradation may 

be accelerated or altered (Hardy, 1981). Additional bacterial systems that reduce 

more toxic Cr(VI) to less toxic reduced Cr(III) exist but the genetic determinants for 

these systems have not been identified as chromosomal or plasmid (Silver, 1992). 

 

Several strains belonging to the genus of Acinetobacter have been attracting 

growing interest from medical, environmental and a biotechnological point of view. 

Acinetobacter are known to be involved in biodegradation, leaching and removal of 

several organic and inorganic man-made hazardous wastes (Abdel-El-Haleem, 

2003). According to Baumann (1968), the genus Acinetobacter is usually isolated 

from water and soil with the species haemolyticus reported to be isolated mostly 

from soil. 

 

 

1.1.6 Objective and Scope of thesis 

The aim of the work described in this thesis is to study the mechanisms 

related to Cr(VI) reduction by a locally isolated strain of Acinetobacter haemolyticus. 

Initial investigations on the tolerance towards Cr(VI) and Cr(VI) reduction capacity 

of A. haemolyticus were carried out. A. haemolyticus was then screened for the 

presence of plasmids using a few plasmid isolation techniques followed by attempts 

to determine the role of the plasmid. The Cr(VI) reduction mechanisms was studied 

via instrumental analysis. 
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