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ABSTRACT  

 

 

 

Optical switches are essential components in optical network.  In order to 

improve the performance of optical network, the optical switch must address 

requirements, such as low crosstalk, high extinction ratio, low insertion loss, low 

power consumption, very fast switching time and insensitive to wavelength and 

polarization.  Digital optical switch (DOS) has become a very attractive component 

for space switching in multi-wavelength optical communication system application 

due to its sensitivity for drive power fluctuations, polarization, wavelength, 

temperature and device geometrical variations.  This thesis explores the design of 

new DOS in order to improve its performance especially in terms of crosstalk and 

power consumption.  Polymeric thermo-optic effect DOS has been developed due to 

its high thermo-optic coefficient which can support low power consumption devices. 

Buried square core waveguide is used in this research due to its low fiber to chip 

coupling loss.  In order to ensure the waveguide operates as a single-mode 

waveguide in the optical communication transmission window, the optimization was 

done using alternating direction implicit method, finite difference method (FDM) and 

effective index method.  The simulation and optimization of the Y-branch shape are 

done using finite difference beam propagation method whereas the heater design was 

optimized by employing FDM to solve the steady state heat transfer equation and 

scalar Helmholtz equation.  The Y-branch shape is a hybrid of modified cosine S-

bend branch and linear branch.  Effective waveguide heating has been done by using 

a parabolic heater.  With branching angle of 0.299
o
 and device length of only 5 mm, 

the simulation shows that the device could exhibit crosstalk of -33 dB at heating 

power of only 26 mW.  In order to further reduce the crosstalk, a variable optical 

attenuator (VOA) has been designed to be connected to the DOS.  The VOA is 

constructed from cosine S-bend which has low loss (< 0.2 dB) at off state, thus it is 

suitable to be used in optical switch.  The VOA design uses the same material as that 

of the DOS which is the photo-active ultra violet curable fluorinated resins based on 

acrylate in order to ensure compatibility.  The thermo-optic coefficient of the 

material is -1.7 ×10
-4

/
o
C and thermal conductivity is 0.17 W/m

o
C.  The optimized 

DOS without VOA was fabricated.   The crosstalk of -26 dB is achieved at electrical 

power of 32 mW, and the insertion loss is less than -2.5 dB. In terms of wavelength 

dependency, the device shows a good performance inside the C-band with 

fluctuation of the insertion loss value around 0.5 dB.  



vi 

 

 

 

 

 

ABSTRAK  

 

 

Suis optik merupakan komponen penting di dalam rangkaian optik. Bagi 

memperbaiki perlaksanaan rangkaian optik, suis optik mestilah memenuhi beberapa 

keperluan  seperti cakap silang yang rendah, nisbah pemupusan yang tinggi, 

kehilangan sisipan yang rendah, penggunaan kuasa yang rendah, masa pensuisan 

yang pantas dan tidak peka terhadap panjang gelombang dan pengutuban. Suis optik 

digital (DOS) telah menjadi komponen yang sangat diminati dalam  pengaplikasian 

sistem perhubungan optik berbilang panjang gelombang bersesuaian dengan 

kepekaannya terhadap pengutuban, panjang gelombang, suhu dan perbezaan bentuk 

geometri peranti. Thesis ini mengkaji rekabentuk DOS yang baru bagi memperbaiki 

perlaksanaannya terutamanya dari segi cakap silang dan penggunaan kuasa. DOS 

yang berasaskan bahan polimer dengan kesan kawalan haba telah dibangunkan 

bersesuaian dengan pekali termalya yang tinggi yang dapat memberikan penggunaan 

kuasa peranti yang rendah. Pandu gelombang dengan struktur teras segi empat 

tertanam  telah ditetapkan untuk digunakan dalam penyelidikan. Bagi memastikan 

pandu gelombang dapat beroperasi sebagai pandu gelombang mod tunggal dalam 

kerangka penghantaran perhubungan optik, pandu gelombang yang optimum 

diperolehi menggunakan kaedah arah tersirat silih ganti, kaedah perbezaan terhingga 

(FDM) dan kaedah indeks effektif. Simulasi dan pengoptimuman bentuk cabang-Y 

dilakukan dengan menggunakan kaedah perbezaan hingga-perambatan alur, 

manakala rekabentuk pemanas dioptimumkan menggunakan FDM untuk 

menyelesaikan persamaan pindah haba keadaan pegun dan persamaan skala 

Helmholzt. Bentuk cabang-Y adalah campuran yang terbentuk dari cabang lengkuk-

S kosinus yang diubah suai dan cabang linear. Pemanasan pandu gelombang yang 

berkesan dilakukan dengan menggunakan pemanas parabolik. Dengan cabang yang 

bersudut 0.229
o
 dan panjang hanya 5mm, simulasi menunjukkan alat ini 

mempamerkan cakap silang sebanyak -33 dB pada keperluan kuasa yang dikira 

hanyalah sebanyak 26mW. Bagi mengurangkan cakap silang, pelemah optik boleh 

ubah (VOA) telah direka untuk disambungkan kepada DOS. VOA dibina dari 

lengkuk-S kosinus yang mempunyai kehilangan yang  rendah (< 0.2dB) pada 

keadaan padam menyebabkan kesesuiannya untuk digunakan bersama suis optik. 

Rekabentuk VOA menggunakan bahan yang sama seperti DOS iaitu acrylate polimer 

untuk memastikan keserasiannya. Pekali terma bagi bahan ini adalah -1.7x10
-4

/
o
C 

dan keberaliran terma  adalah 0.17 W/m
o
C. Fabrikasi DOS tanpa VOA telah 

dilakukan. Cakap silang sebanyak -26 dB dicapai pada kuasa elektrik sebanyak 32 

mW dan kehilangan masukan adalah kurang dari -2.5 dB. Dari sudut kebergantungan 

terhadap panjang gelombang, alat ini menunjukkan perlaksanaan yang baik dalam 

lengkuk-C dengan perubahan nilai bagi kehilangan kemasukan adalah sekitar 0.5 dB. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1. Research Background 

 

Optical communication systems have been deployed worldwide since 1980 and 

have indeed revolutionized the technology behind telecommunications. Optical 

communication systems use high carrier frequencies (∼100 THz) in the visible or 

near-infrared region of the electromagnetic spectrum (Agrawal, 2002). These high 

carrier frequencies make the optical communication very attractive for high 

bandwidth service which is highly demanded in today communication systems. 

 

The explosion in demand for network bandwidth is largely due to the growth 

in data traffic, specifically Internet Protocol (IP) and the growth in wireless 

communications.  The carrier bandwidth could be increased by installing new fiber 

or increase the effective bandwidth of existing fiber.  However, laying new fiber is 

costly.  Increasing the effective capacity of existing fiber can be done by increasing 

the bit rate of existing systems or increasing the number of wavelengths on a fiber. 

Wavelength division multiplexing (WDM) technology which transmits multiple 

optical channels at different wavelengths over a single optical fiber offers an 

attractive solution to increase network bandwidth without disturbing the existing 

embedded fiber, which populates most buildings and campuses, and continue to be 

the cable of choice for the near future.  With the use of WDM, the capacity of a 

single strand of fiber, 250 microns in diameter, can carry between 10 and 80 Gbps; a 

typical cable of 18 millimeters in diameter contains up to 200 fibers  

(Kiniry, 1998).  For long-haul fiber links forming the backbone or the core of a 
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telecommunication network, the role of WDM is simply to increase the total bit rate. 

Dense WDM (DWDM) technologies with a channel spacing of 12.5 GHz for 

terrestrial point-to-point WDM transmission application has been developed by 

Suzuki et.al (Suzuki et al., 2006).  

 

 One of the critical components for WDM routing networks is an optical add 

drop multiplexer (OADM) to add and drop a subset of wavelengths from the 

transmission system without full opto-electronic regeneration (Lo et al., 2004).  An 

OADM connect the core network to a smaller subnetwork or to individual users 

which is typically arranged in a ring topology.  The OADM facilitates format and 

data rate transparency and management of fiber capacity by enabling the selective 

removing and adding of individual channels at intermediate sites in the system. In 

terms of wavelength routing functions, the OADM could be fixed (F-OADM) or 

reconfigurable (ROADM).  An 8-degree ROADM using the wavelength selective 

switches for channel adding and optical splitters for channel dropping with node 

scalability to 256 degree and crosstalk-induced power penalties below 0.5 dB has 

been recently reported (Shankar  et al.,2007).   

 

Various technologies could be used to build OADM, such as fiber Bragg 

gratings (FBGs) combined with optical circulators (OCs) (Jones et al.,1995; Lauder 

et al. , 1998;  Eldada et al.,1999; Liaw et al.,1999; Song et al.,2001; Leisching et 

al.,2000), combination of an arrayed waveguide grating (AWG) and optical switches 

(Ishida et al., 1994; Hattori et al.,  1999; Saida et al., 2000; Eldada et al., 2006), 

FBGs with couplers (Mechin et al., 2001; Riziotis and Zervas, 2001; Augustsson, 

2000; Park et al., 2001), FBGs in a Mach–Zehnder interferometer (Hibino et al., 

1996; Kashyap et al., 1993; Kuo et al., 2001) and FBGs combined with optical 

switches and optical circulators (Lo et al.2004).  Among them, the OADM with 

optical switches incorporated in a pair of AWG’s has the advantage of being able to 

change the switch state, add/drop or pass through, in service without affecting the 

other wavelength channels (Hattori et al.,  1999). Therefore, for example, the OADM 

based system offers a minimum-start in an initial installation and can be expanded by 

increasing the number of wavelengths as the amount of traffic increases.  
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The OADM-based system requires two functions for the optical switch in the 

OADM node (Hattori et al., 1999). One is high-isolation switching for the add/drop 

operation and the other is channel-by-channel level equalization. A high extinction 

ratio is essential for the switch in order to avoid the degradation of a bit error rate 

caused by a crosstalk. If the crosstalk in the switch cannot be ignored, the system 

scale, which is determined by the transmission characteristics of the WDM signals, 

might be limited severely. Beside high extinction ratio, the optical switches to be 

deployed in OADM should have low insertion loss, low power consumption and 

switching time in the order of millisecond and especially, they should be insensitive 

to wavelength and polarization, in other words they should be invisible to the 

network.  

There are various optical switching technologies available today, such as 

Micro-electromechanical System Devices (Dobbelaere et al., 2002), Electro-optic 

Switches (Lee et al., 1997), Thermo-optic Switches (Interferometric switches and 

Digital optical switches) (Keil et al., 1996) and Liquid-Crystal Switches 

(Papadimitriou, 2003).  Each technology has its own advantages and disadvantages 

and therefore research still continues.  Waveguide based digital optical switch (DOS) 

which operating through modal evolution has become a very attractive component on 

optical communication system due to their digital response against applied power.  

The DOS is useful in the sense that additional applied power, beyond the switching 

power, does not degrade the crosstalk (CT).  This characteristic enables the device to 

be insensitive to electrical power applied, polarization, wavelength, temperature and 

geometrical variations (Silberberg, 1987).  Various DOS have been developed using 

silica on silicon (Hoffmann et al., 1998), silicon resin (Toyoda et al., 1999), 

polymers (Hauffe, 2001), LiNbO3 (Krahenbuhl et al., 2002) and the most recently is 

amorphous silicon (Sirletto et al., 2006). 

The DOS can be realized by using either electro-optic effect or thermo-optic 

effect. An electro-optic DOS based on LiNbO3 has high performance such as able to 

change its state extremely rapidly (less than nanosecond) and reliable.  Nevertheless, 

it has high insertion loss and possible polarization dependence.  Polarization 

independence is possible but at the cost of a higher driving voltage, which in turn 

limits the switching speed.  Meanwhile, thermo-optic switches are generally small in 

size and the optical parameters, such as crosstalk and insertion loss, are acceptable 
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for many application.  Polymer waveguide thermo-optic switches have been 

investigated from early time due to the potential of integrating multifunctional 

devices and cost effective mass production (Hida et al., 1993).  Compared to the 

silica, though the absorption loss is higher, the polymer waveguide has strong 

competitiveness when optical signal controlling is needed (Noh et al., 2004a).  

Furthermore, due to the high thermo-optic coefficient and the low thermal 

conductivity of the polymer, it enables highly efficient thermo-optic index 

modulation and low operating power. Therefore, due to its attractive properties, 

polymeric thermo-optic DOS are chosen to be developed in this research so that it 

will exhibits low CT and low power consumption. 

 

 

1.2. Problem Statement 

 

The main advantages of DOS technology is that it provides high wavelength 

and polarization insensitivity which is crucial properties for optical switch to be 

adopted in optical network.  However, DOS have the drawback of having high 

switching power.  Moreover, the DOS performance is also limited by the crosstalk. 

Conventional DOSs generally have a relatively high crosstalk in the region of -20 

dB.  Considering that a crosstalk  of approximately -25 dB in optical switch generally 

induces a 1 dB power penalty in all-optical communication networks, the crosstalk of 

a DOS should be, at minimum, lower than -30 dB (Yeo and Shin, 2006).  To improve 

the CT, several methods have been proposed. W-DOS has been developed by Siebel 

et al (2000) but the CT achieved is still high (-30 dB), meanwhile Noh et al. (2004b) 

developed asymmetric DOS and achieved CT value less than -40 dB with very high 

power consumption (350 mW).  Conventional DOSs also have a problem in terms of 

fabrication due to their very small branching angle of the Y-branch.  Initially, this 

small branching angle is intended to minimize mode coupling between the local 

system modes; nevertheless it causes difficulty in fabrication process.  Further more, 

this small branching angle leads to long interaction lengths (Hoekstra, 2000) thus it is 

not sufficient for large switching matrix which requires cascading many stages of 

switches.  Various larger branching angle DOS have been proposed.  Siebel et al 

(2001), Noh et al. (2006), Jiang et al. (2006) developed DOS with integrated 
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attenuator to enhance the CT by attenuating the remained light on the switch-off 

branch.  However, the devices mentioned above still consume high electrical power. 

Reducing the supplied power is important as it will result in a lowering power 

density in the heating elements which benefits the lifespan and the reliability of the 

heater and the switch itself.  A low driver power is also very important for larger-

scale switching matrix as it reduce the cost. Thus, a research needs to be carried out 

to improve the DOS performance. 

 

1.3. Objective of Research 

 

This research aims to develop 1×2 thermo-optic DOS with low CT and low 

power consumption to be used in optical network, but generally as a building block 

for larger switching matrix. The research objective can be further specified as: 

• To design 1×2 DOS geometry which appropriate to be used in optical network. 

• To gain an optimum heater electrode design and optimum heater electrode 

position for low power consumption. 

• To design an optimum variable optical attenuator (VOA) to be implemented in 

DOS to reduce crosstalk. 

 

1.4. Scope of Research 

 

In order to realize the research objectives which have been elucidated in 

previous sub section, the works to be carried out in this research have been identified 

as follow: 

• Design and optimization of waveguide structure and dimension. 

• Design and optimization of Y-junction geometry with compromise branching 

angle to make the fabrication less difficult while the switching functions still 

perform properly. 

• Investigation of temperature profiles induced by heater electrode to the 

waveguide in order to determine the optimum heater design.  

• Simulation and optimization of variable optical attenuator to be used in DOS. 

• Fabrication and characterization of the optimized DOS. 
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1.5. Research Methodology 

 

The research methodology was separated into eight main phases as shown in 

Figure 1.1.  The first phase is literature review to understand the problem, research 

requirement, related current technology especially digital optical switch technology.  

Through the literature review, the related theory and published works were 

overviewed.  The findings were used to define the objectives, scopes, and design 

requirements for solving the problem of optical switch.  The second phase is to select 

the material and optimize the waveguide structure and dimension to be single mode 

in the transmission window for today optical communication system.   The modal 

analysis was done using finite difference beam propagation methods (FD-BPM) 

utilizes alternating direction implicit (ADI) method and finite difference method 

(FDM) utilizes successive over relaxation (SOR) method.  Semi-analytical method 

was also done as comparison using effective index method (EIM).  The third phase is 

to simulate the structure of Y-junction using FD-BPM. The fourth phase is to 

simulate and design the heater electrode to find the best position, dimension and 

material to minimize the switching power using FDM which was accomplished by 

MATLAB.  The next phase is to design VOA in order to decrease the crosstalk.  The 

optimized design was then fabricated using coating, photolithography technique and 

dry etching.  Optical parameters which include crosstalk, insertion loss and 

sensitivity to the input power of the fabricated devices were then measured to 

investigate the device characteristics.  The fabrications of the devices were done by 

outsourcing. 
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1.6. Thesis Overview 

 

As mentioned in Section 1.3, this work is devoted to the study and development 

of 1×2 thermo-optic DOS. The problem rose in this technology such as a limited 

crosstalk performance, high power consumption and a small branching angle which 

leads to the difficulty in fabrication process has been highlighted.   

Discussion about optical switches technologies is presented in Chapter 2.  First, 

the optical switch parameters are described.  Then, optical switches as an important 

component in optical network, is discussed.  The discussion is done by dividing 

Figure 1.1 Flowchart of research methodology 

Optimization of 

waveguide structure and 

dimension (FD-BPM, 

FDM and EIM) 

Simulation and 

optimization of Y-

junction (FD-BPM) 

Simulation and 

optimization of heater 

design and position 

(FDM) 

Simulation and 

optimization of VOA 

(FD-BPM) 

Literature review 

Thesis and report 

writing 

 

Out source fabrication 

 

Device Characterization 
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optical switches technologies into two major categories, namely interferometric 

switches and non-interferometric switches. A review on published DOS is also 

presented.  

In order to gain sufficient information to define the design requirements for 

solving the problem in DOS, fundamental theory of thermo-optic DOS is explained 

in Chapter 3.  The discussion starts from the optical waveguide technologies 

available today and the light propagation in the waveguide.  The modal analysis 

methods such as EIM and FDM are briefly discussed.  The behavior of light 

propagation in Y-branch is discussed using coupled mode theory.  An overview of 

beam propagation method (BPM) is discussed briefly as the design and optimization 

in this thesis is mainly accomplished by employing this method.  At the end, thermal 

analysis which is the fundamental in designing the optimum heater structure is 

discussed.    

 

Chapter 4 explains the simulation and optimization of the digital optical switch.  

The optimization step starts from optimizing the waveguide structure.  The 

waveguide structure and dimension is optimized to be single mode in today optical 

communication window (1.3 µm to 1.55 µm).  The optimization of a Y-branch 

constructed from the optimized waveguide was done by utilizing 3D BPM 

simulations accomplished by BPM-CAD software from OptiWave.  A new method 

of heater design optimization was proposed.   The optimization was then continued 

to the optimization of VOA by employing BPM. 

 

Based on the optimized design resulted in Chapter 4, the 1×2 Y-branch 

waveguide and DOS without VOA was fabricated.  The fabrication technique and 

characterization of the fabricated devices are explained in chapter 5.  The fabrication 

technique includes coating, photolithography, dry etching and lift-off technique. The 

measurement was done for crosstalk values, insertion loss and device sensitivity to 

the input power.  

 

Finally in Chapter 6, a concluding remarks and recommendations for future 

prospects for this work are given. 
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