
AN EMBEDDED SYSTEM FOR NETWORKING SECURITY APPLYING
CRYPTOGRAPHIC ACCELERATION IN FIELD PROGRAMMABLE GATE

ARRAY HARDWARE

VISHNU A/L PARAMASIVAM

UNIVERSITI TEKNOLOGI MALAYSIA



AN EMBEDDED SYSTEM FOR NETWORKING SECURITY APPLYING
CRYPTOGRAPHIC ACCELERATION IN FIELD PROGRAMMABLE GATE

ARRAY HARDWARE

VISHNU A/L PARAMASIVAM

A thesis submitted in fulfilment of the
requirements for the award of the degree of

Master of Engineering (Electrical)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

NOVEMBER 2009



iii

Dedicated to

my beloved family



iv

ACKNOWLEDGEMENT

First and foremost, I would like to extend my deepest gratitude to my project
supervisor, Prof. Dr. Mohamed Khalil bin Mohd Hani, for giving me the opportunity
to work the area of work that interests me the most. His constant encouragement,
critics and guidance were key to bringing this project to a fruitful completion. I have
learned and gained much, not only in the field of research, but also in the lessons of
life.

My sincerest appreciation goes to my co-supervisors, Prof. Madya Munim
Zabidi and Dr. Nadzir Marsono, and my seniors Jasmine Hau Yuan Wen and Ilyasak
for their support, help, and technical advices. I have learned much from them, as well
as receiving plenty of guidance and motivation.

I would also like to thank all those who have contributed directly and indirectly
to the completion of this research and thesis. This includes my fellow postgraduate
students, Mohd Nazrin and Arif Irwansyah, who provided me with help and company
during my study here.

Finally, I would like to thank my family for always being there for me, through
thick and thin. Their role in my life is something I will always need.



v

ABSTRACT

The Internet is an insecure medium. The Secure Socket Layer (SSL) protocol
and its successor Transport Layer Security (TLS) can be used to secure applications
that communicate over a network. The most widely deployed, freely available
implementation of the SSL/TLS protocol is the OpenSSL library. When using
the SSL/TLS protocol, the computational power required is typically too much
for most embedded systems, because cryptographic functions are computationally
extensive. The solution to this problem would be to perform hardware acceleration
of computationally intensive cryptographic functions. This thesis proposes an
embedded cryptosystem with Field Programmable Gate Array based hardware
acceleration for networking security, applying the OpenSSL cryptographic protocol.
The key cryptographic functions used in SSL/TLS-driven connections are Advanced
Encryption Standard (AES), Secure Hash Algorithm (SHA), Rivest-Shamir-Adleman
(RSA), and Random Number Generation (RNG). The AES hardware symmetric
cryptographic hardware core is newly designed, the SHA-1, SHA-2, RNG, and RSA
cores are improved from previous work, and the system bus interface of these hardware
cores are upgraded. All of these hardware cores are integrated into an embedded
system implemented as a System-on-Chip. Finally, the OpenSSL cryptographic library
is accelerated using this cryptosystem to improve the performance of networking
security. Nios2-Linux Real Time Operating System is used within the embedded
system. It provides native support for Ethernet, Universal Serial Bus, multitasking,
standard Linux functions, and has a large collections of ready-to-use libraries, which
includes the OpenSSL library. Applications are written to test, verify, and benchmark
the embedded cryptosystem. Results show an improvement in performance by 9 to
278 times of the OpenSSL crypto library, depending on the algorithm accelerated.
The performance for networking security using the SSL/TLS protocol through the
OpenSSL library is also improved.



vi

ABSTRAK

Internet adalah suatu bahantara yang tidak selamat. Protokol Secure Socket

Layer (SSL) dan penggantinya Transport Layer Security (TLS) biasanya digunakan
untuk aplikasi yang perlu berkomunikasi secara selamat dalam rangkaian Internet.
Sistem pelaksanaan protokol SSL/TLS yang digunakan secara meluas dan percuma
adalah melalui rutin perpustakaan OpenSSL. Bila menggunakan protokol SSL/TLS,
kuasa pengiraan yang dikehendaki lazimnya terlalu tinggi untuk sistem komputer
terbenam disebabkan fungsi-fungsi kriptografi yang kompleks. Penyelesaian yang
sesuai untuk masalah ini adalah dengan menggunakan pecutan litar logik untuk fungsi-
fungsi kriptografi yang intensif. Tesis ini mencadangkan satu sistem kripto terbenam
dengan mengunakan Field Programmable Gate Array yang berasaskan pecutan litar
logik untuk keselamatan perangkaian perhubungan dengan mengaplikasikan protokol
kriptografi OpenSSL. Fungsi-fungsi kriptografi yang penting dalam sambungan
SSL/TLS adalah Advanced Encryption Standard (AES), Secure Hash Algorithm

(SHA), Rivest-Shamir-Adleman (RSA), dan Random Number Generation (RNG).
Pecutan perkakasan untuk fungsi kriptografi AES direka, pecutan litar logik SHA-1,
SHA-2, RNG, dan RSA dinaik taraf daripada projek-projek sebelumnya, dan sistem
antaramuka untuk litar-litar logik tersebut juga dinaik taraf. Kesemua litar logik ini
disepadukan dalam sebuah sistem terbenam yang dikenali sebagai System-on-Chip.
Akhirnya, rutin perpustakaan kriptografi OpenSSL dipecut dengan menggunakan
sistem kripto ini untuk meningkatkan kelajuan keselamatan perangkaian. Sistem
pengendalian masa sebenar Nios2-Linux digunakan dalam sistem terbenam ini.
Ia menyediakan infrastruktur untuk Ethernet, Universal Serial Bus, pengendalian
berbilang tugas, fungsi-fungsi lazim Linux, dan koleksi besar rutin perpustakaan
yang sedia digunakan, termasuk OpenSSL. Beberapa aplikasi ditulis untuk menguji,
mengesah, dan mengukur kelajuan sistem kripto terbenam ini. Berdasarkan keputusan
yang diberi oleh applikasi ini, peningkatan sebanyak 9 hingga 278 kali ganda
diperhatikan dalam pengedalian rutin perpustakaan OpenSSL. Secara tidak langsung,
kelajuan keselamatan perangkaian SSL/TLS melalui rutin perpustakaan OpenSSL juga
dipertingkatkan.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS x
LIST OF TABLES xii
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xvi
LIST OF APPENDICES xviii

1 INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 3
1.3 Objectives 4
1.4 Scope of Work 5
1.5 Methodology 6
1.6 Research Contribution 8
1.7 Thesis Organization 8

2 LITERATURE REVIEW AND BACKGROUND 10
2.1 Previous Work 10
2.2 Nios2-Linux 12
2.3 The SSL/TLS Protocol 14

2.3.1 OpenSSL 17
2.4 Certificates 17
2.5 Cryptography: The AES Symmetric Block Cipher 19
2.6 Cryptography: Hashing 21
2.7 Public Key Cryptography 22



viii

2.8 Random Number Generation 23

3 THE EMBEDDED CRYPTOSYSTEM - SYSTEM
OVERVIEW AND NIOS2-LINUX 25
3.1 Introduction 25
3.2 System Layers 26

3.2.1 The Application Layer 27
3.2.2 The Operating System Layer 28
3.2.3 The Hardware Layer 30

3.3 Nios2-Linux: Setup and Implementation 32
3.3.1 Compiling the Nios2-Linux Kernel 34
3.3.2 Nios2-Linux Root Filesystem 35
3.3.3 Nios2-Linux Boot Sequence 35
3.3.4 Cross-Compiling Programs for Nios2-Linux 36
3.3.5 IO Programming in User Space 37
3.3.6 Customizing the Kernel and Bundled Appli-

cations 38

4 HARDWARE DESIGN OF THE EMBEDDED CRYPTOSYS-
TEM 39
4.1 Overview 39
4.2 Nios II Processor and the Avalon Interface 39

4.2.1 Avalon Interface Specifications 41
4.2.2 Designing the Avalon Interface Unit 43
4.2.3 Device Driver Design 48

4.3 Design of the AES Cryptographic Core 50
4.3.1 The Key Expansion Block 53
4.3.2 The AES Core Avalon Interface and Device

Driver 58
4.4 SHA-1 Cryptographic Core 60

4.4.1 Device Driver Design for the SHA-1 Core 62
4.5 SHA-2 Cryptographic Core 65

4.5.1 Device Driver Design for the SHA-2 Core 65
4.6 RSA Cryptographic Core 67

4.6.1 Device Driver Design for the RSA Core 69
4.7 RNG Hardware Core 71

4.7.1 Device Driver Design for the RNG Core 72
4.8 USB Chip Controller 73



ix

4.9 Custom Clock Counter Unit 76
4.10 Ethernet and Memory Device Controllers 77

5 SOFTWARE SUBSYSTEM DESIGN AND OPENSSL INTE-
GRATION 78
5.1 Introduction 78
5.2 Configuring the OpenSSL Library for the Target

Environment 80
5.3 Modification of the Cryptographic Functions in the

OpenSSL Library 81
5.3.1 Modification of the AES Function 86
5.3.2 Modification of the SHA-1 Function 88
5.3.3 Modification of the SHA-2 Function 89
5.3.4 Modification of the RSA Function 91
5.3.5 Calculating the Montgomery Value 96

5.4 Certificate Generation 98

6 DESIGN VERIFICATION AND SYSTEM VALIDATION -
RESULTS AND DISCUSSION 101
6.1 Verification of the Hardware Cryptographic Cores 101

6.1.1 Verification of the AES Core 102
6.1.2 Verification of the SHA-1 Core 104
6.1.3 Verification of the SHA-2 Core 105
6.1.4 Verification of the RSA Core 107
6.1.5 Verification of the RNG Core 109

6.2 Performance Test and Results 110
6.2.1 Performance of the AES Core 110
6.2.2 Performance of the Hardware Accelerated

OpenSSL Cryptographic Functions 112
6.3 System Validation with Application Prototypes 114

6.3.1 Complete Cryptographic Test Program 114
6.3.2 USB File Encryption and Decryption Program 116
6.3.3 Secure Bank Check Transfer Program 117

7 CONCLUSIONS 122
7.1 Concluding Remarks 122
7.2 Future Work 124



x

REFERENCES 125

Appendices A – G 128 – 165



xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Time taken for several network functions on the RCM2100
embedded system [2]. 11

4.1 Avalon interface register table for the AES core. 45
4.2 Example of cached and uncached addresses for hardware cores. 50
4.3 Avalon interface register table for the SHA-1 core. 63
4.4 Avalon interface register table for the SHA-2 core. 66
4.5 Avalon interface register table for the RSA core. 70
4.6 Avalon interface register table for the clock counter unit. 76

5.1 Example 8-bit memory address pointers and its equivalent 32-bit
memory address pointers when converted. 85

6.1 AES key expansion execution time comparison in clock cycles. 111
6.2 AES core statistics and performance. 111
6.3 Comparison of AES core latency with other designs in clock cycles.111
6.4 AES core performance in the Nios2-Linux environment. 112
6.5 Execution time in clock cycles for the AES algorithm. 112
6.6 Performance results for the Rijndael algorithm on the

TMS320C6201 [4]. 113
6.7 Execution time in clock cycles for the SHA-1/SHA-2 hash

algorithm. 113
6.8 Execution time in clock cycles for the RSA private key encryption. 113
6.9 Execution time in clock cycles for the RSA public key encryption. 114
6.10 Execution time in seconds for the complete cryptographic test

program. 115
6.11 File encryption and decryption in AES for a large file. 117
6.12 File encryption and decryption in AES for a small file. 117
6.13 Execution time in seconds for the secure bank check transfer

application. 121



xii

7.1 Performance improvement for the OpenSSL cryptographic library. 122

A.1 Fundamental signals for the Avalon-MM interface. 129



xiii

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Illustration of a man in the middle attack. 2
1.2 Layers of the proposed embedded cryptosystem. 5
1.3 Secure communication between the embedded system and a PC. 6
1.4 Methodology used to achieve research objectives. 7

2.1 Diagram of the connection between Nios2-Linux, FPGA, Nios
II CPU and the external hardware. 13

2.2 The SSL protocol [16]. 15
2.3 The AES encryption and decryption process [20]. 20
2.4 One iteration in a SHA-2 family compression function [21]. 21
2.5 Illustration of how communication with public key cryptography

works. 23

3.1 Secure communication between the embedded system and a PC. 26
3.2 Layers of the proposed embedded cryptosystem and its relation

with the prototyping hardware. 27
3.3 Nios2-Linux RTOS functional block diagram. 28
3.4 Functional block diagram of the hardware layer. 30
3.5 Nios2-Linux hello world program. 36
3.6 Nios2-Linux memory pointers to hardware. 37
3.7 Nios2-Linux version of the IORD and IOWR macros. 37

4.1 Avalon slave interface to a PIO with only output signals [27]. 42
4.2 Slave read and write transfers with fixed wait-states [27]. 42
4.3 The AES core connected to an Avalon interface. 44
4.4 Verilog design of the Avalon Interface (main part). 46
4.5 Sending the input data to the AES core using C-language macros. 49
4.6 Reading the output data from the AES core using C-language

macros. 49
4.7 The AES encryption and decryption process. 51



xiv

4.8 AES top level FSM flowchart. 52
4.9 AES cryptographic core functional block diagram. 53
4.10 The Rijndael key schedule. 53
4.11 Rcon lookup table in Verilog. 55
4.12 Multiplexed inputs for S-box with rotated output. 57
4.13 Multiplexing the first S-box with rotation in Verilog. 57
4.14 Key expansion functional block diagram. 58
4.15 Key expansion IO block diagram. 58
4.16 AES core block diagram. 59
4.17 The AES core device driver. 60
4.18 The SHA-1 cryptographic core with Avalon interfacing. 61
4.19 The modified SHA-1 core. 62
4.20 The SHA-1 core driver. 64
4.21 The SHA-2 cryptographic core with Avalon interfacing. 65
4.22 The SHA-2 core driver. 67
4.23 The RSA cryptographic core with Avalon interfacing. 68
4.24 The RNG cryptographic core with Avalon interfacing. 71
4.25 The RNG core driver. 72
4.26 Microtronix USB-Ethernet connections to Santa Cruz Header. 73
4.27 IO for Avalon interface and the physical connections. 74
4.28 Declaring registers and assigning the Avalon signals to the

corresponding ISP1161A pins. 74
4.29 Pin assignments in respect to the status of the reset signal. 75
4.30 Functional block diagram of the clock counter unit. 76
4.31 The custom clock counter device driver. 77

5.1 The OpenSSL library and its connections to the other layers. 79
5.2 The linuxsystem.h common header file. 83
5.3 Illustration on byte endianness. 84
5.4 Memory copying function to convert an 8-bit pointer into as 32-

bit pointer to avoid memory address misalignment. 86
5.5 Using OpenSSL to do a AES encryption operation. 87
5.6 Using OpenSSL to do a SHA-1 hashing operation. 88
5.7 Using OpenSSL to do a SHA512 hashing operation. 90
5.8 Using the OpenSSL command line tool to generate RSA key pairs. 93
5.9 Using OpenSSL to do RSA2048 encryption and decryption. 94
5.10 The Montgomery value calculation pseudocode. 97
5.11 The Montgomery value calculation function. 98

6.1 Print screen of the AES core test program showing the results. 103



xv

6.2 Print screen of the SHA-1 core test program showing the results. 105
6.3 Print screen of the SHA-2 core test program showing the results. 106
6.4 Print screen of the RSA core test program showing the results. 108
6.5 Print screen of the RSA core test program showing the results. 110
6.6 The USB file encryption and decryption program. 116
6.7 The secure bank check transfer program. 118
6.8 Generating a plaintext electronic check. 118
6.9 Hashing and signing an electronic check. 119
6.10 Signature verification of the electronic check. 119
6.11 Signature verification successful notification on bank server. 120
6.12 Signature verification failure notification on bank server. 120

A.1 Slave read and write transfers with waitrequest. 129

G.1 Lookup table for the Rcon function. 165



xvi

LIST OF ABBREVIATIONS

3DES – Triple Data Encryption Algorithm

AES – Advanced Encryption Standard

API – Application Programming Interface

ASIC – Application Specific Integrated Circuit

BN – Big Number

CA – Certificate Authority

CPU – Central Processing Unit

DES – Data Encryption Standard

ECC – Elliptic Curve Cryptography

FIFO – First In First Out

FIPS – Federal Information Processing Standard

FPGA – Field Programmable Gate Array

FSM – Finite State Machine

GPU – Graphic Processing Unit

GUI – Graphical User Interface

HAL – Hardware Abstraction Layer

HDL – Hardware Development Language

IC – Integrated Circuit

I/O – Input/Output

IP – Intellectual Property

LE – Logic Elements

Mbit – Mega Bits

MD5 – Message Digest Algorithm (Fifth Series)



xvii

MHz – Mega Hertz

ms – millisecond

PC – Personal Computer

PCI – Peripheral Component Interconnect

PIO – Parellel Input Output

PKI – Public Key Infrastructure

RISC – Reduced Instruction Set Computer

RNG – Random Number Generator

ROM – Read Only Memory

RSA – Rivest-Shamir-Adleman

RTL – Register Transfer Level

SDRAM – Synchronous Dynamic Random Access Memory

SHA-1 – Secure Hash Algorithm - 1

SHA-2 – Secure Hash Algorithm - 2

SoC – System-on-Chip

SOPC – System-on-Programmable-Chip

SSL – Secure Sockets Layer

TLS – Transport Layer Security

UART – Universal Asynchronous Receiver Transmitter

UNIX – Uniplexed Information and Computing System (originally
spelled UNICS)

USB – Universal Serial Bus

VHDL – Very High Speed Integrated Circuit Hardware Description
Language

VLSI – Very Large Scale Integration

VoIP – Voice over Internet Protocol



xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

A AVALON-MM INTERFACE SPECIFICATION 128
B AES CORE SOURCE CODE 131
C AVALON INTERFACE SOURCE CODES 143
D PORTING THE OPENSSL LIBRARY 149
E OPENSSL CRYPTOGRAPHIC LIBRARY MODIFICATIONS 152
F TEST APPLICATION SOURCE CODES AND RSA TEST

VECTORS 158
G MISCELLANEOUS HARDWARE SOURCE CODES 165



CHAPTER 1

INTRODUCTION

This chapter provides background information, the problem statement,
objectives, work scope, methodology, and research contribution of this thesis, which
is about building an embedded cryptosystem for network security applying hardware
acceleration in Field Programmable Gate Array (FPGA).

1.1 Background

The Internet is an insecure medium [1]. It is possible to intercept and modify
data on the Ethernet wire, and the process of doing so is not complicated. An average
hacker will have an easy time eavesdropping if the data transferred is sent in plain-
text or other standard formats. This can be done using man in the middle attacks, as
depicted in Figure 1.1. This is because data on a network is broadcast, hence even
amateur hackers can listen in. Hence, applications that do not properly protect data
when using an untrusted medium are very vulnerable.

Network security consists of the provisions made in an underlying computer
network infrastructure, policies adopted by the network administrator to protect the
network and the network-accessible resources from unauthorized access and the
effectiveness (or lack) of these measures combined together. Currently, the most
widely deployed method for Internet security is the Secure Sockets Layer (SSL)
cryptographic protocol. The most popular implementations are built using the
OpenSSL library.

SSL is an excellent protocol, but it is a lot slower than a traditional
unsecured TCP/IP connection [1]. Cryptographic functions on embedded systems



2

Figure 1.1: Illustration of a man in the middle attack.

are computationally extensive, especially asymmetric cryptography such as Rivest-
Shamir-Adleman (RSA) for key generation. Symmetric cryptography like Advanced
Encryption Standard (AES) and Triple Data Encryption Algorithm (3DES) works on a
per block basis. Every data transferred must be encrypted/decrypted. Therefore, when
using the SSL cryptographic protocol, the computational power required is typically
too much for most embedded systems [2]. This includes the Altera Nios II which only
runs on a 50MHz clock.

This is important, because the CPU has to spend its resources on doing other
tasks. One particularly good example would be Voice over Internet Protocol (VoIP) and
credit card transactions. Voice data has to be transferred as fast to deliver seamlessly,
the data must be encrypted in real time. This is not possible without cryptographic
acceleration. On a different take, credit card transactions are very slow due to the
use of multiple cryptographic protocols (especially RSA or ECC), typically taking 20-
40 seconds for a 50MHz embedded system [2]. A cash transaction would definitely
be faster. An embedded system with cryptographic acceleration would definitely be
useful in these situations, because a single transaction would take less than a second,
assuming there is no network congestion.

Another advantage of an embedded system is that hardware computations are
definitely much safer than that done in software. This is due to attacks that use
timing analysis, known as the timing attack [3]. In cryptography, a timing attack is
a side channel attack in which the attacker attempts to compromise a cryptosystem by
analyzing the time taken to execute cryptographic algorithms. Every logical operation
in a computer takes time to execute, and the time can differ based on the input; with
precise measurements of the time for each operation, an attacker can work backwards



3

to the input. Information can leak from a system through measurement of the time it
takes to respond to certain queries. How much such information can help an attacker
depends on many variables: cryptosystem design, the CPU running the system, the
algorithms used, assorted implementation details, timing attack countermeasures, the
accuracy of the timing measurements, etc.

Timing attacks are often overlooked in the design phase because it is very
dependent on the implementation [3]. Software implementations use several methods
to prevent this type of attack. For example, RSA uses a method known as blinding.
RSA blinding uses extra processing time, but effectively ‘blinds’ a timing attack by
changing the amount of time taken for the RSA operation. However, with accelerated
hardware cores, the amount of time taken for by hardware accelerated cores are the
same regardless of the data processed. In other words, the amount of clock cycles
taken for any cryptographic operation done in hardware is set in stone. So technically,
a timing attack is useless to make an accurate prediction.

1.2 Problem Statement

Firstly, data security comes at a high cost for embedded systems. The
performance of most embedded CPUs (such as ARM and Nios II) are just not adequate
enough to perform cryptography as well as do other tasks such as image or signal
processing.

Secondly, the most computer intensive aspect of networking security is
cryptography. This becomes very apparent when high strength cryptography is applied
in the security protocol. High strength cryptography is typically required in banking
and military based applications.

A possible solution to this problem would be to perform hardware acceleration
of the computer intensive cryptographic functions. The advantage of this approach
is, not only performance is enhanced, but also the level of security is increased,
since the cryptographic functions are computed in hardware. In computing, hardware
acceleration is the use of hardware to perform some function faster than is possible
in software running on a general purpose CPU. Examples of hardware acceleration
include blitting acceleration functionality in graphics processing units (GPUs) and
instructions for complex operations in CPUs.



4

A good cryptographic protocol is vital for ensuring security to provide
confidentiality, authenticity, integrity, and non-repudiation. The Secure Socket Layer
(SSL) protocol and its successor Transport Layer Security (TLS) can be used to secure
web based applications that need to communicate over a network [1].

The key cryptographic functions used in SSL-driven connections are AES,
SHA-1, SHA-2, RSA, and random number generation. Theoretically, if these
functions are accelerated, it will greatly increase the speed of an SSL connection. All
these functions can be accelerated, by designing hardware cryptographic accelerator
cores. These hardware cores are designed using HDL and can be deployed in Field
Programmable Gate Array (FPGA) based systems.

To work with an embedded system supported with the OpenSSL library,
Ethernet, and Universal Serial Bus (USB) a real time operating system is needed. There
are many freely available embedded operating systems available in the market, but
Nios2-Linux (based on µClinux) is the most compatible one to be applied in this work.
Nios2-Linux provides native support for Ethernet, TCP/IP stack, USB, multitasking,
standard UNIX functions, and has a large collections of ready-to-use libraries, which
includes the OpenSSL library.

1.3 Objectives

1. To design an embedded cryptosystem with FPGA-based hardware acceleration
for networking security, applying the OpenSSL cryptographic protocol. This
involves the following sub-objectives:

(a) Customize the design of the AES hardware symmetric cryptographic
hardware core to be dynamic and able to cater for every type of situation.

(b) Upgrade and modify the SHA-1, SHA-2, RNG, and RSA cores so that they
are faster and better suited to work with the OpenSSL library.

(c) Improve the system bus interface of these hardware cores.

(d) Integrate all the above cores into an embedded system implemented as a
System-on-Chip (SoC), as depicted in Figure 1.2.

(e) Accelerate the OpenSSL cryptographic library using this cryptosystem to
improve the performance of networking security.



5

2. To design the following applications using the embedded cryptosystem proposed
in the first objective:

(a) A complete cryptographic function test program.

(b) Secure bank check transfer system using networking security.

(c) File encryption and decryption program using the AES algorithm.

Figure 1.2: Layers of the proposed embedded cryptosystem.

1.4 Scope of Work

• Verilog HDL is applied in the design of cryptographic hardware cores and the
interface to the Nios II processor.

• The OpenSSL library is used for key exchange, symmetric block cipher,
asymmetric block cipher, and hashing algorithms.

• Nios2-Linux operating system is deployed in the embedded system to
complement the OpenSSL library with Ethernet, USB, and filesystem
functionality.

• Test applications are limited to C/C++ programs linked to the OpenSSL library.

• Cryptographic acceleration is limited to the following algorithms:

– RSA 512/1024/2048 bits.

– SHA 160 bits.

– SHA 224/256/38/512 bits



6

– AES 128/192/256 bits

– Random Number Generation.

• The prototype is designed and implemented on the Altera Stratix II FPGA
development board, with the Nios II embedded processor running at 50 MHz.

1.5 Methodology

This project integrates cryptographic (crypto) acceleration into embedded
systems for use in networking security. The embedded system environment proposed
in this work consists of a FPGA-based system on chip running on the Nios II CPU,
coupled with hardware crypto accelerator cores for AES, SHA-1, SHA-2, RSA, and
a random number generator (RNG). The hardware runs on Nios2-Linux (real-time
operating system), which is configured with Ethernet connectivity, USB functionality,
and a working build of the OpenSSL library. The hardware cores are directly linked
to the OpenSSL cryptographic functions, and effectively accelerate all incoming and
outgoing SSL secured connections.

Figure 1.3 illustrates the FPGA-based embedded system connected to a
PC through an untrusted Ethernet medium. It uses SSL connections for data
communication with the PC. The OpenSSL library is deployed in this project because
it is open-source, free, and works on any Linux based operating system.

Figure 1.3: Secure communication between the embedded system and a PC.



7

Figure 1.4 is a diagram depicting the approach to design the embedded
cryptosystem. To summarize the illustration, the approach taken comes down to
preparing all the cryptographic cores and integrating them into an SoC. At the same
time the Nios2-Linux operating system and the OpenSSL library is prepared. Finally
the system is setup and a security application for it is designed. Finally, the speed
improvement is measured and the results are reported.

Figure 1.4: Methodology used to achieve research objectives.



8

1.6 Research Contribution

1. The major contribution of this research is that it is the only work done to
accelerate the OpenSSL cryptographic library in embedded systems. Therefore
the speed improvements can only be measured against itself (running software
routines) and other similar works such as [4].

2. Laying the basic foundation for secure embedded systems through Nios2-Linux
and the OpenSSL library. This provides a TCP/IP stack, networking security,
USB host functionality, filesystem stack, as well as open up the possibilities of
porting and using Linux based open source libraries.

3. Improving available cryptographic hardware cores, as well as pioneering the
integration of hardware coprocessors and the OpenSSL software library. This
provides accelerated networking security.

4. Detailing methods of how to optimize data transfer from CPU to hardware
coprocessor. Methods used are endian switching, designing a robust Avalon
interface, and eliminating unnecessary communication.

1.7 Thesis Organization

This thesis is organized into seven chapters. The first chapter is the introductory
chapter. It presents background information, the problem statement, objectives, work
scope, methodology, and research contribution of this thesis.

Chapter 2 is the literature review and background chapter. It presents the
basic theory of the building blocks used in this project such as embedded Linux,
cryptographic algorithms, and communication mediums such as Ethernet and USB.

Chapter 3 gives an overview of the embedded cryptosystem proposed in this
thesis. This includes an introduction to the system as well as the applications targeted
for it, the layers of the system based on the TCP/IP model, and the Nios2-Linux RTOS
implementation in the Altera FPGA-based development system.

Chapter 4 is the hardware design chapter. It explains the design of the
components in the hardware layer of the proposed embedded cryptosystem. This



9

includes all the cryptographic hardware cores, the bus interface, and all the hardware
modules connected to it.

Chapter 5 is the OpenSSL and software subsystem chapter. It describes
the integration the OpenSSL library in the proposed embedded cryptosystem.
This includes the porting of the OpenSSL library to the Nios2-Linux platform,
the modifications performed on the cryptographic library source code, certificate
generation, and the integration of the library with the hardware cryptographic cores.

Chapter 6 is the results chapter. It describes the verification and the speed
improvement of all the hardware cryptographic cores. Implementation of several real
applications that use cryptography are also described here.

The final chapter is the conclusion chapter, which concludes the findings of this
project and discusses the potential future work to further enhance the overall embedded
system.




