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ABSTRACT

The Internet is an insecure medium. The Secure Socket Layer (SSL) protocol
and its successor Transport Layer Security (TLS) can be used to secure applications
that communicate over a network. The most widely deployed, freely available
implementation of the SSL/TLS protocol is the OpenSSL library. When using
the SSL/TLS protocol, the computational power required is typically too much
for most embedded systems, because cryptographic functions are computationally
extensive. The solution to this problem would be to perform hardware acceleration
of computationally intensive cryptographic functions. This thesis proposes an
embedded cryptosystem with Field Programmable Gate Array based hardware
acceleration for networking security, applying the OpenSSL cryptographic protocol.
The key cryptographic functions used in SSL/TLS-driven connections are Advanced
Encryption Standard (AES), Secure Hash Algorithm (SHA), Rivest-Shamir-Adleman
(RSA), and Random Number Generation (RNG). The AES hardware symmetric
cryptographic hardware core is newly designed, the SHA-1, SHA-2, RNG, and RSA
cores are improved from previous work, and the system bus interface of these hardware
cores are upgraded. All of these hardware cores are integrated into an embedded
system implemented as a System-on-Chip. Finally, the OpenSSL cryptographic library
is accelerated using this cryptosystem to improve the performance of networking
security. Nios2-Linux Real Time Operating System is used within the embedded
system. It provides native support for Ethernet, Universal Serial Bus, multitasking,
standard Linux functions, and has a large collections of ready-to-use libraries, which
includes the OpenSSL library. Applications are written to test, verify, and benchmark
the embedded cryptosystem. Results show an improvement in performance by 9 to
278 times of the OpenSSL crypto library, depending on the algorithm accelerated.
The performance for networking security using the SSL/TLS protocol through the
OpenSSL library is also improved.
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ABSTRAK

Internet adalah suatu bahantara yang tidak selamat. Protokol Secure Socket

Layer (SSL) dan penggantinya Transport Layer Security (TLS) biasanya digunakan
untuk aplikasi yang perlu berkomunikasi secara selamat dalam rangkaian Internet.
Sistem pelaksanaan protokol SSL/TLS yang digunakan secara meluas dan percuma
adalah melalui rutin perpustakaan OpenSSL. Bila menggunakan protokol SSL/TLS,
kuasa pengiraan yang dikehendaki lazimnya terlalu tinggi untuk sistem komputer
terbenam disebabkan fungsi-fungsi kriptografi yang kompleks. Penyelesaian yang
sesuai untuk masalah ini adalah dengan menggunakan pecutan litar logik untuk fungsi-
fungsi kriptografi yang intensif. Tesis ini mencadangkan satu sistem kripto terbenam
dengan mengunakan Field Programmable Gate Array yang berasaskan pecutan litar
logik untuk keselamatan perangkaian perhubungan dengan mengaplikasikan protokol
kriptografi OpenSSL. Fungsi-fungsi kriptografi yang penting dalam sambungan
SSL/TLS adalah Advanced Encryption Standard (AES), Secure Hash Algorithm

(SHA), Rivest-Shamir-Adleman (RSA), dan Random Number Generation (RNG).
Pecutan perkakasan untuk fungsi kriptografi AES direka, pecutan litar logik SHA-1,
SHA-2, RNG, dan RSA dinaik taraf daripada projek-projek sebelumnya, dan sistem
antaramuka untuk litar-litar logik tersebut juga dinaik taraf. Kesemua litar logik ini
disepadukan dalam sebuah sistem terbenam yang dikenali sebagai System-on-Chip.
Akhirnya, rutin perpustakaan kriptografi OpenSSL dipecut dengan menggunakan
sistem kripto ini untuk meningkatkan kelajuan keselamatan perangkaian. Sistem
pengendalian masa sebenar Nios2-Linux digunakan dalam sistem terbenam ini.
Ia menyediakan infrastruktur untuk Ethernet, Universal Serial Bus, pengendalian
berbilang tugas, fungsi-fungsi lazim Linux, dan koleksi besar rutin perpustakaan
yang sedia digunakan, termasuk OpenSSL. Beberapa aplikasi ditulis untuk menguji,
mengesah, dan mengukur kelajuan sistem kripto terbenam ini. Berdasarkan keputusan
yang diberi oleh applikasi ini, peningkatan sebanyak 9 hingga 278 kali ganda
diperhatikan dalam pengedalian rutin perpustakaan OpenSSL. Secara tidak langsung,
kelajuan keselamatan perangkaian SSL/TLS melalui rutin perpustakaan OpenSSL juga
dipertingkatkan.
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CHAPTER 1

INTRODUCTION

This chapter provides background information, the problem statement,
objectives, work scope, methodology, and research contribution of this thesis, which
is about building an embedded cryptosystem for network security applying hardware
acceleration in Field Programmable Gate Array (FPGA).

1.1 Background

The Internet is an insecure medium [1]. It is possible to intercept and modify
data on the Ethernet wire, and the process of doing so is not complicated. An average
hacker will have an easy time eavesdropping if the data transferred is sent in plain-
text or other standard formats. This can be done using man in the middle attacks, as
depicted in Figure 1.1. This is because data on a network is broadcast, hence even
amateur hackers can listen in. Hence, applications that do not properly protect data
when using an untrusted medium are very vulnerable.

Network security consists of the provisions made in an underlying computer
network infrastructure, policies adopted by the network administrator to protect the
network and the network-accessible resources from unauthorized access and the
effectiveness (or lack) of these measures combined together. Currently, the most
widely deployed method for Internet security is the Secure Sockets Layer (SSL)
cryptographic protocol. The most popular implementations are built using the
OpenSSL library.

SSL is an excellent protocol, but it is a lot slower than a traditional
unsecured TCP/IP connection [1]. Cryptographic functions on embedded systems
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Figure 1.1: Illustration of a man in the middle attack.

are computationally extensive, especially asymmetric cryptography such as Rivest-
Shamir-Adleman (RSA) for key generation. Symmetric cryptography like Advanced
Encryption Standard (AES) and Triple Data Encryption Algorithm (3DES) works on a
per block basis. Every data transferred must be encrypted/decrypted. Therefore, when
using the SSL cryptographic protocol, the computational power required is typically
too much for most embedded systems [2]. This includes the Altera Nios II which only
runs on a 50MHz clock.

This is important, because the CPU has to spend its resources on doing other
tasks. One particularly good example would be Voice over Internet Protocol (VoIP) and
credit card transactions. Voice data has to be transferred as fast to deliver seamlessly,
the data must be encrypted in real time. This is not possible without cryptographic
acceleration. On a different take, credit card transactions are very slow due to the
use of multiple cryptographic protocols (especially RSA or ECC), typically taking 20-
40 seconds for a 50MHz embedded system [2]. A cash transaction would definitely
be faster. An embedded system with cryptographic acceleration would definitely be
useful in these situations, because a single transaction would take less than a second,
assuming there is no network congestion.

Another advantage of an embedded system is that hardware computations are
definitely much safer than that done in software. This is due to attacks that use
timing analysis, known as the timing attack [3]. In cryptography, a timing attack is
a side channel attack in which the attacker attempts to compromise a cryptosystem by
analyzing the time taken to execute cryptographic algorithms. Every logical operation
in a computer takes time to execute, and the time can differ based on the input; with
precise measurements of the time for each operation, an attacker can work backwards
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to the input. Information can leak from a system through measurement of the time it
takes to respond to certain queries. How much such information can help an attacker
depends on many variables: cryptosystem design, the CPU running the system, the
algorithms used, assorted implementation details, timing attack countermeasures, the
accuracy of the timing measurements, etc.

Timing attacks are often overlooked in the design phase because it is very
dependent on the implementation [3]. Software implementations use several methods
to prevent this type of attack. For example, RSA uses a method known as blinding.
RSA blinding uses extra processing time, but effectively ‘blinds’ a timing attack by
changing the amount of time taken for the RSA operation. However, with accelerated
hardware cores, the amount of time taken for by hardware accelerated cores are the
same regardless of the data processed. In other words, the amount of clock cycles
taken for any cryptographic operation done in hardware is set in stone. So technically,
a timing attack is useless to make an accurate prediction.

1.2 Problem Statement

Firstly, data security comes at a high cost for embedded systems. The
performance of most embedded CPUs (such as ARM and Nios II) are just not adequate
enough to perform cryptography as well as do other tasks such as image or signal
processing.

Secondly, the most computer intensive aspect of networking security is
cryptography. This becomes very apparent when high strength cryptography is applied
in the security protocol. High strength cryptography is typically required in banking
and military based applications.

A possible solution to this problem would be to perform hardware acceleration
of the computer intensive cryptographic functions. The advantage of this approach
is, not only performance is enhanced, but also the level of security is increased,
since the cryptographic functions are computed in hardware. In computing, hardware
acceleration is the use of hardware to perform some function faster than is possible
in software running on a general purpose CPU. Examples of hardware acceleration
include blitting acceleration functionality in graphics processing units (GPUs) and
instructions for complex operations in CPUs.
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A good cryptographic protocol is vital for ensuring security to provide
confidentiality, authenticity, integrity, and non-repudiation. The Secure Socket Layer
(SSL) protocol and its successor Transport Layer Security (TLS) can be used to secure
web based applications that need to communicate over a network [1].

The key cryptographic functions used in SSL-driven connections are AES,
SHA-1, SHA-2, RSA, and random number generation. Theoretically, if these
functions are accelerated, it will greatly increase the speed of an SSL connection. All
these functions can be accelerated, by designing hardware cryptographic accelerator
cores. These hardware cores are designed using HDL and can be deployed in Field
Programmable Gate Array (FPGA) based systems.

To work with an embedded system supported with the OpenSSL library,
Ethernet, and Universal Serial Bus (USB) a real time operating system is needed. There
are many freely available embedded operating systems available in the market, but
Nios2-Linux (based on µClinux) is the most compatible one to be applied in this work.
Nios2-Linux provides native support for Ethernet, TCP/IP stack, USB, multitasking,
standard UNIX functions, and has a large collections of ready-to-use libraries, which
includes the OpenSSL library.

1.3 Objectives

1. To design an embedded cryptosystem with FPGA-based hardware acceleration
for networking security, applying the OpenSSL cryptographic protocol. This
involves the following sub-objectives:

(a) Customize the design of the AES hardware symmetric cryptographic
hardware core to be dynamic and able to cater for every type of situation.

(b) Upgrade and modify the SHA-1, SHA-2, RNG, and RSA cores so that they
are faster and better suited to work with the OpenSSL library.

(c) Improve the system bus interface of these hardware cores.

(d) Integrate all the above cores into an embedded system implemented as a
System-on-Chip (SoC), as depicted in Figure 1.2.

(e) Accelerate the OpenSSL cryptographic library using this cryptosystem to
improve the performance of networking security.
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2. To design the following applications using the embedded cryptosystem proposed
in the first objective:

(a) A complete cryptographic function test program.

(b) Secure bank check transfer system using networking security.

(c) File encryption and decryption program using the AES algorithm.

Figure 1.2: Layers of the proposed embedded cryptosystem.

1.4 Scope of Work

• Verilog HDL is applied in the design of cryptographic hardware cores and the
interface to the Nios II processor.

• The OpenSSL library is used for key exchange, symmetric block cipher,
asymmetric block cipher, and hashing algorithms.

• Nios2-Linux operating system is deployed in the embedded system to
complement the OpenSSL library with Ethernet, USB, and filesystem
functionality.

• Test applications are limited to C/C++ programs linked to the OpenSSL library.

• Cryptographic acceleration is limited to the following algorithms:

– RSA 512/1024/2048 bits.

– SHA 160 bits.

– SHA 224/256/38/512 bits
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– AES 128/192/256 bits

– Random Number Generation.

• The prototype is designed and implemented on the Altera Stratix II FPGA
development board, with the Nios II embedded processor running at 50 MHz.

1.5 Methodology

This project integrates cryptographic (crypto) acceleration into embedded
systems for use in networking security. The embedded system environment proposed
in this work consists of a FPGA-based system on chip running on the Nios II CPU,
coupled with hardware crypto accelerator cores for AES, SHA-1, SHA-2, RSA, and
a random number generator (RNG). The hardware runs on Nios2-Linux (real-time
operating system), which is configured with Ethernet connectivity, USB functionality,
and a working build of the OpenSSL library. The hardware cores are directly linked
to the OpenSSL cryptographic functions, and effectively accelerate all incoming and
outgoing SSL secured connections.

Figure 1.3 illustrates the FPGA-based embedded system connected to a
PC through an untrusted Ethernet medium. It uses SSL connections for data
communication with the PC. The OpenSSL library is deployed in this project because
it is open-source, free, and works on any Linux based operating system.

Figure 1.3: Secure communication between the embedded system and a PC.
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Figure 1.4 is a diagram depicting the approach to design the embedded
cryptosystem. To summarize the illustration, the approach taken comes down to
preparing all the cryptographic cores and integrating them into an SoC. At the same
time the Nios2-Linux operating system and the OpenSSL library is prepared. Finally
the system is setup and a security application for it is designed. Finally, the speed
improvement is measured and the results are reported.

Figure 1.4: Methodology used to achieve research objectives.
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1.6 Research Contribution

1. The major contribution of this research is that it is the only work done to
accelerate the OpenSSL cryptographic library in embedded systems. Therefore
the speed improvements can only be measured against itself (running software
routines) and other similar works such as [4].

2. Laying the basic foundation for secure embedded systems through Nios2-Linux
and the OpenSSL library. This provides a TCP/IP stack, networking security,
USB host functionality, filesystem stack, as well as open up the possibilities of
porting and using Linux based open source libraries.

3. Improving available cryptographic hardware cores, as well as pioneering the
integration of hardware coprocessors and the OpenSSL software library. This
provides accelerated networking security.

4. Detailing methods of how to optimize data transfer from CPU to hardware
coprocessor. Methods used are endian switching, designing a robust Avalon
interface, and eliminating unnecessary communication.

1.7 Thesis Organization

This thesis is organized into seven chapters. The first chapter is the introductory
chapter. It presents background information, the problem statement, objectives, work
scope, methodology, and research contribution of this thesis.

Chapter 2 is the literature review and background chapter. It presents the
basic theory of the building blocks used in this project such as embedded Linux,
cryptographic algorithms, and communication mediums such as Ethernet and USB.

Chapter 3 gives an overview of the embedded cryptosystem proposed in this
thesis. This includes an introduction to the system as well as the applications targeted
for it, the layers of the system based on the TCP/IP model, and the Nios2-Linux RTOS
implementation in the Altera FPGA-based development system.

Chapter 4 is the hardware design chapter. It explains the design of the
components in the hardware layer of the proposed embedded cryptosystem. This
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includes all the cryptographic hardware cores, the bus interface, and all the hardware
modules connected to it.

Chapter 5 is the OpenSSL and software subsystem chapter. It describes
the integration the OpenSSL library in the proposed embedded cryptosystem.
This includes the porting of the OpenSSL library to the Nios2-Linux platform,
the modifications performed on the cryptographic library source code, certificate
generation, and the integration of the library with the hardware cryptographic cores.

Chapter 6 is the results chapter. It describes the verification and the speed
improvement of all the hardware cryptographic cores. Implementation of several real
applications that use cryptography are also described here.

The final chapter is the conclusion chapter, which concludes the findings of this
project and discusses the potential future work to further enhance the overall embedded
system.




