DELAYS AT UNSIGNALISED JUNCTION

ONG HOCK CHYE

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Transportation and Highway)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2009

Dedicated To Traffic Engineering Relevant Parties...

ACKNOWLEDGEMENT

Firstly, I am thankful to God for completing this pre-master project report successfully. I would also like to thank my supervisor, Associate Professor Dr Othman Che Puan for his guidance, advice and continuous support. His kindness and encouragement made me always active and confident.

I would also like to thank evaluation's Panel i.e. Associate Professor Dr Johnnie Dr. Johnnie Ben-Edigbe and Dr. Haryati Yaacob for their guidance and comments about my master project during my presentation.

Thank to all my friends and colleagues for their motivation and support towards producing successful report. Their views and tips are useful indeed. I also would like to express my gratitude to my parents for their encouragement and support.

Finally, I hope that this report will be beneficial in the future.

ABSTRACT

Traffic delay is an important measure of quality of a journey. The longer the delay, the lower the quality of a journey. Delay is one of the aspects considered of a road facility such as intersection. This project concerns with the delay experienced by the drivers on minor rod at priority T-junctions. The main objective of the study is to evaluate the applicability of the current method of estimating delay to the analysis of the performance of priority junctions. Data for analysis of traffic delays was collected at six priority T-junctions in various parts of sub-urban areas. The result of the analysis show that current method of estimating delay cannot applicable to the evaluation of performance for local priority junction. However, more data are required to validate the results of the study.

ABSTRAK

Kelengahan traffik adalah penting untuk mengukur qualiti perjalanan. Semakin panjang kelengahan, semakin rendahnya qualiti perjalanan. Kelengahan adalah satu aspek yang mempertimbangkan analisa keupayaan untuk kemudahan jalanraya seperti persimpangan. Projek ini mengambil kira kelengahan yang dialami oleh pemandu daripada jalan minor di Persimpangan Keutamaan-T. Objektif utama kajian ini adalah untuk menaksir keterterapan kaedah menganggar kelengahan yang sediada dengan analisa keupayaan Persimpangan Keutamaan-T. Data untuk analisa kelengahan traffik telah dikumpul di enam Persimpangan Keutamaan-T di pelbagai kawasan pinggir bandar. Keputusan daripada analisa menunjukkan bahawa kaedah menganggar kelengahan yang sediada tidak dapat digunakan untuk menaksir keupayaan persimpangan keutamaan tempatan. Akan tetapi, lebih banyak data adalah diperlukan untuk mengesahkan kebenaran keputusan kajian ini.

TABLE OF CONTENTS

CHAPTER			TITLE	PAGE
	DEC	LARAT	ION	ii
	DED	ICATIO)N	iii
	ACK	NOWL	EDGEMENTS	iv
	ABS	TRACT		v
	ABS	TRAK		vi
	TAB	LE OF	CONTENTS	vii
	LIST	OF TA	BLES	xi
	LIST	OF FIG	GURES	xiv
	LIST	OF SY	MBOLS AND ABBREVIATIONS	xvi
	LIST	T OF AI	PPENDICES	xvii
1	INTI	RODUC	TION	
	1.1	Introd	uction	1
	1.2	Proble	em of Statement	1
	1.3	Aim a	nd Objectives of Study	2
	1.4	Scope	of Study	2
2	LITERATURE REVIEW			
	2.1	Introd	uction	3
	2.2	Juncti	on	4
		2.2.1	Unsignalised Junction	6
		2.2.2	Basic Form of a Junction	6
		2.2.3	Design of Junction	8

	2.4	Delay	s at Junctions	9
	2.5	Heady	vay	10
	2.6	Capac	ity	11
	2.7	Speed		12
	2.8	Level	of Service	13
		2.8.1	American Approach	13
		2.8.2	Malaysian Approach	14
			2.8.2.1 Reserve Capacity	14
			2.8.2.2 Shared Lane Capacity	15
			2.8.2.3 Conflicting Traffic, Potential Capacity and	
			Movement Capacity	16
	2.9	Delay	s Model	20
		2.9.1	Tanner Theoretical Model	20
		2.9.2	Kimber and Hollis Theory	21
		2.9.3	Highway Capacity Manual 2000	22
	2.10	Summ	nary	25
3	MET	HODO	LOGY	
	3.1	Metho	odology of Study	26
	3.2	Data		27
	3.3	Locat	ions for Data Collection	28
	3.4	Geom	etry of Junction	31
	3.5	Size o	f Samples	31
	3.6	Site D	Data Collection	32
	3.7	Data /	Analysis	32
	3.8	Comp	arison between the Actual and Theoretical Delays	33
	3.9	Evalu	ation of Implication of Actual Delays	34
4	DAT	A COL	LECTION AND ANALYSED	
	4.1	Introd	luction	35
	4.2	Descr	iptions of Junction	36
	4.3	Geom	etry Parameter	37
	4.4	Traffi	c Flow	38
	4.5	Comp	osition of Traffic	39

viii

4.6	Traffic	Volume	41
4.7	Capaci	ty Data	42
4.8	Observ	ved Delays	44
	4.8.1	Delay for Share Lane Minor Road Traffic	45
	4.8.2	Delay for Double Lane Minor Road Traffic	56
4.9	Theore	etical Delay	63
	4.9.1	Tanner Theoretical Delay	63
	4.9.2	Kimber and Hollis Theoretical Delay	75
	4.9.3	Highway Capacity Manual 2000 Theoretical Delay	85
4.10	Evalua	tion of Actual Delay and Theoretical Delay	97
	4.10.1	Average Delay for the Minor Road	97
	4.10.2	Delay for Share Lane Minor Road Traffic	101
	4.10.3	Delay for the Double Lane Minor Road Traffic	104
4.11	Implic	ation of Actual and Theoretical Delay	109
	4.11.1	Evaluation with Highway Capacity Manual 2000	
		Level of Service Criteria	109
	4.11.2	Evaluation with Malaysian Approach Level of	
		Service Criteria	119

5 DISCUSSION AND CONCLUSION

5.1	Introd	uction	122
5.2	Comp	arison of Actual and Theoretical Delays	123
5.3	Implic	cation of Actual and Theoretical Delays	123
5.4	Sugge	estion for Future Study	123
5.5	Findir	ngs	124
	5.5.1	Assess the Actual Delays at Local	
		Unsignalised Junctions	124
	5.5.2	Comparison between Actual Delays and	
		Theoretical Delays	125
	5.5.3	Evaluation of Implication for Actual and	
		Theoretical Delays	126
5.6	Concl	usion	127

REFERENCES	128
APPENDICES	130

LIST OF TABLES

TABLE NO.

TITLE

PAGE

Table 2.1	Level of Service Criteria for Junction	13
Table 2.2	Level of Service Criteria for Unsignalised Junction	14
Table 4.1	Geometry Parameter for Junction of Senai Expressway and	
	Jalan Kelah	38
Table 4.2	Traffic Flow for Junction at Senai Expressway and Jalan Kelah	
	during Weekday 1 Morning Peak	39
Table 4.3	Data for Composition of Traffic at Junction of Jalan Abu Bakar	
	and Jalan Thomson	40
Table 4.4	Conversion Factor for PCU	42
Table 4.5	Traffic Volume for Junction of Senai Expressway and Jalan Kelah	42
Table 4.6	Capacity Data for Minor Road in PCU / h	43
Table 4.7	Observed Delays for Junction of Senai Expressway and Jalan	
	Kelah	47
Table 4.8	Observed Delays for Junction of Skudai-Pontian Expressway and	
	Jalan Jeram Batu	49
Table 4.9	Observed Delays for Junction of Jalan Abu Bakar and Jalan	
	Thomson	50
Table 4.10	Observed Delays for Junction of Jalan Kempas Baru and Jalan	
	Dataran 4	52
Table 4.11	Observed Delays for Junction of Jalan Ladang and Jalan	
	Kempas 1	53
Table 4.12	Observed Delays for Double Lane Minor Road Traffic	58

Table 4.13	Tanner Theoretical Average Delay for Junction of Senai	
	Expressway and Jalan Kela	66
Table 4.14	Tanner Theoretical Average Delay for Junction of Skudai-Pontian	
	Expressway and Jalan Jeram Batu	67
Table 4.15	Tanner Theoretical Average Delay for Junction of Jalan Abu Baka	r
	and Jalan Thomson	69
Table 4.16	Tanner Theoretical Average Delay for Junction of Jalan Kempas	
	Baru and Jalan Dataran 4	70
Table 4.17	Tanner Theoretical Average Delay for Junction of Jalan	
	Kebudayaan and Jalan Kebudayaan 21	72
Table 4.18	Tanner Theoretical Average Delay for Junction of Jalan Ladang	
	and Jalan Kempas 1	73
Table 4.19	Kimber and Hollis Theoretical Average Delay for Junction of	
	Senai Expressway and Jalan Kelah	77
Table 4.20	Kimber and Hollis Theoretical Average Delay for Junction of	
	Skudai-Pontian Expressway and Jalan Jeram Batu	79
Table 4.21	Kimber and Hollis Theoretical Average Delay for Junction of	
	Jalan Abu Bakar and Jalan Thomson	80
Table 4.22	Kimber and Hollis Theoretical Average Delay for Junction of	
	Jalan Kempas Baru and Jalan Dataran 4	81
Table 4.23	Kimber and Hollis Theoretical Average Delay for Junction of	
	Jalan Kebudayaan and Jalan Kebudayaan 21	83
Table 4.24	Kimber and Hollis Theoretical Average Delay for Junction of	
	Jalan Ladang and Jalan Kempas 1	84
Table 4.25	HCM 2000 Theoretical Average Delay for Junction of Senai	
	Expressway and Jalan Kelah	88
Table 4.26	HCM 2000 Theoretical Average Delay for Junction of	
	Skudai-Pontian Expressway and Jalan Jeram Batu	89
Table 4.27	HCM 2000 Theoretical Average Delay for Junction of Jalan Abu	
	Bakar and Jalan Thomson	91
Table 4.28	HCM 2000 Theoretical Average Delay for Junction of Jalan	
	Kempas Baru and Jalan Dataran 4	92
Table 4.29	HCM 2000 Theoretical Average Delay for Junction of Jalan	
	Kebudayaan and Jalan Kebudayaan 21	94

Table 4.30	HCM 2000 Theoretical Average Delay for Junction of Jalan	
	Ladang and Jalan Kempas 1	95
Table 4.31	Evaluation of Observed and Tanner Theoretical Average Delays	98
Table 4.32	Evaluation of Observed and Kimber and Hollis Theoretical	
	Average Delay	99
Table 4.33	Evaluation of Observed and HCM 2000 Theoretical Delays	102
Table 4.34	Evaluation of the Actual Delays and HCM 2000 Theoretical	
	Delays for Double Lane Minor Road Traffic	105
Table 4.35	Evaluation of Implication for Junction of Senai Expressway and	
	Jalan Kelah	111
Table 4.36	Evaluation of Implication for Junction of Skudai-Pontian	
	Expressway and Jalan Jeram Batu	112
Table 4.37	Evaluation of Implication for Junction of Jalan Abu Bakar and	
	Jalan Thomson	113
Table 4.38	Evaluation of Implication for Junction of Jalan Kempas Baru	
	and Jalan Dataran 4	114
Table 4.39	Evaluation of Implication for Junction of Jalan Kebudayaan and	
	Jalan Kebudayaan 21	116
Table 4.40	Evaluation of Implication for Junction of Jalan Ladang and Jalan	
	Kempas 1	117
Table 4.41	Reserved Capacity, C _R in PCPH	119
Table 4.42	Evaluation of Junction of Jalan Ladang and Jalan Kempas 1	
	with LOS Criteria	121

xiii

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

Figure 2.1	Basic Form of a Junction	7
Figure 2.2	Capacities at Unsignalised T-Junction	12
Figure 2.3	Definitions and Computation of Conflicting Traffic Volume	17
Figure 2.4	Selection of Capacity	18
Figure 2.5	Impedance Factor	18
Figure 2.6	Computation of Movement Capacity	19
Figure 2.7	Calculation of Conflicting Flow at Unsignalised Junctions	24
Figure 3.1	Flow Chart for Methodology of Study	27
Figure 3.2	Partial Map for Junction of Senai Expressway and Jalan Kelah	29
Figure 3.3	Partial Map for Junction of Skudai-Pontian Expressway and Jalan	
	Jeram Batu	29
Figure 3.4	Partial Map for Junction of Jalan Abu Bakar and Jalan Thomson	29
Figure 3.5	Partial Map for Junction of Jalan Kempas Baru and Jalan Dataran	
	4	30
Figure 3.6	Partial Map for Junction of Jalan Kebudayaan and Jalan	
	Kebudayaan 21	30
Figure 3.7	Partial Map for Junction of Jalan Ladang and Jalan Kempas 1	30
Figure 4.1	Variation of Average Delay for Share Lane Minor Road Traffic	55
Figure 4.2	Variation of Stop Delay for Share Lane Minor Road Traffic	55
Figure 4.3	Variation of Total Delay for Share Lane Minor Road Traffic	56
Figure 4.4	Variation of Average Delay for Double Lane Minor Road Right	
	Turning Traffic	60

Figure 4.5	Variation of Average Delay for Double Lane Minor Road Left	
	Turning Traffic	60
Figure 4.6	Variation of Stop Delay for Double Lane Minor Road Right	
	Turning Traffic	61
Figure 4.7	Variation of Stop Delay for Double Lane Minor Road Left Turnin	g
	Traffic	61
Figure 4.8	Variation of Total Delay for Double Lane Minor Road Right	
	Turning Traffic	62
Figure 4.9	Variation of Total Delay for Double Lane Minor Road Left	
	Turning Traffic	62
Figure 4.10	Variation of Theoretical and Observed Average Delay for Minor	
	Road Traffic	100
Figure 4.11	Variation of Observed and HCM Theoretical Average Delay for	
	Share Lane Minor Road Traffic	103
Figure 4.12	Variation of Observed and HCM Theoretical Stop Delay for	
	Share Lane Minor Road Traffic	103
Figure 4.13	Variation of Observed and HCM Theoretical Total Delay for	
	Share Lane Minor Road Traffic	104
Figure 4.14	Variation of Observed and HCM Theoretical Average Delay for	
	Double Lane Minor Road Right Turning Traffic	106
Figure 4.15	Variation of Observed and HCM Theoretical Average Delay for	
	Double Lane Minor Road Left Turning Traffic	106
Figure 4.16	Variation of Observed and HCM Theoretical Stop Delay for	
	Double Lane Minor Road Right Turning Traffic	107
Figure 4.17	Variation of Observed and HCM Theoretical Stop Delay for	
	Double Lane Minor Road Left Turning Traffic	107
Figure 4.18	Variation of Observed and HCM Theoretical Total Delay for	
	Double Lane Minor Road Right Turning Traffic	108
Figure 4.19	Variation of Observed and HCM Theoretical Total Delay for	
	Double Lane Minor Road Left Turning Traffic	108

LIST OF SYMBOLS AND ABBREVIATIONS

i.e.	that is / that are
LOS	Level of Service
q	Traffic Flow
q _{Major}	Major Road Traffic Flow
q_{T}	Total Traffic Flow Rate
q_R	Flow Rate for Right Turning
q_L	Flow Rate for Left Turning
q _{NS}	Near Side Flow Rate
$q_{\rm FS}$	Far Side Flow Rate
q _{Motor}	Motorcycle Flow
veh	Vehicle
h	Hour
min	Minutes
sec	Seconds
WD	Weekday
SAT	Saturday
SUN	Sunday
PCU	Passenger Car Unit
Vs.	Versus
VPH	Vehicle per Hour
РСРН	Passenger Car per Hour
R _T	Minor Road Right Turning
L _T	Minor Road Left Turning
M_{RT}	Major Road Right Turning

LIST OF APPENDICES

APPENDIX NO.

TITLE

PAGE

APPENDIX A	GEOMETRY PARAMETERS	130
APPENDIX B	TRAFFIC FLOW FOR EVERY 15 MINUTES	133
APPENDIX C	COMPOSITION OF TRAFFIC	150
APPENDIX D	TRAFFIC VOLUME	157
APPENDIX E	CAPACITY	174
APPENDIX F	DELAY	180
APPENDIX G	TRAFFIC FLOW RATE AND DELAY	188
APPENDIX H	TANNER THEORETICAL DELAY	195
APPENDIX I	KIMBER AND HOLLIS THEORETICAL DELAY	202
APPENDIX J	HIGHWAY CAPACITY MANUAL 2000	
	THEOREICAL DELAY	210
APPENDIX K	EVALUATION OF OBSERVED AND THEORETICAL	
	DELAY BY χ^2	219
APPENDIX L	LEVEL OF SERVICE CRITERIA FOR MALAYSIAN	
	APPROACH EVALUATION	258
APPENDIX M	FIGURE	269

CHAPTER I

INTRODUCTION

1.1 Introduction

The construction of junction is to allow the road users to change their direction of journey. The ability of the vehicles from minor road cross and merging with the vehicles from major road at a junction depends on types of junction control and the conditions of traffic flow on major road. Types of junction control include signalised control, stop-controlled and roundabout. This study focuses on the delay at unsignalised T-junction for local traffic conditions. The actual delays and theoretical delays are evaluated.

1.2 Problem of Statement

A stop-signed traffic control system is usually used at junction accommodating relatively low volume of traffic. This performance of traffic operation at this type of junction is expected to be influenced by geometry layout at the junction and the distribution of the traffic flow. At an unsginalized junction, the road users are exposed to high risk of accident during diverging, merging or crossing. The parameters that influence delay at stop-signed junction are capacity of the junction, traffic demand, activity surrounding the junction area and driver characteristics. Current method of analysis is based on the American Highway Capacity Manual. Therefore, there is need to assess the delays at stop controlled junctions for local traffic condition to evaluate the applicability of the existing Highway Capacity Manual to the analysis priority junctions. Besides that, the levels of service for stop-signed junction are estimated through this study. Therefore, solution for solve the delays problem can be proposed based on the level of service at junctions in order to reduce the delay problem to the traffic especially minor road traffic.

1.3 Aim and Objectives of Study

The aim of this study is to assess the delays at unsignalised junctions. The objectives are:

- To assess the actual delays at local unsignalised junctions;
- To compare the actual delays and theoretical delays; and
- To evaluate the implication of actual and theoretical delays.

1.4 Scope of Study

This study focuses on the delay experience by the minor road traffic at unsignalised junctions. Types of delay considered are the stop delay, total delay and average delay.

REFERENCES

- Wells, W. Traffic Engineering an Introduction. Second Edition. United Kingdom: Charles Griffin & Company Limited. 1979.
- Ashton, W. D. The Theory if Road Traffic Flow. United Kingdom: Spottiswoode, Ballantyne and Co Ltd. 1966.
- Hobbs, F. D. Traffic Planning Engineering. Second Edition. United Kingdom: Cox & Wyman Ltd. 1979.
- Seymer, N. Translated. Transportation and Town Planning. United Kingdom: The M.I.T. Press. 1970.
- O'Flaherty, C. A. Transport Planning and Traffic Engineering. United Kingdom: Arnold. 1997.
- Salter, R. J. and Hounsell N. B. Highway Traffic Analysis and Design. Third Edition. USA: PALGRAVE. 1996.
- Matson, T. M., Smith, W. S. and Hurd, F. W. *Traffic Engineering*. USA: McGraw-Hill Book Company. 1955.
- Davies, E. ed. Traffic Engineering Practice. Second Edition. United Kingdom: E. & F. N. Spon Ltd. 1968.

- Behr, J. B. ed. Research on Road Traffic. United Kingdom: Her Majesty's Stationery Office. 1965.
- Cawangan Jalan, Jabatan Kerja Raya Malaysia. A Guide to the Design of at Grade Intersections. Malaysia; Arahan Teknik (Jalan) 11/87. 1987.
- Cawangan Jalan, Jabatan Kerja Raya Malaysia. A Guide to Geometric Design of Road. Malaysia; Arahan Teknik (Jalan) 8/86. 1986.
- Pignataro, L. J. Traffic Engineering: Theory and Practice. USA: Prentice-Hall, Inc. 1973.
- 13. May, A. D. Traffic Flow Fundamentals. USA: Prentice-Hall, Inc. 1990.
- Road Engineering Association Malaysia. A Guide on Geometric Design of Roads. Malaysia. 2000.
- National Research Council Washington D.C. Highway Capacity Manual 2000. USA. 2000.
- Salter, R. J. Traffic Engineering Worked Examples. Second Edition. United Kingdom: Macmillan Education Ltd. 1989.