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ABSTRACT 

 

 

 

 

In the first experiment of Deoxyribonucleic Acid (DNA) computation, 

Adleman has solved a seven nodes Hamiltonian Path Problem (HPP) by applying 

some biotechnology techniques such as hybridization and polymerase chain reaction 

(PCR). In that experiment, graduated PCR has been used to visualize the 

Hamiltonian path. In other research work, a novel readout method tailored 

specifically to the HPP in DNA computing was proposed, which employs a hybrid in 

vitro-in silico approach. In the in vitro phase, TaqMan-based real-time PCR reactions 

are performed in parallel, to investigate the ordering of pairs of nodes in the 

Hamiltonian path, in terms of relative distance from the DNA sequence encoding the 

known start node. The resulting relative orderings are then processed in silico, which 

efficiently returns the complete Hamiltonian path. However, this method used 

manual classification to distinguish the two different reactions of real-time PCR. In 

this thesis, clustering techniques are implemented during the in silico phase. 

Clustering is crucial to identify automatically two different reactions produced by 

real-time PCR. K-means, Fuzzy C-means (FCM), and Alternative Fuzzy C-means 

(AFCM) clustering algorithms are implemented to differentiate the output of real-

time PCR. Results show that K-means and FCM clustering algorithms are capable to 

classify the two different reactions of real-time PCR. In addition, it has been shown 

that AFCM clustering algorithm is better than FCM and K-means in term of handling 

outliers in the real-time PCR output data. Application of clustering techniques have 

improved the in silico information processing of the readout method. 
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ABSTRAK 

 

 

 

 

Dalam eksperimen pertama pengkomputeran Asid Deoksiribonukleik (DNA), 

Adleman telah menyelesaikan Masalah Laluan Hamiltonian (HPP) tujuh nod dengan 

mengaplikasikan beberapa teknik bioteknologi seperti penghibridan dan tindak balas 

rantai polimerase (PCR). Dalam eksperimen tersebut, kaedah PCR berperingkat telah 

digunakan untuk mengimbas laluan Hamiltonian. Dalam penyelidikan lain, kaedah 

terbaru baca-keluar yang disesuaikan secara spesifik untuk HPP dalam DNA 

computing dibincangkan, yang menggunakan pendekatan hybrid in vitro-in silico. 

Dalam fasa in vitro, tindak balas PCR masa nyata berdasarkan TaqMan dijalankan 

secara serentak, untuk mencari turutan pasangan nodan dalam HPP, dengan 

mengambilkira jarak, secara relatif, dari jujukan DNA yang mengekod nodan 

permulaan yang telah diketahui. Hasil dari turutan secara relatif diproses secara in 

silico, yang mana menghasilkan HPP yang lengkap dengan cekap. Bagaimanapun, 

kaedah baca-keluar tersebut menggunakan klasifikasi manual untuk membezakan 

dua tindak balas berbeza PCR masa nyata. Dalam thesis ini, teknik pengerumunan 

dijalankan semasa fasa in silico. Pengerumunan sangat penting dalam mengenal pasti 

secara automatik dua tindak balas berbeza yang dihasilkan oleh PCR masa nyata. K-

min, C-min Kabur (FCM), dan C-min Kabur Alternatif (AFCM) dijalankan untuk 

membezakan keluaran PCR masa nyata. Hasil menunjukkan algoritma 

pengerumunan K-min dan FCM mampu mengklasifikan dua tindak balas berbeza 

PCR masa nyata. Hasil lain pula menunjukkan algoritma pengerumunan AFCM 

adalah lebih baik berbanding FCM dan K-min dari segi pengendalian nilai tersisih 

yang wujud dalam data PCR masa nyata. Aplikasi teknik pengerumunan telah 

memperbaiki pemprosesan maklumat in silico bagi kaedah baca-keluar. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Deoxyribonucleic Acid (DNA) 

 

 

DNA is a polymer, which is linked together from a series of monomers. 

Monomers, which form the structure of nucleic acids, are called nucleotides. Each 

nucleotide contains a sugar (deoxyribose), a phosphate group, and one of four bases: 

Adenine (A), Thymine (T), Guanine (G), or Cytosine (C), as shown in Figure 1.1 [1]. 

 

 

 

Figure 1.1 A nucleotide 



 2

Single-stranded DNA (ssDNA) is a sequence of nucleotides. This sequence, 

which forms a negatively charged backbone, is linked by 5’-phosphate with 3’-

hydroxyl to form a phosphodiester bond, which is a strong covalent bond. Hence, 

each end of a single strand is easily identified by a 5’ and 3’. Figure 1.2 shows three 

different nucleotides that are linked to form a single-stranded DNA [1]. 

 

 

 

Figure 1.2 A single-stranded DNA 

 

 

Figure 1.3 shows the two single-stranded DNAs, which are held together by 

hydrogen bonds between pairs of bases. In this figure, Adenine (A) is paired with 

Thymine (T) (2 hydrogen bonds) and Cytosine (C) with Guanine (G) (3 hydrogen 

bonds) [2]. Hybridization or annealing occurs when a sequence of nucleotides bonds 

to the nucleotides of another sequence, starting from the 5’-end (the ribose end) of 

one sequence and the 3’-end (the phosphate end) of the other sequence. These 
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sequences are tied together in a helical structure notably known as the double helix 

structure [2]. The nucleotides only form stable bonds in certain combinations: A 

hydrogen-bonds to T, and G hydrogen-bonds to C. Thus, A is the Watson-Crick 

complement of T, and G is the Watson-Crick complement of C. A single-stranded of 

DNA sequence that contains n bases has length of n-mer.  

 

 

 

Figure 1.3 Double helix structure of DNA 
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1.2 Basic Biotechnology 

 

 

1.2.1 Synthesizing DNA 

 

 

A short single-stranded DNA is called oligonucleotide or oligo in simple 

term. Usually, 70-80 sequences can be chemically synthesized based on current 

technology, which produce less error. Lately, it is possible to get a test tube 

containing approximately 10
18

 DNA molecules with a desired sequence.  

 

 

 

 

1.2.2 Hybridization and Denaturation 

 

 

Hybridization is defined as a sequence-specific annealing of two or more 

single stranded DNAs, forming a double-stranded DNA (dsDNA) product. From 

DNA computing point of view, hybridization performs computation. Thus, the 

specific recognition property is very useful for the computation at molecular level. 

Hybridization can be done by cooling down the test tube reaction solution [3]. 

 

Three types of hybridization could occur: bi-molecular hybridization, multi-

molecular hybridization, and uni-molecular hybridization. Bi-molecular 

hybridization involves two kinds of ssDNAs to form a double helix structure of DNA 

as shown in Figure 1.4 [4]. Meanwhile, three or more strands are involved in the 

multi-molecular hybridization. Uni-molecular hybridization or self-hybridization 

could lead to hairpin formation as shown in Figure 1.5. This would happen if a 

complementary subsequence exists in the same ssDNAs.  



 

Figure 1.4 

 

 

Figure 1.5

 

 

In denaturation, dsDNAs can be separated b

85-95°C. As shown in Figure 1.4, two strands can be separated without breaking the 

single strands dsDNAs as

are much weaker than the covalent bonds between nucleotides adjacent in the two 

strands [5].  

 

G 

T 
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3’ End 

 Bi-molecular hybridization and denaturation of DNA

Figure 1.5 An example of hairpin formation of DNA
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As shown in Figure 1.4, two strands can be separated without breaking the 

single strands dsDNAs as the hydrogen bonds between complementary nucleotides 

are much weaker than the covalent bonds between nucleotides adjacent in the two 
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A 



 

1.2.3 Ligation 

 

 

Ligation is a process of connecting two single

enzyme called where

covalent bonds between the adjacent fragments [

shown in Figure 1.6.

adjacently with each other without gap

final product of ligation is a ‘new’ strand AB. 

PO4. Usually, either 

dinucleotide (NAD
+
) 

 

 

1.2.4 Polymerization

 

 

Polymerization involves

3’-extended, and incoming deoxynucleotide triphosphate (dNTP)

Strand A

Ligation is a process of connecting two single-strand fragments

where ligase, such as T4 DNA ligase, is used as ‘glue’ to 

een the adjacent fragments [6]. The basic concept of ligation is 

. During the ligation process, strand A and strand B 

tly with each other without gap and hybridized partially with strand C. The 

product of ligation is a ‘new’ strand AB. In addition, strand A must have a 5’ 

Usually, either Adenosine-5'-triphosphate (ATP) or Nicotinamide adenine 

) can be used to supply the energy in ligation. 

Figure 1.6 Ligation 

 

 

 

 

Polymerization 

Polymerization involves a template strand to be copied, a primer strand to be 

incoming deoxynucleotide triphosphate (dNTP)

Strand A Strand B 

Strand C 

Strand C 

‘New’ Strand AB 

DNA Ligase ATP 

(or NAD’) 

6

strand fragments in series. A 

is used as ‘glue’ to stick the 

The basic concept of ligation is 

trand A and strand B are placed 

and hybridized partially with strand C. The 

strand A must have a 5’ 
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act as both base and energy sources, and DNA polymerase. The polymerization 

process is depicted in Figure 1.7. Firstly, a primer hybridizes at a specific location on 

the template and initiate DNA polymerase at the particular location. After that, DNA 

polymerase copies the nucleotides one by one, by moving along the template DNA 

strand. DNA polymerase can only synthesize in the 5’ to 3’ direction. Note that there 

is no 3’ to 5’ copying operation ever observed [7]. 

 

 

 

Figure 1.7 DNA polymerization 

 

 

 

 

1.2.5 Polymerase Chain Reaction (PCR) 

 

 

PCR is a sensitive copying machine for DNA. It also can be applied for DNA 

detection. A million or even billion of similar molecules can be produced by PCR 

process. It can produce 2
n
 copies of the same molecules in n steps. ‘Primers’, which 

are usually about 20 bases long are attached on the specific start and end site of the 

template for replication. PCR usually runs for 30-40 cycles of 3 phases: denaturation 

of DNA at about 95°C, annealing at 55°C, and extension at 74°C [8]. It takes about 

two to three hours normally in order to complete the cycles. Figure 1.8 shows the 

process of PCR up to third cycles. 
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Figure 1.8 Polymerase chain reaction 

 

 

 

 

 

 

 

 



 9

1.2.6 Gel Electrophoresis 

 

 

DNA strands can be separated in terms of its length by means of gel 

electrophoresis. In fact, the molecules are separated according to their weight, which 

is almost proportional to their length [5]. This technique is based on the characteristic 

of DNA molecules, which are negatively charged [9]. DNA molecules move towards 

the positive electrode at different speed in the electric field. In this case, longer 

molecules will remain behind the shorter ones, as shown in Figure 1.9 [10]. The 

speed of DNA mixture in a gel depends heavily on the gel porosity and the 

magnitude of the electrical field. Polyacrylamide gel is used for separation of shorter 

dsDNAs, which range from 10 bps until 500 bps. Meanwhile, agarose gel is 

frequently used for longer dsDNAs, which is more than 500-bps. An example of the 

output of gel electrophoresis is depicted in Figure 1.10 [11]. In DNA computing, this 

technique is used to visualize the results of computation. Normally, at the end of this 

process, the gel is photographed for convenience. 

 

 

 

Figure 1.9 Gel electrophoresis 

 

 

 

Figure 1.10 Example of a gel image 



 

1.2.7 DNA Extraction
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Figure 1.11 An example of DNA extraction by using streptavidin

bead. 
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1.3 DNA Computing Paradigm 

 

 

1.3.1 Hamiltonian Path Problem (HPP) 

 

 

Hamiltonian Path Problem (HPP) is a famous NP-complete problem, in 

computer science. HPP is an NP-complete problem; where there is no such efficient 

algorithm exist in order to solve this problem. It is a problem of directed graphs, G = 

(V, E), which has a set of vertices, V = {Vi} and a set of 1-way directed edges, eij, 

connecting two vertices, from Vi to Vj, denoted as (Vi,Vj) ∈V. Furthermore, two 

vertices, which are start vertex, Vin, and finished vertex, Vout, are distinguished. 

Figure 1.12 (a) shows a simple example of directed graph for HPP, which has been 

selected by Adleman. This graph consists of 7 vertices, 12 edges, Vin = 0, and Vout = 

6. The problem is to find a path between Vin and Vout through G, which passes 

through each vertex in V exactly once. Figure 1.12(b) shows the satisfying path, 

which is 0→1→2→3→4→5→6.  

 

 

 

Figure 1.12 a) A directed graph for Hamiltonian path problem, b) The answer of 

Hamiltonian path problem.  
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1.3.2 From Turing Machine to DNA Computing 

 

 

In 1936, Alan Turing designed the Turing Machine [12], a rule-based device 

that moves over a limitless tape with symbols written on it and can read, write, and 

rewrite these symbols. The Turing machine marks the beginning of modern computer 

science and represents as a universal model of computation. A decade later, John von 

Neumann described the architecture of the first practical programmable computer 

[13]. It made use of electrical implementation of Boolean logic circuits by using “0” 

and “1” as the absence and presence of electrical signals. Transistor stands as a basic 

component in modern integrated circuit, which integrated circuit is widely used in 

many practical programmable computers. However, in 1965, Moore [14] observed an 

exponential growth in the number of transistors per integrated circuit against time. 

This is the definition of Moore’s Law, meaning that more and more transistors can be 

crammed into a single chip until the silicon itself reaches its limitation. From the 

observation, researchers have been searching for alternative medium for 

computation. 

 

 The notion that single molecules or atoms could be used to construct 

computer components was first conceived by Richard Feynman in his talk in 1959 

[15]. Later scientists began to realize that natural biomolecular process within living 

cells, such as DNA duplication, transcription, and translation, could realize Turing 

machine-like information processing operations using DNA, RNA, and enzymes 

[16]. The concept that DNA molecules and enzymatic DNA processing could be 

used to store information and perform computation was then theoretically discussed 

by T. Head in 1987 [17] and 1992 [18]. The possibility that DNA computation could 

be applied to solve complex mathematical problems was demonstrated by Adleman 

in 1994 [19]. In that paper, he launched a novel in vitro approach to solve the HPP 

with seven vertices by DNA molecules. He encoded the information of the vertices 

by generating randomized DNA sequences. The computation is performed by a 

series of primitive bio-molecular reactions involving hybridization, denaturation, 

ligation, magnetic bead separation, and PCR. The output of computation, also in the 

form of DNA molecules can be read and “printed” by electrophoretical fluorescence 

method such as agarose gel electrophoresis or polyacrlamide gel electrophoresis 
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(PAGE). 

 

In the first experimental of DNA computing, Adleman implement the non-

deterministic algorithm for solving directed HPP shown in Figure 1.13. The 

algorithm consists of five steps as follows: 

 

 Step 1: Generate all paths randomly in large quantity. 

Step 2: Eliminate all paths that do not begin with vin and end in vout. 

Step 3: Eliminate all paths that do not involve exactly n vertices. 

Step 4: For each of the n vertices v, eliminate all paths that do not involve v. 

Step 5: The answer is ‘YES’ if any path remains, otherwise ‘NO’. 

 

Adleman proved that this algorithm can be implemented in molecular level. 

Adleman used a set of 20-mer oligonucleotides, or oligos, to encode each vertex and 

edge, which is randomly designed in advance. To implement the Step 1 in molecular 

level, all the oligos representing the edges and vertices are poured in a single test 

tube. Then, hybridization and ligation reaction are applied to the mixture, resulting 

formation of DNA molecules encoding a lot of random paths of the graph. Step 2 is 

implemented whereby the product of Step 1 is amplified by using PCR using the 

oligos that encode start node and end node, respectively. As a result, all formations 

that begin with from V0 and end with V6 will be exponentially amplified. Then, gel 

electrophoresis is implemented to separate the amplified products in term of length. 

The double-stranded DNAs (dsDNAs) of 140 base-pair (bp) representing the 

formation of path, which starts with V0 and ends with V6, are excised and extracted 

from the gel. Next, Step 4 can be implemented by affinity-purify of the product of 

Step 3 with a biotin-avidin magnetic beads system for 7 times. At each time, the 

DNA molecules that contain subsequence node are selected and separated from the 

solution. Lastly, the last step can be made with the use of 260 nm ultra-violet (UV) 

source in order to check whether there are DNA molecules survived in the test tube 

after Step 1 to Step 4 are accomplished. The answer of the HPP is ‘YES’ if any DNA 

molecules remain, otherwise, ‘NO’. The final result of the computation was 

displayed on gel elctrophoresis using a technique called graduated PCR. The whole 

procedures of Adleman HPP base-DNA computing are depicted in Figure 1.13. 
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Figure 1.13 The overall procedure of Adleman HPP base DNA computing. 

 

 

 

 

1.4 Emergence of DNA Computing 

 

 

DNA computing emerged as an attractive research, which contains the 

element of computer science, molecular biology, nanotechnology, and chemical 

engineering. The main benefit of using DNA computing to solve complex problems 

is the use of massive parallelism, where DNA computing is capable to solve such 

problems through a single parallel process. Meanwhile, silicon machines compute a 

problem by executing single task at once [20]. 

 

 The extreme compactness of DNA as a data storage medium can be an 
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and the mean molecular weight of a monomer is approximately 350 grams/mole. 
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Indeed, DNA has the capability of data storage which in 10
12

 times more compact 

than current storage technologies [21]. 

 

 From the energy consumption point of view, DNA computation is expected 

to use very little energy [22], as DNA molecules release energy when they anneal 

together. Adleman noted that enzyme-based DNA computing use very low energy; 

where one ATP pyrophosphate cleavage per ligation provides an efficiency of 

roughly 2 x 10
19

 operations per joule. However, supercomputers of that time 

performed approximately 10
9 

operations per joule [19, 23]. 

 

Subsequent to Adleman’s experiment, various models of computation have 

also been carried out via bio-molecular experiments. Lipton extended the Adleman 

DNA algorithm and proposed a mix-and-split model of DNA computing for solving 

satisfiability problem (SAT) for propositional formulas [24]. Later, Liu et al. 

designed and implemented a surface-based DNA computation also for SAT [25]. In 

addition, DNA memory as reported by Baum [26], exploits the capability of DNA 

effectively to perform associative search.  

 

From the biotechnology aspect, the first practical DNA computer for gene 

expression has been developed by Akira Suyama [27]. Furthermore, biochemical 

sensing, genetic engineering, and medical diagnosis and treatment are claimed to be 

the future of DNA computing, based on the works carried out by Benenson et al on 

the DNA-based automata [28].  

 

 Apart from wet-lab experiments, where real DNAs is used to perform the 

computation, simulation of DNA computing is useful to support DNA computing 

algorithm design and to decrease the costs and efforts of laboratory experiments. 

Reliability, performance benchmarks, user interfaces, and accessibility are to be the 

most important criteria for the development of DNA computing simulator [29]. 

 

Peptide computing is a form of computing which uses peptides and molecular 

biology, based on the affinity of antibodies towards peptide sequences [30]. Similar 

to DNA computing, the parallel interactions of peptide sequences and antibodies 

have been used by this model to solve computational problems. Another important 
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works initiated from Adleman DNA computer is a membrane computing by Gheorge 

Paun. Membrane computing is developed extensively from mathematical point of 

view, to establish a model called P systems, which is inspired from the cell 

biochemistry [31]. 

 

 DNA computing also requires good sequences for input molecules, as errors 

usually occur in hybridization and annealing. Various kinds of strategies for DNA 

sequence design has been proposed to date. Hartemink et al. [32] designed sequences 

for the programmed mutagenesis, using exhaustive search method “SCAN”. 

Furthermore, Tanaka et al. [33] generated the DNA sequence using simulated 

annealing (SA) based on some fitness criteria. Marathe et al. implemented a dynamic 

programming approach to design a set of DNA sequences based on Hamming 

distance [34]. Feldkemp et al. [35] used a directed graph to design DNA sequences. 

Evolutionary algorithm (EA) also has been implemented for optimizing DNA 

sequences [36-38]. Recently, swarm intelligence approaches such as ant colony 

optimization (ACO) and particle swarm optimization (PSO) were employed to 

optimize a set of DNA sequences [39-40]. 

 

Existing models of DNA computation are based on various combinations of 

bio-operations, which are synthesizing, mixing, annealing (hybridization), melting 

(denaturation), amplifying (copying), separating, extracting, cutting, ligating, 

substituting, detecting, and reading [41]. Based on this model, the DNA computation 

implementation can be classified by three important aspects: nucleic acid design, 

DNA algorithms, and readout method. The first step for wet-lab experiment of DNA 

computation is to find a good set of DNA sequences. After that, the desired 

sequences are synthesized based on the specific problem. Then, the computational 

part of the DNA algorithms is performed, where mixing, annealing (hybridization), 

melting (denaturation), amplifying (copying), separating, extracting, cutting, 

ligating, substituting, and detecting are fully applied to implement the algorithm for 

the computation. The final part of the implementation is visualization of the output 

result, where the readout operation can be implemented by utilizing the 

biotechnology, such as DNA sequencing. The readout method implementation issue 

is stated in [42] as an important drawback of current DNA computation, which 

requires the developments of high-throughput screening technologies to overcome 
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the limitation imposed by existing readout methods. However, readout problem 

receive less attention from researchers, instead of computational part of DNA 

computing. 

 

There are several papers dealing with readout method for DNA computation. 

Wang et al [43] described the DESTROY and READOUT operation in surface based 

DNA computing. In the READOUT operation, two methods were proposed for 

visualization of surface based DNA computing. The first method is to implement the 

conventional electrophoresis-based DNA sequencing. Another method proposed by 

Wang is the hybridization to word-specific addressed arrays. In [44], Wang et al, 

proposed a structure-specific cleavage-based readout strategy for surface-based DNA 

computing. The proposed method was implemented to display the solution of a 4-

variable/3-satisfiability (SAT) problem. Recently, Lee et al. [45] implemented a gold 

nanoparticle aggregation for logic-based biomolecular detection and DNA 

computing, where the results of DNA computing process were displayed based on a 

color changing process induced by gold nanoparticle aggregation. For specific 

problem of HPP based DNA computation, Woods et al. [46] proposed a universal 

biochip for readout of multiple solutions of HPP. Meanwhile, Ibrahim et al. [47] 

implemented a TaqMan-based real-time PCR for visualizing the Hamiltonian path 

which encoded in double-stranded DNA sequences. 

 

 

 

 

1.5 Reviews of Output Visualization Technologies in DNA Computing 

 

 

1.5.1 Polymerase Chain Reaction 

 

 

Since the pioneering work by Adleman in 1994, polymerase chain reaction 

(PCR) and gel electrophoresis are extensively used in detection and readout method 

for experimental DNA computing. PCR and gel electrophoresis has been utilized as a 

readout methodology for satisfiability problem (SAT problem) based DNA 
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computing [48-50]. Moreover, PCR and gel electrophoresis have been used for 

screening the output of RNA solution of chess problem [51]. In the DNA computing 

playing poker by Woods [52], different lengths that indicate payoffs of each player is 

separated via denaturing gel electrophoresis, where the readout can be done by 

quantifying the amount of DNA in each band of the gel. 

 

Adleman performed the technique so called graduated PCR, where different 

PCR reactions are performed that encode the ordering of the HPP [19]. Since that, 

graduated PCR technique for readout method in DNA computing is reported in 

literatures. Yoshida et al. [48] reported that graduated PCR was used to perform the 

readout operation for 3-SAT problem. Meanwhile, Braich et al. [49] performed 

several PCR amplification methods (similar to graduated PCR) to extract the strands 

representing the answer to the 20-variable 3-SAT problem. Graduated PCR also has 

been utilized in automated DNA computer for solving n-variable 3-SAT problem 

[50]. Ibrahim et al. used graduated PCR for visualizing output of DNA computation 

for the shortest path problems [53-55]. Morimoto et al. used graduated PCR to 

readout answer for solid phase method DNA computation, where the Hamiltonian 

paths was determined by comparing the elution time of each of the PCR reaction. 

The fluorescence level was then visualized on the electropherograms [56]. 

 

 

 

 

1.5.2 DNA Sequencing 

 

 

DNA sequencing is the most straight forward method for readout 

computation of molecular computing. The basic of sequencing is to use PCR and gel 

electrophoresis, to return the sequence of a particular strand. As a result, the location 

of each base in the DNA strand can be directly read. Considering the advantage of 

DNA sequencing, it has been widely used in many implementation of DNA 

computing. For instance, Lee et al. used DNA sequencing method for readout 

operation for temperature gradient-based DNA computing, where cloning and 

sequencing operations are utilized to extract the shortest path of the TSP [57,58]. 
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DNA sequencing also has been used to readout the answer for maximal clique 

problem [59]. Furthermore, the issue on using DNA sequencing for readout method 

for DNA computing application has been addressed by Mir in 1996 [60]. In another 

implementation of HPP based on DNA computing perform on microfluidic device, 

Ledesma et al. utilized a DNA sequencing microchip to readout the final solution 

obtained from the computation [61].  

 

The basic idea of the most widely used sequencing method is to use PCR and 

gel electrophoresis. Assume there is a homogeneous solution, that is, a solution 

containing mainly copies of the strand to be sequenced with very few contaminants 

(other strands). To detect the positions of A’s in the target strand, a blocking agent is 

used to prevent the templates from being extended beyond A’s during PCR. As a 

result of this modified PCR, a population of subsequences is obtained, each 

corresponding to a different occurrence of A in the original strand. By separating the 

resultant solution using gel electrophoresis, the positions where the bases A occurs in 

the strand will be known. The process can then be repeated for each of C, G, and T, 

to yield the sequence of the strand [62].  

 

 

 

 

1.5.3 Biochip 

 

 

From the literature review, biochip technology has been proposed for readout 

method in DNA computing. For example, HPP readout by biochip hybridization has 

been suggested in [63], [64], and [46]. Wood [64] utilized DNA chip to visualize the 

output of HPP, where the Held-Karp DNA based algorithm has been used to find the 

Hamiltonian path. Furthermore, Wood et al. suggested a universal biochip for 

readout method, which emphasizing on reading out multiple solutions of HPP [46]. 

In another implementation of DNA computing, biochip readout technique has been 

proposed to observe the decision nodes of 3-person poker based on DNA computing 

[65]. 
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1.5.4 Fluorescence Detection 

 

 

Fluorescence detection is widely used in biotechnology application. 

Fluorescent dyes have been used together with PCR to visualize the amplification 

process. In addition, fluorescence is extensively used to detect the hybridization of 

DNA. In advanced application of DNA sequencing, four different fluorescent dyes 

are used, one for each base, which allows all four bases to be processed 

simultaneously. As the fluorescent molecules pass a detector near the bottom of the 

gel, signals from the detector can be sent directly to an electronic computer [62]. 

Moreover, fluorescent detection can also be integrated with biochip technology for 

better output visualization. 

 

 Fluorescence technologies have also been used in many applications of DNA 

computing readout method. For example, Stojanovic et al. exploited two different 

colors of fluorescence dyes that represent the output of half-adder made from DNA 

based logic gates [66]. In [67], the readout process for 3 bit 4 clause SAT problem 

based DNA computing performed on microfludic processor was done by comparing 

the relative flourescence of the two chambers of the microfludic processor. Ibrahim 

et al. proposed a readout method of Hamiltonian Path Problem based on real-time 

PCR. In this method, TaqMan fluorescence probe have been utilized for visualizing 

the amplification of PCR [47, 68]. 

 

 

 

 

1.5.5 Atomic Force Microscope 

 

 

Atomic Force Microscope (AFM) [69] is one of the foremost tools for 

imaging, measuring, and manipulating matter at nanoscale. The advantage is that the 

the advantage of imaging almost any type of surface, including polymers, ceramics, 

composites, glass, and biological samples. In DNA computing applications, AFM 

has been implemented to visualize the DNA double-crossover crystals structure in 
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DNA computing by self-assembly [70]. In another work by Rothemund et al. [71], a 

DNA Sierpinski Triangle, which performs the XOR computation, was visualized by 

AFM. 

 

 

 

 

1.6 Problem Statement 

 

 

 In general, given a double-stranded DNA sequence which contains a several 

subsequences, with the start and end sequences are already known, the problem is to 

determine the ordering of the intermediate sequences.  

 

 In the first DNA computing experiment by Adleman [19], graduated PCR 

have been employed to readout the answer of final DNA computation. In this case, 

one only knows that a Hamiltonian path begins from node 0 and ends at node 6. 

However, the information of the nodes that passed through is unknown.Hence, 

graduated PCR is used to allow one to “print” the result of the computation. 

Graduated PCR was performed by running six different PCR operations to the 

solution of seven nodes HPP. However, this method is very time consuming. As 

such, Ibrahim et al. [47,68] claimed that graduated PCR was very time consuming 

method.  

 

 In [46], a technique for reading out arbitrary graphs with up to n nodes using 

an n x n biochip incorporating standardized DNA sequences was proposed, which 

made the biochip universal for all graphs of the size. Such graph can be Directed 

Hamiltonian Path (DHP) in the large, with all graphs can be superimposed each 

other. The superposition of graphs can be diluted by detecting n
2
 different quantum 

dot barcode labels within the spots on the universal biochip. Then, the partial readout 

of special class of permutation graphs is subjected to computer-based heuristics for 

isolating individual graphs from a collection of graphs. However, this method is not 

experimentally verified in the laboratory. 
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 Ibrahim et al [47,68] implemented a TaqMan based real-time PCR for 

reading out DNA solution that encodes the Hamiltonian path. The readout method 

consists of in vitro computation and in silico information processing. Several 

TaqMan reactions were performed to investigate the order of the Hamiltonian path in 

the in vitro computation part. The output of the real-time PCR can be distinguished 

as either “YES” or “NO” reaction. After that, the output from the in vitro 

computation was subjected into in silico algorithm to produce the Hamiltonian path. 

However, the TaqMan “YES” and “NO” reactions are identified manually. Based on 

this problem, an automatic classification procedure could be employed to improve 

the in silico part of the readout procedure. In addition, the in silico algorithm in [47] 

and [68] can be further improved. The final result of the previous algorithm shows 

only the location of each node for Hamiltonian path, where additional steps are 

required to show the actual Hamiltonian path. 

 

 

 

 

1.7 Objective 

 

 

The objective of this research is to improve the in silico information 

processing of the readout method of DNA computer based on real-time PCR. In this 

research, clustering algorithms are implemented to automatically classify the “YES” 

and “NO” reactions. 

 

The motivation behind this project is the output visualization of HPP, 

computed on a DNA computer, using real-time PCR. The real-time PCR is able to 

show the PCR amplification output at each cycle. Previously, graduated PCR, which 

was originally demonstrated by Adleman [19], was employed to perform the 

computation. The major problem of using graduated PCR is that the amplification 

process for the in vitro computation cannot be viewed online. DNA biochip based 

methodology, which makes use of biochip hybridization for the same purpose has 

been proposed [46]. However, this method is more costly, and has yet to be 

experimentally implemented. 
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1.8 Scope of Work 

 

 

 Figure 1.14 provides an overview of scope of work and contribution in this 

thesis. In this figure, DNA computing can be viewed as the main field in this 

research, however, the readout method based on real-time PCR is only applied on 

HPP. Particularly, the real-time PCR readout method are performed on LightCycler 

System and DNA Engine Opticon 2 System. Implementation based on the 

LightCycler System includes two different six nodes of Hamiltonian path. 

Meanwhile, experiments of three different seven nodes of Hamiltonian path are 

conducted on DNA Engine Opticon 2 System. Only five different paths of HPP are 

carried out in this thesis, as those paths are taken from the previous research 

conducted in [47] and [68]. Clustering algorithms are then implemented to both 

output of real-time PCR for automatic classification of TaqMan reactions. For the 

LightCycler System-based implementation, K-means [72] and Fuzzy C-Means 

(FCM) [73] clustering algorithm are employed to group the TaqMan reactions into 

“YES” and “NO” groups. Subsequently, FCM and Alternative FCM (AFCM) [74] 

are applied to the output of DNA Engine Opticon 2 System. 

 

Figure 1.15 shows the overall process of DNA computing readout method 

based on real-time PCR. The first stage is the preparation of input molecules for real-

time PCR experiment. Then, the in vitro part of the readout method based on real-

time PCR are performed on LightCycley System and DNA Engine Opticon 2 

System. In the in silico phase, clustering algorithms are applied to automatically 

classify the TaqMan reaction. Subsequently, the information produced from the 

clustering algorithm is subjected to the in silico algorithm for extracting the desired 

Hamiltonian path. 
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Figure 1.14 Scope of work and contributions  

 

  

 

Figure 1.15 The whole process of readout method based on real-time PCR 
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1.9 Contribution 

 

 

From Figure 1.14, contributions in this thesis are highlighted in rounded box. 

In this research, the improvement of in silico information processing of the readout 

method is the major contribution, which can be divided into three parts. The first 

contribution of this thesis is the clustering implementation on real-time PCR output 

generated by LightCycler System. K-means and FCM are employed to classify the 

TaqMan reactions. The performance of two different methods are analyzed in term of 

consistency. Based on the consistency criteria, FCM shows better performance than 

the K-means algorithm. 

 

The second contribution of this thesis is the FCM clustering, implemented to 

the output of the DNA Engine Opticon 2 System. However, misclassification could 

occurr, due to the nature of the data produced from the DNA Engine Opticon 2 

System. Noise or an outlier is figured out as the main problem of the clustering 

process. AFCM, which the improve version of FCM, is implemented to the same 

data to overcome the noise or outlier problems.  

 

 A minor contribution or the last part of the contribution is the modified in 

silico algorithm, which directly display the desired Hamiltonian path. As discussed in 

the earlier section, the previous algorithm only shows the location of each nodes of 

the Hamiltonian path. Practically, the in silico algorithm can be programmed in the 

computerized application, where the binary input consist of “YES” and “NO” are 

processed to computed the actual order of Hamiltonian path. Base on the modified 

algorithm, the Hamiltonian path can be directly viewed for convenience. 
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In this chapter, the explanations of readout method based on real-time PCR 
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Chapter 4 is based on: 

 

Saaid, M. F. M., Ibrahim, Z., Khalid, M. and Yahya, A. Alternative Fuzzy C-

Means Clustering for DNA Computing Readout Method Implemented on 

DNA Engine Opticon 2 System. The Fourth International Conference on 

Signal-Image Technology & Internet–based Systems (SITIS 2008). November 

30-4, 2008. Bali, Indonesia: IEEE. 2008. 498-503. 

 

 

 

 

1.11 Thesis Organization 

 

 

This thesis is organized as follows. Chapter 2 provides detailed explanations 

of DNA computing readout method for HPP based on real-time PCR. After that, 
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Chapter 3 and Chapter 4 discuss the clustering implementation on LightCycler 

System output and DNA Engine Opticon 2 System output, respectively. Finally, 

Chapter 5 ends this thesis with conclusions as well as some research directions based 

on this research. Finally, the references are placed at the back of this thesis, with 

additional appendices. 
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