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ABSTRACT 
 
 
 
 

Due to variation in soil layers, it is not easy for engineer to be assured that 

theoretical design of piles comply with the actual site condition.  Thus, every design 

of piled foundations carries its own uncertainty and risk.  This project evaluates the 

applicability of eight methods to predict the ultimate bearing capacity of spun driven 

friction piles.  Analyses and evaluations were conducted on four piles of different 

sizes and lengths that failed during pile load testing.  The load test interpretation 

methods, pile driving formulae, as well as the Meyerhof method (static analysis) 

were used to estimate the bearing capacities (Qp) of the investigated piles.  The 

failure loads were the maximum measured load carrying capacities (Qm) from pile 

load test.  The pile capacities determined using the different methods were compared 

with the measured pile capacities obtained from pile load tests.   Three criteria were 

selected as basis of evaluation: the best fit line for Qp versus Qm, the arithmetic mean 

and standard deviation for the ratio of Qp/Qm, and the cumulative probability for 

Qp/Qm.  Results of the analyses show that the best performing method is Butler and 

Hoy method (load test interpretation method).  This method is ranked number one 

according to the mentioned criteria. 
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ABSTRAK 
 
 
 
 

 Adalah susah bagi seseorang jurutera untuk memastikan rekaan asas 

cerucuknya secara teori adalah sama dengan keadaan di tapak disebabkan oleh 

perbezaan lapisan tanah.  Oleh itu, setiap rekaan asas cerucuk mempunyai 

ketidakpastian dan risiko yang tersendiri.  Projek ini dijalankan untuk menilai 

kesesuaian lapan jenis kaedah menentukan keupayaan muktamad cerucuk geseran 

terpacu terputar.  Analisis dan penilaian telah dijalankan ke atas empat cerucuk 

terputar yang berlainan saiz dan panjang dan telah gagal dalam ujian beban.  Kaedah 

interpretasi ujian beban, formula-formula penanaman cerucuk dan kaedah Meyerhof 

(analisis statik) telah diguna untuk menentukan keupayaan muktamad (Qp) cerucuk 

berkaitan.  Beban gagal merupakan beban maksimum (Qm) yang telah diukur semasa 

ujian beban dijalankan.  Nilai yang ditentukan oleh kaedah-kaedah yang dinyatakan 

telah dibandingkan dengan  beban maksimum yang telah diukur dari ujian beban.  

Tiga jenis kaedah penilaian telah dikenalpasti iaitu: garisan lurus terbaik untuk Qp 

melawan Qm, pengiraan purata dan taburan normal piawai untuk nisbah Qp/Qm dan 

kebarangkalian kumulatif untuk Qp/Qm.  Keputusan analisis menunjukkan kaedah 

Butler and Hoy (kaedah interpretasi ujian beban) merupakan kaedah paling baik.  

Kaedah ini terletak pada tahap nombor satu mengikut kriteria yang dinyatakan.    
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Background of Study 
 
 

Deep foundations are usually referred to as pile foundations.  Pile foundations 

are normally used due to some situation as follows (Henry, 1986): 

 
 

(i) When upper soil layers are weak and unable to support the structural loads. 

(ii) When underground water level is not constant.  

(iii) When upper soil layers are susceptible to large settlement. 

(iv) When the structure is subjected to lateral loads.   

 
 

The principal function of a pile foundation is to transfer load to lower levels 

of the ground which are capable of sustaining it with an adequate factor of safety and 

without settling under normal working conditions by an amount detrimental to the 

structure (Henry, 1986).  

 
 

There are many different types of pile in use today, such as timber piles, 

concrete piles, steel piles, composite piles and others.  The choice of pile type for a 

particular job depends upon the combination of all the various soil conditions and the 

magnitude of the applied load; for example, timber piles are usually used in water 

structure while precasted concrete piles are usually used in housing estate.   
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Current practice of pile design is based on the static analysis for example 

Meyerhof Method, Vesic Method and Coyle & Castello methods.  Due to the 

uncertainties associated with pile design, field tests (pile load tests) are usually 

conducted to verify the design loads and to evaluate the actual response of the pile 

under loading.  Static pile load tests are a verification tool for pile design and they 

cannot be a substitute for the engineering analysis of the pile behavior.  Maintained 

Load Test Method (ML Test) is considered as the standard method by Jabatan Kerja 

Raya (JKR).  This test however takes 2-3 days to complete.  Due to the long period 

of time needed to conduct ML Test, it contradicts with the current construction 

industry practice which is time-saving. Hence, Dynamic Load Test (DLT) especially 

Pile Driving Analyzer (PDA) is gaining popularity in construction industry.  

However, ML Test should have the final say on the ultimate bearing capacity of 

piles.   

 
 
Due to variation in bearing stratum, it is not easy for engineer to be assured 

that theoretical design of piles comply with the actual site condition.  Thus, every 

design of piled foundations carries certain amount of uncertainty and risk.  This 

report presented the effort undertaken to identify the most appropriate methods for 

predicting the axial bearing capacity of piles driven to set. These methods include 

static analysis, pile driving formulae, and interpretation method.  The static analysis 

is the Meyerhof Method.  Five interpretation methods selected are Chin’s Method, 

De Beer’s Method, Brinch Hansen’s 80 Percent Criterion Method, Butler and Hoy’s 

Method, and Fuller and Hoy’s Method.  These methods are described in detail by 

Nor Azizi (2003).  

 
 
 
 
1.2 Objectives 
 
 

The aim of this study is to identify the most appropriate interpretation 

methods to estimate the ultimate axial bearing capacity of piles. The objectives of the 

study are: 
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(i) To determine the ultimate bearing capacity of piles from illustrated full-scale 

pile load tests. 

(ii) To predict and calculate the bearing capacity of pile from static analysis, pile 

driving formulae, and interpretation method. 

(iii) To identify the most accurate method to predict pile bearing capacity by 

comparing the predicted and calculated results with the actual results from 

pile load tests. 

 
 
 
 
1.3 Scope of Study 
 

 
This study is only considering the carrying capacity of spun piles of different 

sizes driven to set.  Other pile types such as timber piles and steel pipes were not 

covered in the analyses.  Four sets of data were acquired from Taisei Corporation.  

Their testing program was conducted in Mukim Jimah power plant on November 

2005.  Square concrete piles are obsolete in this study due to different load 

transferring mechanism (Hani and Murad, 1999).  Only spun friction piles that tested 

to failure are considered in this study. 

 
 

Data acquired includes soil investigation reports, piling reports and pile load 

tests reports.  Soil investigation reports revealed the soil strata at the site and the 

soils’ parameters, piling information and depth at which the piles set was revealed 

from piling records while pile load tests reports gave the actual carrying capacity of 

the piles.   

 
 

This study focused on the applicability of proposed methods to predict the 

ultimate axial compression load carrying capacity of piles.  Data from soil 

investigation reports was used in static analysis while pile load tests data is essential 

in interpretation method.  Information from piling records was used in pile driving 

formulae.  All of the methods are described in detail in the literature review section 

of this report.  The predicted capacity was compared with the actual carrying 

capacity of piles from pile tests based on mentioned criteria.  The method which 
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ranked number according to mentioned criteria is considered as the most accurate 

method and is recommended for pile design practice.  

 
 
 
 
1.4 Importance of Study 
 
 

Static analysis formulae and pile driving formulae are not recommended as 

the sole means of determining the acceptability of a pile, except on small jobs 

(Fleming, 1985). These analyses do not describe the complex mechanics of pile 

driving in rational way and interaction between pile and the surrounding soil is 

poorly modeled. Thus, it is important to determine accuracy from these formulae 

through comparison with actual bearing capacity from site.  The differences can be 

used as a guideline when pile load tests are not able to be conducted.  

 
 
The problems with many of the interpretation methods are that they are either 

empirical methods or are based on set deformation criteria.  Several methods are also 

sensitive to the shape of the load-settlement curve and it is preferable to use a 

considerable number of load increment to define the shape clearly; for example, 

Chin’s Method assumes the load-deformation curve is hyperbolic and is an empirical 

method.  An engineer may have difficulty in choosing the best method to interpret 

the static load test data. This study is able to help an engineer to identify the 

suitability of the proposed interpretation methods to predict the ultimate bearing 

capacity of spun piles driven to set.  Moreover, through the analyses, the most 

appropriate method is identified.  
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