PREDICTION OF ULTIMATE LOAD BEARING CAPACITY OF DRIVEN PILES

WONG CHARNG CHEN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Geotechnic)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2006

ABSTRACT

Due to variation in soil layers, it is not easy for engineer to be assured that theoretical design of piles comply with the actual site condition. Thus, every design of piled foundations carries its own uncertainty and risk. This project evaluates the applicability of eight methods to predict the ultimate bearing capacity of spun driven friction piles. Analyses and evaluations were conducted on four piles of different sizes and lengths that failed during pile load testing. The load test interpretation methods, pile driving formulae, as well as the Meyerhof method (static analysis) were used to estimate the bearing capacities (Q_p) of the investigated piles. The failure loads were the maximum measured load carrying capacities (Q_m) from pile load test. The pile capacities determined using the different methods were compared with the measured pile capacities obtained from pile load tests. Three criteria were selected as basis of evaluation: the best fit line for Q_p versus Q_m, the arithmetic mean and standard deviation for the ratio of Q_p/Q_m , and the cumulative probability for Q_p/Q_m. Results of the analyses show that the best performing method is Butler and Hoy method (load test interpretation method). This method is ranked number one according to the mentioned criteria.

ABSTRAK

Adalah susah bagi seseorang jurutera untuk memastikan rekaan asas cerucuknya secara teori adalah sama dengan keadaan di tapak disebabkan oleh perbezaan lapisan tanah. Oleh itu, setiap rekaan asas cerucuk mempunyai ketidakpastian dan risiko yang tersendiri. Projek ini dijalankan untuk menilai kesesuaian lapan jenis kaedah menentukan keupayaan muktamad cerucuk geseran terpacu terputar. Analisis dan penilaian telah dijalankan ke atas empat cerucuk terputar yang berlainan saiz dan panjang dan telah gagal dalam ujian beban. Kaedah interpretasi ujian beban, formula-formula penanaman cerucuk dan kaedah Meyerhof (analisis statik) telah diguna untuk menentukan keupayaan muktamad (Qp) cerucuk berkaitan. Beban gagal merupakan beban maksimum (Q_m) yang telah diukur semasa ujian beban dijalankan. Nilai yang ditentukan oleh kaedah-kaedah yang dinyatakan telah dibandingkan dengan beban maksimum yang telah diukur dari ujian beban. Tiga jenis kaedah penilaian telah dikenalpasti iaitu: garisan lurus terbaik untuk Qp melawan Q_{m} pengiraan purata dan taburan normal piawai untuk nisbah $Q_{\text{p}}/Q_{\text{m}}$ dan kebarangkalian kumulatif untuk Qp/Qm. Keputusan analisis menunjukkan kaedah Butler and Hoy (kaedah interpretasi ujian beban) merupakan kaedah paling baik. Kaedah ini terletak pada tahap nombor satu mengikut kriteria yang dinyatakan.

TABLE OF CONTENTS

TITLE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SYMBOLS	xiv
LIST OF APPENDICES	xvi

1	INTI	TRODUCTION 1		
	1.1	Background of the study	1	
	1.2	Objectives	2	
	1.3	Scope of study	3	
	1.4	Importance of study	4	
2	LITE	ERATURE REVIEW	5	
	2.1	Foundations on Problematic Soils	5	
	2.2	Deep Foundations	6	
		2.2.1 Driven Piles	7	
		2.2.2 Changes in Cohesive Soils	7	
		2.2.3 Changes in Granular Soils	8	
	2.3	Pile Load Testing	9	

	2.3.1	Static Pile Load Test	11
		2.3.1.1 Normal Maintained Load Test	
		(SM Test)	11
		2.3.1.2 Quick Maintained Load Test	
		(QM Test)	11
	2.3.2	Advantages of Static Load Test	12
	2.3.3	Disadvantages of Static Load Test	12
2.4	Interp	retation of the Results from Static Load Test	13
	2.4.1	Davisson's Method	13
	2.4.2	Chin's Method	14
	2.4.3	De Beer's Method	15
	2.4.4	Brinch Hansen's 80 Percent Criterion	16
	2.4.5	Mazurkiewicz's Method	18
	2.4.6	Fuller and Hoy's Method	18
	2.4.7	Butler and Hoy's Method	19
2.5	Analy	tical Analysis for Driven Piles	20
	2.5.1	Load Carrying Capacity at Pile Point, Qt	
		in Granular Soils	20
		2.5.1.1 Meyerhof Method	20
		2.5.1.2 Other Methods	22
	2.5.2	Skin Resistance, Qs in Granular Soils	23
		2.5.2.1 Meyerhof Method	23
		2.5.2.2 Other Methods	23
	2.5.3	Load Carrying Capacity at Pile Point, Qt	
		in Cohesive Soils (Meyerhof Method)	24
	2.5.4	Skin Resistance, Qs in Cohesive Soils	25
	2.5.5	Downdrag Force	27
	2.5.6	Comparison of Static Analysis Result with	
		Pile Load Test Results	28
2.6	Standa	ard Penetration Test (SPT) Results for Design	29
	2.6.1	Granular Soils	30
	2.6.2	Cohesive Soils	31
2.7	Pile D	priving Formulae	32
	2.7.1	Janbu's Formula	33

	2.7.2	Engineering News Record (ENR) Formula	34
2.8	Failur	e in Foundation Engineering	36
	2.8.1	Strength Requirement	37
		2.8.1.1 Geotechnical Strength Requirements	37
		2.8.1.2 Structural Strength Requirements	37
	2.8.2	Serviceability Requirements	37
		2.8.2.1 Settlement	38
		2.8.2.2 Heave	39
		2.8.2.3 Tilt	40
		2.8.2.4 Lateral Movement	40
		2.8.2.5 Durability (Corrosion)	40

3.1	Introduction		
3.2	Data C	42	
3.3	Comp	ilation of Data	43
	3.3.1	Soil Data	44
	3.3.2	SPT Data	44
	3.3.3	Piling Records	44
	3.3.4	Pile Load Tests Reports	44
3.4	Data A	Analysis	45
3.5	Comparison of the Results		
3.6	Evaluation of Methods		
	3.6.1	Best Fit Line Equation	46
	3.6.2	Cumulative Probability	47
	3.6.3	Mean (μ) and Standard Deviation (σ)	
		of Q_p/Q_m	48
3.7	Conclu	usion and Recommendation	49
CASE	CTUD	N/	50
CASE	STUD	Y	50
4.1	Locati	on of Study	50
4.2	Piled I	Foundations	52
4.3	Static	Pile Load Test	53
4.4	Pile Instrumentation		

	4.5	Pile Mo	vement Monitoring System	54
	4.6	Loading	g Arrangement and Test Programs	55
5	ANA	LYSIS O	F RESULTS	56
	5.1	General	Presentation	56
	5.2	Charact	erization of the Investigated Piles	56
	5.3	Failure	Criteria	57
	5.4	Predicte	ed Versus Measured Pile Capacity	57
	5.5	Evaluat	ion of Methods	62
		5.5.1	Best Fit Line Equation	62
		5.5.2	Cumulative Probability (CP)	65
		5.5.3	Mean (μ) and Standard Deviation (σ)	
			of Q _p /Q _m	70
		5.5.4	Overall Performance	70
	5.6	Discuss	ion	70
6	CON	CLUSIO	N AND RECOMMENDATION	75
	5.1	General		75
	5.2	Conclus	sion	75
	5.3	Recomm	nendations	76
REFEREN	CES			78
APPENDIC	CES			84-114

LIST OF TABLES

TABLE NO. TITLE PAGE 2.1 Values for earth pressure coefficient, K in granular soils 24 Values of soil-pile friction angle, δ_{ϕ} in different types of 2.2 piles 24 2.3 Summary of Briaud et al's statistical analysis for H-piles 28 Variation of C_N with γ'_v 30 2.4 2.5 Variation of undrained shear strength, cu with SPT N-value 32 2.6 Value of C for different types of hammers 35 2.7 Value of ε for different types of hammers 35 2.8 Value of n for different types of hammers 36 2.9 Allowable total settlements, δ_a for foundation design 38 2.10 Allowable angular distortion, θ_a 39 4.1 Spun pile properties 52 5.1 Summary of pile failure criterion 57 5.2 Summary of piles investigated 59 Evaluation of the performance of the prediction methods 5.3 considered in this study 69 5.4 Summary of discussion 73

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Load settlement curve	10
2.2	Load-movement curve of Davisson's Method	14
2.3	Load-movement curve of Chin's Method	15
2.4	Load-movement curve of De Beer's Method	16
2.5	Load-movement curve of Brinch Hansen's 80 Percent	
	Criterion	17
2.6	Load-movement curve of Mazurkiewicz's Method	19
2.7	Load-movement curve of Fuller and Hoy's, and Butler and	
	Hoy's Method	19
2.8	Critical embedment ratio and bearing capacity factors for	
	various soil friction angles	21
2.9	Variation of bearing capacity factor, N_q and earth pressure	
	coefficient, K with L/D	22
2.10	Variation of α with undrained cohesion of clay	26
2.11	Variation of λ with pile embedment length	27
3.1	Methodology flow chart	43
3.2	Best fit line	47
3.3	Cumulative probability curve	48
4.1	Site location plan	51
4.2	Site geological cross-section	51
4.3	Instrumentation details for static axial compression load tests	54
4.4	Typical static axial compression load tests setup	55
5.1	Comparison of measured and predicted pile capacity (Chin)	58
5.2	Comparison of measured and predicted pile capacity	
	(Brinch Hansen)	58

5.3	Comparison of measured and predicted pile capacity	
	(Fuller and Hoy)	60
5.4	Comparison of measured and predicted pile capacity	
	(Butler and Hoy)	60
5.5	Comparison of measured and predicted pile capacity	
	(De Beer)	60
5.6	Comparison of measured and calculated pile capacity (Janbu)	61
5.7	Comparison of measured and calculated pile capacity (ENR)	61
5.8	Comparison of measured and calculated pile capacity	
	(Meyerhof)	61
5.9	Predicted (Chin's method) versus measured ultimate capacity	62
5.10	Predicted (Brinch Hansen Criterion) versus measured pile	
	capacity	63
5.11	Predicted (Fuller and Hoy's Method) versus measured pile	
	capacity	63
5.12	Predicted (Butler and Hoy's Method) versus measured pile	
	capacity	63
5.13	Predicted (De Beer's Method) versus measured pile capacity	64
5.14	Calculated (Janbu's Formula) versus measured pile capacity	64
5.15	Calculated (ENR's Formula) versus measured pile capacity	64
5.16	Calculated (Meyerhof's Method) versus measured pile	
	capacity	65
5.17	Cumulative probability plot for Q_p/Q_m (Chin's Method)	66
5.18	Cumulative probability plot for Q_p/Q_m (Brinch Hansen's	
	Criterion)	66
5.19	Cumulative probability plot for Q_p/Q_m (Fuller and Hoy's	
	Method)	66
5.20	Cumulative probability plot for Q_p/Q_m (Butler and Hoy's	
	Method)	67
5.21	Cumulative probability plot for Q_p/Q_m (De Beer's Method)	67
5.22	Cumulative probability plot for Q _P /Q _m (Janbu's Formula)	67
5.23	Cumulative probability plot for Q _P /Q _m (ENR's Formula)	68
5.24	Cumulative probability plot for Q _P /Q _m (Meyerhof's Method)	68

LIST OF SYMBOLS

A, A _p	=	Pile cross-sectional area
c _u	=	Undrained cohesion of the soil
С	=	Coefficient for different types of hammers
C_N	=	Correction factor with variation of vertical overburden stress
CV	=	Coefficient of variation
D	=	Diameter/width of pile
E	=	Modulus elasticity of pile material
\mathbf{f}_{av}	=	Unit friction resistance at any given depth
Н	=	Drop of hammer
ID	=	Identification
Κ	=	Earth pressure coefficient
L	=	Pile length
L _b	=	Length of pile embedded into bearing stratum
n	=	Coefficient of restitution
Ν	=	Average standard penetration number
N _{cor}	=	Corrected average standard penetration resistance values
N _q , N _c	=	Bearing capacity factor
р	=	Perimeter of pile
pa	=	Atmospheric pressure
P ₅₀	=	50 percent cumulative probability
P ₉₀	=	90 percent cumulative probability
Q, Q _{va}	=	Applied load during pile load test
Qm	=	Maximum measured bearing capacity of pile
Qp	=	Predicted failure/ultimate load
Qs	=	Skin resistance of pile
Qt	=	Ultimate point resistance
R^2	=	Coefficient of determinations

Δ	=	Correspond settlement of each applied load
$\Delta_{\rm u}$	=	Failure settlement
S	=	Final set
S _c	=	Column spacing
ue	=	Excess pore water pressure
W_p	=	Weight of pile
W _R	=	Weight of the ram
γ'_v	=	Vertical effective/overburden stress
ϕ	=	Soil friction angle
α	=	Empirical adhesion factor
λ	=	Empirical adhesion factor
η	=	Efficiency factor (Janbu formula)
3	=	Efficiency factor (ENR formula)
δ	=	Total settlement
δ_{ϕ}	=	Soil-pile friction angle
δ_a	=	Allowable total settlement
δ_D	=	Differential settlement
δ_{Da}	=	Allowable differential settlement
θ_a	=	Allowable angular distortion
ω	=	Tilt
μ	=	Mean
σ	=	Standard deviation

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	Summary of Average Pile Top Settlement for	
	Test Pile TP3C	84
A2	Bearing Capacity of Test Pile TP3C from Load	
	Test Interpretation Method	85
A3	Bearing Capacity of Test Pile TP3C from Pile	
	Driving Formulae	88
A4	Bearing Capacity of Test Pile TP3C from Static	
	Analysis (Meyerhof Method)	89
B1	Summary of Average Pile Top Settlement for	
	Test Pile TP5	92
B2	Bearing Capacity of Test Pile TP5 from Load	
	Test Interpretation Method	93
B3	Bearing Capacity of Test Pile TP5 from Pile	
	Driving Formulae	96
B4	Bearing Capacity of Test Pile TP5 from Static	
	Analysis (Meyerhof Method)	97
C1	Summary of Average Pile Top Settlement for	
	Test Pile TP9	100
C2	Bearing Capacity of Test Pile TP9 from Load	
	Test Interpretation Method	101
C3	Bearing Capacity of Test Pile TP9 from Pile	
	Driving Formulae	104
C4	Bearing Capacity of Test Pile TP9 from Static	
	Analysis (Meyerhof Method)	105
D1	Summary of Average Pile Top Settlement for	
	Test Pile TP10	108

D2	Bearing Capacity of Test Pile TP10 from Load		
	Test Interpretation Method	109	
D3	Bearing Capacity of Test Pile TP10 from Pile		
	Driving Formulae	112	
D4	Bearing Capacity of Test Pile TP10 from Static		
	Analysis (Meyerhof Method)	113	

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Deep foundations are usually referred to as pile foundations. Pile foundations are normally used due to some situation as follows (Henry, 1986):

- (i) When upper soil layers are weak and unable to support the structural loads.
- (ii) When underground water level is not constant.
- (iii) When upper soil layers are susceptible to large settlement.
- (iv) When the structure is subjected to lateral loads.

The principal function of a pile foundation is to transfer load to lower levels of the ground which are capable of sustaining it with an adequate factor of safety and without settling under normal working conditions by an amount detrimental to the structure (Henry, 1986).

There are many different types of pile in use today, such as timber piles, concrete piles, steel piles, composite piles and others. The choice of pile type for a particular job depends upon the combination of all the various soil conditions and the magnitude of the applied load; for example, timber piles are usually used in water structure while precasted concrete piles are usually used in housing estate.

Current practice of pile design is based on the static analysis for example Meyerhof Method, Vesic Method and Coyle & Castello methods. Due to the uncertainties associated with pile design, field tests (pile load tests) are usually conducted to verify the design loads and to evaluate the actual response of the pile under loading. Static pile load tests are a verification tool for pile design and they cannot be a substitute for the engineering analysis of the pile behavior. Maintained Load Test Method (ML Test) is considered as the standard method by Jabatan Kerja Raya (JKR). This test however takes 2-3 days to complete. Due to the long period of time needed to conduct ML Test, it contradicts with the current construction industry practice which is time-saving. Hence, Dynamic Load Test (DLT) especially Pile Driving Analyzer (PDA) is gaining popularity in construction industry. However, ML Test should have the final say on the ultimate bearing capacity of piles.

Due to variation in bearing stratum, it is not easy for engineer to be assured that theoretical design of piles comply with the actual site condition. Thus, every design of piled foundations carries certain amount of uncertainty and risk. This report presented the effort undertaken to identify the most appropriate methods for predicting the axial bearing capacity of piles driven to set. These methods include static analysis, pile driving formulae, and interpretation method. The static analysis is the Meyerhof Method. Five interpretation methods selected are Chin's Method, De Beer's Method, Brinch Hansen's 80 Percent Criterion Method, Butler and Hoy's Method, and Fuller and Hoy's Method. These methods are described in detail by Nor Azizi (2003).

1.2 Objectives

The aim of this study is to identify the most appropriate interpretation methods to estimate the ultimate axial bearing capacity of piles. The objectives of the study are:

- To determine the ultimate bearing capacity of piles from illustrated full-scale pile load tests.
- (ii) To predict and calculate the bearing capacity of pile from static analysis, pile driving formulae, and interpretation method.
- (iii) To identify the most accurate method to predict pile bearing capacity by comparing the predicted and calculated results with the actual results from pile load tests.

1.3 Scope of Study

This study is only considering the carrying capacity of spun piles of different sizes driven to set. Other pile types such as timber piles and steel pipes were not covered in the analyses. Four sets of data were acquired from Taisei Corporation. Their testing program was conducted in Mukim Jimah power plant on November 2005. Square concrete piles are obsolete in this study due to different load transferring mechanism (Hani and Murad, 1999). Only spun friction piles that tested to failure are considered in this study.

Data acquired includes soil investigation reports, piling reports and pile load tests reports. Soil investigation reports revealed the soil strata at the site and the soils' parameters, piling information and depth at which the piles set was revealed from piling records while pile load tests reports gave the actual carrying capacity of the piles.

This study focused on the applicability of proposed methods to predict the ultimate axial compression load carrying capacity of piles. Data from soil investigation reports was used in static analysis while pile load tests data is essential in interpretation method. Information from piling records was used in pile driving formulae. All of the methods are described in detail in the literature review section of this report. The predicted capacity was compared with the actual carrying capacity of piles from pile tests based on mentioned criteria. The method which

ranked number according to mentioned criteria is considered as the most accurate method and is recommended for pile design practice.

1.4 Importance of Study

Static analysis formulae and pile driving formulae are not recommended as the sole means of determining the acceptability of a pile, except on small jobs (Fleming, 1985). These analyses do not describe the complex mechanics of pile driving in rational way and interaction between pile and the surrounding soil is poorly modeled. Thus, it is important to determine accuracy from these formulae through comparison with actual bearing capacity from site. The differences can be used as a guideline when pile load tests are not able to be conducted.

The problems with many of the interpretation methods are that they are either empirical methods or are based on set deformation criteria. Several methods are also sensitive to the shape of the load-settlement curve and it is preferable to use a considerable number of load increment to define the shape clearly; for example, Chin's Method assumes the load-deformation curve is hyperbolic and is an empirical method. An engineer may have difficulty in choosing the best method to interpret the static load test data. This study is able to help an engineer to identify the suitability of the proposed interpretation methods to predict the ultimate bearing capacity of spun piles driven to set. Moreover, through the analyses, the most appropriate method is identified.