

A DOCUMENT-BASED SOFTWARE TRACEABILITY TO SUPPORT

CHANGE IMPACT ANALYSIS OF OBJECT-ORIENTED SOFTWARE

SUHAIMI BIN IBRAHIM

UNIVERSITI TEKNOLOGI MALAYSIA

A DOCUMENT-BASED SOFTWARE TRACEABILITY TO SUPPORT

CHANGE IMPACT ANALYSIS OF OBJECT-ORIENTED SOFTWARE

SUHAIMI BIN IBRAHIM

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy

Faculty of Computer Science and Information System

Universiti Teknologi Malaysia

MAY 2006

iii

ALHAMDULILLAH ……

For my beloved parents,

 my wife, Hjh. Aslamiah bt. Md Nor

 and my children, Muhammad Nazri and Noor Aini

who have given me the strength and courage.

iv

ACKNOWLEDGEMENT

I would like to take this opportunity to thank my main supervisor, Dato’ Prof.

Dr. Norbik Bashah Idris for his encouragement, advice and inspiration throughout

this research. Special thanks go to my co-supervisor, Prof. Dr. Aziz Deraman, the

faculty Dean of Technology and Information Science, Universiti Kebangsaan

Malaysia for his constant support, technical guidance and constructive review of this

research work.

I am especially indebted to Prof. Malcolm Munro of Durham University,

United Kingdom, a renown expert in software impact analysis for his early support

through insightful ideas and constructive comments on the draft model and approach

to this research. At the beginning of this journey he guided and encouraged me

throughout my stay at Durham, giving me inspiring and fruitful experience in the

research area.

A great gratitude also goes to the Universiti Teknologi Malaysia for

sponsoring my three year PhD study and to MOSTI for funding the IRPA research

project. My thanks also go to all CASE (Centre For Advanced Software Engineering)

staff and individuals who have been involved directly or indirectly in the project.

Lastly, my appreciation also goes to post-graduate students of CASE, Universiti

Teknologi Malaysia, Kuala Lumpur for their participation in the controlled

experiment.

v

ABSTRACT

The need for software modifications especially during the maintenance phase,

is inevitable and remains the most costly. A major problem to software maintainers is

that seemingly small changes can ripple through the entire system to cause major

unintended impacts. As a result, prior to performing the actual change, maintainers

need mechanisms in order to understand and estimate how a change will affect the

rest of the system. Current approaches to software evolution focus primarily on the

limited scope of change impact analysis e.g. code. This research is based on the

premise that a more effective solution to manage system evolution can be achieved

by considering a traceability approach to pre-determine the potential effects of

change. The aim of this research is to establish a software traceability model that can

support change impact analysis. It identifies the potential effect to software

components in the system that does not lie solely on code but extends to other high

level components such as design and requirements. As such, in this research,

modification to software is therefore considered as being driven by both high level

and low level software components. This research applies a comprehensive static and

dynamic analysis to provide better impact infrastructures. The main research

contribution in this thesis can be seen in the ability to provide a new software

traceability approach that supports both top-down and bottom-up tracing. In further

proving the concept, some software prototype tools were developed to automate and

support the potential effects. The significant achievement of the model was then

demonstrated using a case study on a non-trivial industrial application software, and

evaluated via a controlled experiment. The results when compared against existing

benchmark proved to be significant and revealed some remarkable achievements in

its objective to determine change impacts.

vi

ABSTRAK

Keperluan terhadap pengubahsuaian perisian terutama pada fasa

penyenggaraan adalah suatu yang tidak dapat dielakkan dan masih melibatkan kos

yang tinggi. Permasalahan utama kepada penyenggara perisian ialah pindaan yang

nampaknya agak kecil boleh merebak ke seluruh sistem lalu menyebabkan impak

luar jangka yang besar. Lantaran itu, sebelum kerja penyenggaraan dilakukan,

penyenggara perlukan beberapa mekanisma untuk memahami dan menganggar

bagaimana pindaan akan menjejaskan bahagian lain dalam sistem. Pendekatan

semasa terhadap evolusi perisian lebih memfokuskan kepada skop analisa impak

pindaan yang terhad, contohnya kod sumber. Kajian ini berasaskan kepada landasan

iaitu penyelesaian efektif untuk menangani evolusi sistem boleh dicapai dengan

mengambilkira pendekatan jejakan bagi mengenalpasti terlebih dahulu impak

pindaan berpotensi. Tujuan kajian ini ialah untuk menghasilkan satu model jejakan

perisian yang boleh membantu menganalisa impak pindaan. Ia mengenalpasti kesan

berpotensi terhadap komponen perisian dalam sistem yang tidak terletak semata-mata

kepada kod tetapi meluas kepada komponen aras tinggi seperti rekabentuk dan

keperluan. Oleh itu dalam kajian ini, pengubahsuaian terhadap perisian boleh

diambilkira dengan melibatkan kedua-dua komponen perisian aras tinggi dan aras

rendah. Penyelidikan ini menggunakan analisa statik dan dinamik yang komprehensif

untuk menyediakan infrastruktur impak yang lebih baik. Sumbangan utama kajian

dalam tesis ini boleh dilihat dari segi keupayaan menyediakan satu pendekatan

perisian jejakan baru yang membantu kedua-dua jejakan atas-bawah dan bawah-atas.

Bagi membuktikan lagi pengesahan konsep, beberapa alatan prototaip perisian dibina

untuk mengautomasi dan membantu kesan berpotensi. Pencapaiannya yang

signifikan kemudian dipersembahkan dengan menggunakan satu kajian kes yang

merupakan satu aplikasi perisian berasaskan industri dan dinilai melalui ekperimen

terkawal. Keputusan yang diperolehi apabila dibandingkan dengan penanda aras

terbukti ianya signifikan dan memperlihatkan beberapa pencapaian yang

memberangsangkan dalam matlamatnya untuk mengenalpasti impak pindaan.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 TABLE OF CONTENTS vii

1 INTRODUCTION

1.1 Introduction 1

1.2 Introduction to Software Evolution 1

1.3 Background of the Problem 4

1.3.1 Broader Maintenance Perspective 4

1.3.2 Effective Change Communication 5

1.3.3 Importance of System Documentation 6

1.3.4 Incomplete Maintenance Supported CASE tools 6

1.4 Statement of the Problem 7

1.5 Objectives of the Study 8

1.6 Importance of the Study 9

1.7 Scope of Work 9

1.8 Thesis Outline 11

2 LITERATURE REVIEW ON SOFTWARE EVOLUTION

AND TRACEABILITY

2.1 Introduction 13

viii

2.2 Software Evolution Models 13

2.3 Software Traceability in Software Engineering 16

2.3.1 Software Configuration Management 16

2.3.2 System Documentation 18

2.3.3 Requirements Traceability 21

2.3.4 Change Management Process 23

2.4 Review and Further Remarks on Software Evolution and

Traceability 27

2.5 Impact Analysis Versus Traceability 29

2.5.1 Definitions of Impact Analysis and Traceability 29

2.5.2 Vertical Traceability 32

2.5.2.1 Data Dependencies 32

2.5.2.2 Control Dependencies 33

2.5.2.3 Component Dependencies 33

2.5.3 Horizontal Traceability 34

2.5.3.1 Explicit Links 34

2.5.3.2 Implicit Links 35

2.5.3.3 Name Tracing 36

2.5.3.4 Concept Location 37

2.5.4 Review on Impact Analysis and Traceability

Techniques 38

2.6 Critiques on State-of-the-art Software Traceability

Approaches 41

2.6.1 The Comparison Framework 41

2.6.2 Existing Software Traceability Models and

 Approaches 44

2.6.3 The Comparative Evaluation of Software

 Traceability Modeling 48

2.7 Summary of the Proposed Solution 49

3 RESEARCH METHODOLOGY

3.1 Introduction 51

3.2 Research Design 51

ix

3.3 Operational Framework 52

3.4 Formulation of Research Problems 54

3.4.1 Need of Change Process Support 54

3.4.2 Establish Communications Within a Project 55

3.4.3 Understanding Requirements to Support

 Software Evolution 55

3.5 Some Considerations for Validation Process 55

3.5.1 Supporting tools 56

3.5.2 Data Gathering and Analysis 57

3.5.3 Benchmarking 58

3.6 Some Research Assumptions 62

3.7 Summary 62

4 REQUIREMENTS TRACEABILITY MODELING

4.1 Introduction 64

4.2 Overview of Requirements Traceability 64

4.3 A Proposed Requirements Traceability Model 65

4.3.1 A Conceptual Model of Software Traceability 66

4.3.2 Dynamic and Static Analyses 67

4.3.3 Horizontal Links 68

4.3.4 Vertical Links 71

4.3.5 Program Dependencies 73

4.4 Defining Object-Oriented Impact Analysis 76

4.4.1 Ripple Effects of Program Dependencies 76

4.4.2 Defined Dependencies 79

4.5 Total Traceability of Artifact Links 80

4.6 Summary 81

5 DESIGN AND IMPLEMENTATION OF SOFTWARE

TRACEABILITY

5.1 Introduction 82

5.2 System Traceability Design 82

5.2.1 Software Traceability Architecture 82

x

5.2.2 CATIA Use Case 86

5.2.3 CATIA Class Interactions 87

5.3 CATIA Implementation and User Interfaces 102

5.4 Other Supporting Tools 105

5.4.1 Code Parser 105

5.4.2 Instrumentation Tool 106

5.4.3 Test Scenario tool 108

5.5 Summary 109

6 EVALUATION

6.1 Introduction 110

6.2 Evaluating Model 110

6.2.1 Hypothesizing Traces 111

6.2.2 Software Traceability and Artifact Links 114

6.3 Case Study 116

6.3.1 Outlines of Case Study 116

6.3.2 About the OBA Project 117

6.3.3 OBA Functionality 118

6.4 Controlled Experiment 122

6.4.1 Subjects and Environment 123

6.4.2 Questionnaires 123

6.4.3 Experimental Procedures 124

6.4.4 Possible Threats and Validity 125

6.5 Experimental Results 127

6.5.1 User Evaluation 127

6.5.2 Scored Results 134

6.6 Overall Findings of the Analysis 137

6.6.1 Quantitative Evaluation 138

6.6.2 Qualitative Evaluation 140

6.6.3 Overall Findings and Discussion 144

6.7 Summary 145

7 CONCLUSION

xi

7.1 Research Summary and Achievements 146

7.2 Summary of the Main Contributions 149

7.3 Research Limitation and Future Work 150

REFERENCES 152-166

APPENDICES 167 - 236

Appendix A – E

xii

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 An overview of the general SRS, SDD and STD documents 20

2.2 Sample form of PCR (MIL-STD-498, 2005) 23

2.3 A comparative study of traceability approaches 45

2.4 Existing features of software traceability approaches 49

3.1 Benchmark of AIS# and EIS# possibilities(Arnold and Bohner, 93) 59

3.2 Evaluation for impact effectiveness (Arnold and Bohner, 1993) 60

3.3 Effectiveness metrics 60

4.1 Software documents and corresponding artifacts 65

4.2 Program relations in C++ 77

4.3 Classifications of artifact and type relationships 79

6.1 Summary of model specifications and used techniques 115

6.2 Cross tabulation of experience versus frequencies 127

6.3 Cross tabulation of previous jobs versus frequencies 128

6.4 Cross tabulation of previous jobs versus group distribution 128

6.5 Cross tabulation of experience versus group distribution 129

6.6 Cross tabulation of program familiarity versus group classification 129

6.7 Mean of previous jobs for groups 129

6.8 Mean of experience for groups 130

6.9 Mean of program familiarity for groups 130

6.10 Point average of group distribution 130

6.11 Mean of scores for impact analysis features 131

6.12 Results of bottom-up impact analysis 135

6.13 Results of top-down impact analysis 137

6.14 Results of artifact S-Ratio 138

6.15 Existing features of software traceability systems 141

xiii

C1 Summary of object oriented relationships 206

D1 A set of package-class references 231

D2 A set of method-class-package references 232

xiv

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 A Stage Model (Bennett and Rajlich, 2000) 15

2.2 MIL-STD-498 Data Item Descriptions 19

2.3 SADT diagram of software maintenance activities (Bohner, 1991) 25

2.4 SADT diagram of change process (Small and Downey, 2001) 26

2.5 The comparison framework 44

3.1 Flowchart of the operational framework 53

4.1 Conceptual model of traceability system 66

4.2 Hypothesizing traces 67

4.3 Traceability from the requirement perspective 69

4.4 System artifacts and their links 80

5.1 A view of software traceability architecture 83

5.2 Use Case diagram of CATIA system 86

5.3 CATIA class diagrams 88

5.4 CATIA sequence diagrams 89

5.5 First User Interface of CATIA 102

5.6 Primary artifacts at method level 103

5.7 Summary of the impacted artifacts 104

5.8 The Instrumented Code 107

5.9 Some ‘markers’ extracted from a class CruiseManager 108

5.10 The impacted methods of a class CcruiseManager 108

6.1 Hypothesized and observed traces 113

6.2 CSC relationships within a CSCI OBA 118

6.3 Easiness to Use in Overall 131

6.4 Easiness to Find SIS 132

6.5 AIS Support 132

xv

6.6 Cost Estimation Support 133

6.7 Traceability Support 133

6.8 Documentation Support 133

B1 primary option of requirement artifacts 179

B2 Potential effects and impact summary 180

B3 First CATIA interactive window 181

B4 Primary artifacts at method level 182

B5 Detailed results of secondary artifacts 183

B6 Summary of impacted artifacts by methods 184

B7 Impacted artifacts in a message window 185

B8 Primary artifacts at requirement level 186

B9 Summary of impacted artifacts by requirements 186

B10 A hyperlink between CATIA and documentation 187

C1 Table structures of recognizable tokens 189

D1 Start vehicle class diagram 208

D2 Set calibration class diagram 209

D3 Control cruising speed class diagram 210

D4 Request trip assistance class diagram 211

D5 Fill fuel class diagram 212

D6 Service vehicle class diagram 213

xvi

LIST OF ACRONYMS AND SYMBOLS

AIS - Actual Impact Set

ANOVA - Analysis of Variance

AST - Analysis Syntax Tree

CASE - Computer Aided Software Engineering

CBO - Coupling Between Object Classes

CCB - Change Control Board

CI - Component Identification

CMM - Capability Maturity Model

CSC - Computer Software Components

CSCI - Computer Software Configuration Item

CSU - Computer Software units

DIF - Documentation Integration Facility

DIT - Depth of Inheritance tree

FSM - Functional Specification Manual

GEOS - Global Entity Operations System

HTML - Hypertext Markup Language

IA - Impact Analysis

LCOM - Lack of Cohesion Metric

LOC - Lines of code

MDD - Model Dependency Descriptor

NOC - Number of Children

OBA - Automobile Board Auto Cruise

OMT - Object Modeling Technique

OOP - Object Oriented Programming

PCR - Problem Change Report

PIS - Primary Impact Set

xvii

RFC - Response for a Class

RUP - Rational Unified Process

SADT - Structured Analysis Design Technique

SCM - Software Configuration Management

SDLC - Software Development Lifecycle

SDP - Software Development Plan

SIS - Secondary Impact Set

SPEM - Software Process Engineering Meta Model

SPS - Specification Product System

SRS - Software Requirement Specification

STD - Software Test Description

SUM - Software User Manual

TRAM - Tool for Requirement and Architectural Management

UML - Unified Modeling Language

VG - Values of complexity

WMC - Weighted Methods per Class

XML - Extensible Markup Language

xviii

LIST OF APPENDICES

APPENDIX TITLE PAGE

APPENDIX A Procedures and Guidelines of the

Controlled Experiment 167-176
APPENDIX B CATIA Manual and Descriptions 177-188

APPENDIX C Code Parser 189-206

APPENDIX D OBA System – The Case Study 207-234

APPENDIX E Published papers 235-236

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter provides an introduction to the research work presented in this

thesis. It describes the research overview that motivates the introduction of a

document-based software traceability to support change impact analysis of object-

oriented software. This is followed by a discussion on the research background,

problem statements, objectives and importance of the study. Finally, it briefly

explains the scope of work and the structure of the thesis.

1.2 Introduction to Software Evolution

It is unanimously accepted that software must be continuously changing in

order for the software to remain relevant in use. The need for changing a software

system to keep it aligned with the users’ need and expectations has long been

recognized within the software engineering community. Due to inherent dynamic

nature of business application, software evolution is seen as the long term result of

software maintenance. In the current decade, the term software evolution is often

used as a synonym for software maintenance, broadly defined as modification of a

software product after delivery (IEEE, 1998a), and both software maintenance and

evolution assume changing the code as their basic operation.

 2

The term software evolution lacks a standard definition, but some researchers

and practitioners use it as a preferable substitute for maintenance (Bennett and

Rajlich, 2000). In short, one could say that the evolution of a software system is the

results of observing the changes made to the system components over a long time

span. Consequently, the study of software evolution has aimed at analyzing the

process of continuous change to discover trends and patterns, such as for example,

the hypothesis that software evolution behaves as feedback processes (Lehman and

Ramil, 2000).

The maintenance process describes how to organize maintenance activities.

Kitchenham et al. (1999) identify a number of domain factors believed to influence

the maintenance process, namely i) maintenance activity type, ii) product, iii)

peopleware and iv) process organization. Maintenance activity type covers the

corrections, requirements changes and implementation changes. Product deals with

the size and product composition. Peopleware describes the skills and user requests.

Process organization manages the group and engineering resources that include

methods, tools and technology.

Software maintenance is basically triggered by a change request. Change

requests are typically raised by the clients or internal development staff for the

demand to do software modification. Traditionally, software modification can be

classified into maintenance types that include corrective, adaptive, perfective and

preventive. Chapin et al. (2001) view software evolution in slightly different

perspective. They use the classification based on maintainers’ activity of mutually

exclusive software evolution clusters ranging from the support interface,

documentation, software properties and business rules. Each cluster is characterized

by some maintenance types. They conclude that different types of maintenance or

evolution may have different impact on software and business processes.

For whatever reason of modification it may be, the real world software

systems require continuous changes and enhancements to satisfy new and changed

user requirements and expectations, to adapt to new and emerging business models

and organizations, to adhere to changing legislation, to cope with technology

 3

innovation and to preserve the system structures from deterioration (Canfora, 2004).

Webster et al. (2005) in their study on risk management for software maintenance

projects propose some taxonomy of risk factors that cover requirements, design,

code, engineering specialities and legacy. Some common risk factors identified are

incomplete specifications and limited understanding, high level complexity of the

required change, direct or indirect impacts on current system’s functionalities, and

inadequate test planning and preparation. The fact about software change is that the

changes made by user requirements and operations are propagated onto software

system (Bohner, 2002). These changes will require a substantial extension to both

the database and code. As change is the basic building block of software evolution,

software change is considered a key research challenge in software engineering

(Bennett and Rajlich, 2000).

A large portion of total lifecycle cost is devoted to introduce new

requirements and remove or change the existing software components (Ramesh and

Jarke, 2001). This intrinsically requires appropriate software traceability to manage

it. However, there are at least three problems observed by the investigation of the

current software traceability approaches. First, most of the Computer Aided

Software Engineering (CASE) tools and applications more focus on the high level

software and yet are directly applicable to software development rather than

maintenance. While, the low level software e.g. code, is given less priority and very

often left to users to decide. This makes the software change impact analysis

extremely difficult to manage at both levels. Secondly, there exists some research

works (Jang et al., 2001; Lee et al, 2000; Tonella, 2003) on change impact analysis

but the majority confine their solution at the limited space i.e. code, although more

evolvable software can be achieved at the meta model level. Finally, no proper

visibility being made by the ripple effects of a proposed change across different

levels of workproduct. If this can be achieved, a more concrete estimation can be

predicted that can support change decision, cost estimation and schedule plan.

The key point to the above solutions is the software traceability. Software

traceability provides a platform as to how the relationships within software can be

established and how the change impact can be implemented. All these issues require

 4

an extensive study on the existing traceability and impact analysis in the existing

software system and research works before a new model and approach can be

decided.

1.3 Background of the Problem

Software traceability is fundamental to both software development and

maintenance of large systems. It shows the ability to trace information from various

resources that requires special skill and mechanism to manage it. In this research

problem, it focuses on software traceability to support change impact analysis.

Following are some major issues to the research problems.

1.3.1 Broader Maintenance Perspective

Many researchers have been working on the code-based maintenance for their

software evolution as mentioned earlier. This type of maintenance is more focused

but limited as it deals with a single problem, i.e. source code. However, managing

software change at a restricted level is not enough to appreciate the actual impacts in

the software system. Other levels of software lifecycle such as requirements, testing

and design should also be considered as they are parts of the software system. To

observe the impact at the broader perspective is considerably hard as it involves

software traceability within and across different workproducts.

Software workproducts refer to explicit products of software as appeared in

software documention. For instance, test plans, test cases, test logs and test results

are the workproducts of testing document. Architectural design model and detailed

design model are the workproducts of design document. Code is by itself a

workproduct of source code. Requirements and specifications are the workproducts

of software requirements specification document. Thus, at the broader perspective of

change impact, it observes the impact within and across different workproducts such

 5

within code and from code to design, specification, etc. Within a workproduct, the

software components may be decomposed further into smaller elements, called

artifacts. For instance, code can be decomposed into classes, methods, attributes and

variables of software artifacts. In this thesis the term components and artifacts are

sometimes used interchangeably which refer to the same thing.

The fact about this traceability approach is that if the component relationships

are too coarse, they must be decomposed to understand complex relationships. On

the other hand, if they are too granular, it is difficult to reconstruct them into more

recognized, easily understood software components. However, it is perceived that

there should be some tradeoffs between these two granularities in order to observe

the ripple effects of change.

1.3.2 Effective Change Communication

There is a need to communicate and share information within software

development environment e.g. between software developers and management (Lu

and Yali, 2003). In Software Configuration Management (SCM) for example, the

Change Control Board (CCB) needs to evaluate change requests before the actual

change is implemented. This requires CCB to consult other staff such as

maintainers, software engineers and project manager. A maintainer himself needs to

examine among other tasks how much and which part of the program modules will

be affected for change and regression testing, its complexity and what types of test

cases and requirements will be involved.

The software engineers need to examine the types of software components to

use and more critically to identify or locate the right affected software components

(Bohner, 2002). The software manager is more concerned about the cost, duration

and staffing before a change request is accepted. This certainly requires a special

repository to handle software components with appropriate links to various levels in

software lifecycle. Some of this information is not readily available in any CASE

 6

tools that require the software development staff to manually explore the major

analyses in some existing software models and documentations.

1.3.3 Importance of System Documentation

To established organizations with software engineering practices in place,

software engineers always refer to system documentation as an important

instrumentation for communication (IEEE, 1998). The high level management finds

documentation very useful when communicating with the low level developers or

vice-versa. Despite this, many software engineers are still reluctant to make full use

of the system documentation particularly to deal with software evolution (Nam et al.,

2004). To them, documentation is abstract, seldom up-to-date and time consuming.

However, many still believe that documentation is more significant if the software it

documents is more visible and traceable to other parts of software components. For

example, within documentation the user can visualize the impacted requirements and

design classes in the database repository.

1.3.4 Incomplete Maintenance Supported CASE Tools

Many CASE (Computer Aided Software Engineering) tools that exist today

are aimed at addressing the issues of software development rather than software

maintenance (Pressman, 2004). Some claim that their tools can support both

software development and maintenance, however their applications are mainly

centered around managing, organizing and controlling the overall system

components, very few focus on the impact analysis of change requests. Deraman

(1998) relates the current CASE tools as applications that do provide special upfront

consistency checking of software components during development but tend to ignore

its equally important relationships with code as it proceeds towards development and

maintenance. The traceability relationships between code and its upper

 7

functionalities are not explicitly defined and very often left to software engineers to

decide.

From the above scenarios, there is a need to integrate both the high level and

low level software abstracts such that the effects of component traceability can be

applied in the system thoroughly. Two main issues need to be addressed here firstly,

the software traceability within a software workproduct and secondly, the traceability

across many workproducts. Software traceability in this context reflects the

underlying infrastructures of ripple effects of change that attempts to incorporate

both the techniques and models in implementing a change impact.

1.4 Statement of the Problem

This research is intended to deal with the problems related to requirements

traceability for change impact analysis as discussed in Section 1.2. The main

question is “How to produce an effective software traceability model and approach

that can integrate the software components at different component levels to support

change impact analysis of software maintenance?”

The sub questions of the main research question are as follows:

i. Why the current maintenance models, approaches and tools are still not

able to support potential effects of change impact in the software system?

ii. What is the best way to capture the potential effects of software

components in the system?

iii. How to measure the potential effects of a proposed change?

iv. How to validate the usefulness of software traceability for software

maintenance?

Sub question (i) will be answered via literature reviews in Chapter 2. This

chapter will provide a special attention to explore the software evolution, its models

and traceability issues. From the impact analysis perspective, this chapter will

 8

present a study on the detailed traceability process, the techniques and existing tools

used. The strengths and drawbacks are drawn based on a comparison framework in

order to propose a new model and approach to support change impact analysis.

The above study provides some leverage to answer the sub question (ii).

Chapter 3 describes a design methodology and evaluation plan before the research is

carried out. Sub question (iii) will be counter balanced by a solution to measure the

potential effects. The sub questions (ii) and (iii) will be further explained in the

traceability modeling and implementation as described in Chapter 4 and 5. Lastly,

sub question (iv) leads to the evaluation of the model and approach quantitatively

and qualitatively as described in Chapter 6.

1.5 Objectives of the Study

The above problem statement serves as a premise to establish a set of specific

objectives that will constitute major milestones of this research.

To this end, the objectives of this research are listed as follows

1) To build a new software traceability model to support change impact

analysis that includes requirements, test cases, design and code.

2) To establish a software traceability approach and mechanism that cover

features including artifact dependencies, ripple effects, granularity and

metrics.

3) To develop software supporting tools to support the proposed model and

approach.

4) To demonstrate and evaluate the practicability of the software traceability

model and approach to support change impact analysis.

 9

1.6 Importance of the Study

Software maintenance is recognized as the most expensive phase of the

software lifecycle, with typical estimate of more than sixty percent of all effort

expended by a development organization, and the percentage continues to rise as

more software is produced (Han, 2001). As software changes are introduced,

avoiding defects becomes increasingly labor intensive. Due to lack of advanced

technologies, methods and tools, doing software modification has been difficult,

tedious, time consuming and error prone. Software maintainers need mechanisms to

understand and solve maintenance tasks e.g. how a change impact analysis can be

made for a software system.

Bohner and Arnold (1996) describes a benefit of change impact analysis as

 …by identifying potential impacts before making a change, we can greatly reduce

the risks of embarking on a costly change because the cost of unexpected problems

generally increases with the lateness of their discovery.

Clearly, the software change impact is an important activity that needs to be

explored in order to improve software evolution and traceability is seen as a core

infrastructure to support impact analysis.

1.7 Scope of Work

Software traceability can be applied to some applications such as

consistency-checking (Lucca et al., 2002) defect tracking (McConnel, 1997), cross

referencing (Teng et al., 2004) and reuse (Ramesh and Jarke, 2001). The techniques

and approaches used may differ from one another due to different objectives and

feature requirements. Some of these approaches are geared toward system

development while others are designed for system evolution.

 10

In this scope of research, it needs to explore a software traceability

specifically to support a change impact analysis within which it should be able to

capture the impacts of change requests. The models and techniques used should

allow the implementation of impacts across different workproducts. It needs to

capture the software knowledge from the latest correct version of a complete system

prior to implementation. It is assumed that a new traceability approach needs to

develop some reverse engineering tools if ones are not available in the research

community to support and simplify the capturing process.

The term a complete system here may refer to a very large scope as it may

govern all the software models including the business model, specification, high

level design, documentation, code, etc. These models are comprised within the

software lifecycle of software specification, design, coding and testing. However,

for the sake of research and implementation, this work will focus on some relevant

information that includes a set of functional requirements, test cases, design and code

as follows. These software components or artifacts are seen to be the software

development baseline (MIL-STD-498, 2005). Software development baseline

reflects the software products that are used and confined to the internal development

staff rather than the external users or clients to support software evolution. Thus, this

baseline model is chosen to represent a smaller scope of a large complete system.

The new work should be derived from a set of system documentation

adhering to a certain software engineering standard e.g. MIL-STD-498 (MIL-STD-

498, 2005). Nevertheless, it should not be tied up with the documentation

environment as the main focus is not on the traceability and impact in system

documentation but rather to its information contents. With simple interface (not

within this scope) it should allow system documentation to view the traceable

software components as a result of implementing software traceability system.

In this research approach, the scope is decided on object-oriented system to

address the change impact analysis. It should be noted that this research is not

concerned with correcting the software components but only reporting them. The

 11

software engineers or maintainers should consider these results as an assistance to

facilitate their initial prediction of change impact.

1.8 Thesis Outline

This thesis covers some discussions on the specific issues associated to

software traceability for impact analysis and understanding how this new research is

carried out. The thesis is organized in the following outline.

Chapter 2: Discusses the literature review of the software evolution and

traceability. Few areas of interest are identified from which all the related

issues, works and approaches are highlighted. This chapter also discusses

some techniques of impact analysis and software traceability. Next, is a

discussion on some existing models and approaches by making a comparative

study based on a defined comparison framework. This leads to improvement

opportunities that form a basis to develop a new proposed software

traceability model.

Chapter 3: Provides a research methodology that describes the research

design and formulation of research problems and validation considerations.

This chapter leads to an overview of data gathering and analysis including

benchmarking. It is followed by some research assumptions.

Chapter 4: Discusses the detailed model of the proposed software

traceability for impact analysis. A set of formal notations are used to

represent the conceptual model of the software traceability. It is followed by

some approaches and mechanisms to achieve the model specifications.

Chapter 5: Presents the design and functionality of some developed tools to

support the software traceability model. This includes the implementation of

the design and component tools.

 12

Chapter 6: The software traceability model is evaluated for its effectiveness,

usability and accuracy. The evaluation criteria and methods are described

and implemented on the model that includes modeling validation, a case

study and experiment. This research performs evaluation based on

quantitative and qualitative results. Quantitative results are checked against a

benchmark set forth and qualitative results are collected based on user

perception and comparative study made on the existing models and

approaches.

Chapter 7: The statements on the research achievements, contributions and

conclusion of the thesis are presented in this chapter. This is followed by the

research limitations and suggestions for future work.

REFERENCES

Anderson, P., Reps T., Teitelbaum, T. and Zarins M. (2003). Tool Support for Fine-

Grained Software Inspection. IEEE Software. 1-9.

Antoniol, G., Canfora, G.A., Gasazza, G., and Lucia, A. (2002). Recovering

Traceability Links Between Code and Documentation. IEEE Transactions on

Software Engineering. 28(10): 970-983.

Antoniol, G., Caprile, B., Potrich, A. and Tonella, P. (2000). Design-Code

Traceability for Object Oriented Systems. The Annals of Software

Engineering. 9: 35-58.

Antoniol, G., Penta, M.D. and Merlo, E. (2004). An automatic Approach to Identify

Class Evolution Discontinuities. Proceedings of the 7th International

Workshop on Principles of Software Evolution. IEEE Computer Society. 31-

40.

Arnold, R.S. and Bohner, S.A. (1993). Impact Analysis – Towards A Framework for

Comparison. Proceedings of the Software Maintenance Conference.

September 27-30. USA: IEEE Computer Society. 292-301.

Bennett, K. (1996). Software Evolution: Past, Present and Future. Information and

Software Technology. 38(11): 673-680.

Bennett, K., Rajlich, V. (2000). Software maintenance and Evolution: A Roadmap.

Proceedings of the Conference on the Future of Software Engineering. May.

USA: ACM Press. 73-87.

 153

Bianchi, A. , Fasolino, A.R., Visaggio, G. (2000). An Exploratory Case Study of the

Maintenance Effectiveness of Traceability Models. International Workshop

on Program Comprehension. June 10-11. Ireland: IEEE Computer Society.

149-158.

Bieber M., Kukkonen H. and Balasubramanian V. (2000). Hypertext Functionality.

ACM Computing Surveys. 1-6.

Bieman, J.M.and Kang, B.K. (1998). Measuring Design-Level Cohesion. IEEE

Transactions on Software Engineering. 24(2): 111-124.

Boehm, B. and Sullivan, K. (2000). Software Economics: A Roadmap. Proceedings

of the Conference on the Future of Software Engineering. ACM. 319-344.

Bohner, S.A. (1991). Software Change Impact Analysis for Design Evolution, Eighth

International Conference on Software Maintenance and Reengineering. IEEE

Computer Society Press. 292-301.

Bohner, S.A. (2002). Software Change Impacts: An Evolving Perspective.

Proceedings of the International Conference on Software Maintenance.

October 4-6. Canada: IEEE Computer Society. 263-271.

Bohner, S.A. and Arnold, R.S. (1996). Software Change Impact Analysis. California:

IEEE Computer Society press.

Bohner, S.A. and Gracanin, D. (2003). Software Impact Analysis in a Virtual

Environment, Proceedings of the 28th Annual NASA Goddard Software

Engineering Workshop. December 3-4. USA: IEEE Computer Society. 143-

151.

Booch, G., Rumbaugh, J. and Jacobson, I. (1999). The Unified Modeling Language

User Guide. USA: Addison-Wesley.

 154

Brand, V.D, Jong, H.A., Klint P. and Kooiker A.T. (2003). A Language

Development Environment for Eclipse. Proceedings of the 2003 Object

Oriented Programming, Systems, Languages and Applications. October.

USA: ACM Press. 55-59.

Briand, L.C. and Pfahl, D. (2000). Using Simulation for Assessing the Real Impact

of Test Coverage on Defect-Coverage. IEEE Transactions on Reliability.

49(1): 60-70.

Brown, A.B., Keller, A. and Hellerstein, J.L. (2005). A model of configuration

complexity and its application to a change management system Integrated

Network Management. IFIP/IEEE International Symposium. 631–644.

Buchsbaum, A., Chen, Y.F., Huang, H., Koutsofios, E., Mocenigo, J., Rogers, A.

(2001). Visualizing and Analyzing Software Infrastructures. IEEE Software.

62-70.

Burd, E. and Munro, M. (1999). An initial approach towards measuring and

characterizing software evolution. Proceedings of Sixth Working Conference

on Reverse Engineering.168–174.

Canfora, G. (2004). Software Evolution in the era of Software Services. Proceedings

of the seventh International Workshop on Software Evolution (IWPSE’04).

September 6-7. Japan: IEEE Computer Society. 9-18.

Chapin, N., Hale, J.E. and Khan, K.M. (2001). Types of software evolution and

software maintenance. Journal of Software Maintenance and Evolution:

Research and Practice 13(1). 3-30.

Chaumun, M.A., Kabaili, H., Keller, R.K., Lustman, F. and Saint-Denis, G. (2000).

Design Properties and Object-Oriented Software Changeability. Proceedings

of the Fourth European Conference on Software Maintenance. February 29-

March 3. Switzerland: IEEE Computer Society. 45-54.

 155

Chen, K., Rajlich, V. (2000). Case study of feature location using dependence graph.

Eigth International Workshop on Program Comprehension. June 10-11.

Ireland: IEEE Computer Society Press. 241-247.

Chen, X., Tsai, W.T., Huang, H. (1996). Omega – An integrated environment for

C++ program maintenance. IEEE Computer Society Press. 114-123.

Columbus. (2005). Analyzer Front End Company for Reverse Engineering

Community. Last accessed on October 24, 2005. http://www.frontendart.com

Cooper, D., Khoo, B., Konsky, B.R., Robey, M. (2004). Java Implementation

Verification Reverse Engineering. Australian Computer Science Conference.

Australian Computer Society. 26: 203-211.

Cui, L. and Wang, H. (2004). Version management of EAI based on the semantics of

workflow. Proceedings of the Eight International Conference on Computer

Supported Cooperative Work in Design. November 6-10. USA: ACM. 341 –

344.

Darcy, D.P and Kemerer, C.F. (2005). OO Metrics in Practice. IEEE Software. 22(6):

17 – 19.

Deraman, A. (1998). A framework for software maintenance model development.

Malaysian Journal of Computer Science . 11(2): 23-31.

Desai, N., Lusk, A., Bradshaw, R. and Evard, R. (2003). BCFG: A Configuration

Management Tool for Heterogeneous Environments. Proceedings of the

IEEE International Conference on Cluster Computing (CLUSTER’03).

December 1-4. Hong Kong: IEEE Computer Society. 500-503.

Devandu, P.,Chen, Y.F., Muller, H. and Martin J. (1999). Chime: Customizable

Hyperlink Insertion and Maintenance Engine for Software Engineering

Environments. Proceedings of the 21st International Conference on Software

Engineering. May 16-22. USA: IEEE Computer Society. 473-482.

 156

Dorrow, K. (2003). Flexible Fault Tolerance in Configurable Middleware for

Embedded Systems. Proceedings of the 27th Annual International Computer

Software and Applications Conference. November 3-6. USA: IEEE Computer

Society. 563-569.

Egyed, A. (2003). A Scenario-Driven Approach to Trace Dependency Analysis.

IEEE Transactions on Software Engineering. 29(2): 324-332.

Engles, G. and Groenewegen, L. (2000). Object-Oriented Modeling: A Roadmap.

Proceedings of the International Conference on the Future of Software

Engineering. June 4-11. Ireland: ACM Press. 103-117.

Estublier, J., Leblang, D. and Clemm, G. (2004). Impact of the Research Community

for the Field of Software Configuration Management. International

Conference of Software Engineering. May 23-28. Scotland: ACM. 643-644.

Finkelstein, A. and Kramer, J. (2000). Software Engineering: A Roadmap.

Proceedings of the Conference on the Future of Software Engineering. June

4-11. Ireland: ACM Press. 3-23.

Fiutem, R. and Antoniol, G. (1998). Identifying Design-Code Inconsistencies in

Object-Oriented Software: A Case Study. Proceedings of International

Conference on Software Maintenance. USA: IEEE Computer Society Press.

94-102.

French, J.C., Knight, J.C. and Powell, A.L. (1997). Applying Hypertext Structures to

Software Documentation. Information Processing and Management. 33(2):

219-231.

Garlan, D. (2000). Software Architecture: A Roadmap. Proceedings of the

Conference on the Future of Software Engineering. June 4-11. Ireland: ACM

Press. 91-101.

 157

Gotel, O. and Finkelstein, A. (1994). An Analysis of the Requirements Traceability

Problem, Proceedings of the First International Conference on Requirements

Engineering. USA: IEEE Computer Society. 94-101.

GrammaTech. (2005). CodeSurfer Application. Last accessed on October 24, 2005.

http://www.grammatech.com/products/codesurfer/

Gupta, S.C., Nguyen, T.N. and Munson, E.V. (2003). The Software Concordance:

Using a Uniform Document Model to Integrate Program Analysis and

Hypermedia. Proceedings of the Tenth Asia-Pacific Software Engineering.

December 10-12. Thailand: IEEE Computer Society. 164-173.

Hagen, V., McDonald, A., Atchison, B., Hanlon, A. and Lindsay, P. (2004). SubCM:

A Tool for Improved Visibility of Software Change in an Industrial Setting.

IEEE Transactions on Software Engineering. 30(10): 675-693.

Han, J. (2001). TRAM: A Tool for Requirements and Architecture Management.

Proceedings of the 24th Australian Conference on Computer Science.

Australia: IEEE Computer Society. 60-68.

Hartmann, J. Huang, S. and Tilley, S. (2001). Documenting Software Systems with

View II: An Integrated Approach Based on XML. Proceedings of Annual

ACM Conference on Systems Documentation (SIGDOC 2001). October 21-

24. USA: ACM. 237-246.

Hichins, M. and Gallagher, K. (1998). Improving visual impact analysis.

Proceedings of the International Conference on Software Maintenance.

November 16-20. USA: IEEE Computer Society. 294-301.

Hoffman, M.A. (2000). A methodology to support the maintenance of object-oriented

systems using impact analysis. Louisiana State University: Ph.D. Thesis.

 158

Horwitz, S., Reps, T. and Binkley, D. (1990). Interprocedural slicing using

dependence graphs. ACM Transactions on Progrramming Languages and

Systems. 12(1): 26-60.

Huang, J.C., Chang, C.K. and Christensen, M. (2003). Event-Based Traceability for

Managing Evolutionary Change. IEEE Transactions of Software Engineering.

29(9): 796-810.

IEEE. (1998a). IEEE Standard For Software Maintenance. New York, IEEE Std.

1219-1998.

IEEE. (1998b). IEEE Standard for Software Configuration Management Plans. New

York, IEEE-Std 828-1998.

IEEE. (1998c). IEEE Standard for Software Test Documentation. New York, IEEE-

Std 829-1998.

IEEE. (1998d). IEEE Recommended Practice For Software Requirements

Specifications. New York, IEEE-Std 830-1998.

IEEE. (1998e). Guides- A Joint Guide Developed by IEEE and EIA- Industry

Implementation of International Standard ISO/IEC 12207. New York,

IEEE/EIA 12207.

IEEE. (1998f). IEEE Recommended Practice For Software Design Descriptions.

New York, IEEE-Std 1016-1998.

ISO/IEC 12207. (2005). ISO/IEC 12207 Software Lifecycle Processes. Last accessed

on October 24, 2005. www.abelia.com/docs/12207cpt.pdf

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). Unified Software Development

Process. USA: Addison-Wesley.

 159

Janakiraman, G., Santos, J.R., Turner, Y. (2004). Automated System Design for

Availability. Proceedings of the 2004 International Conference on

Dependable Systems and Networks. June 28-July 1. Italy: IBM. 411-420.

Jang, K.Y., Munro, M., Kwon,Y.R. (2001). An Improved Method of Selecting

regression Tests for C++ Programs. Journal of Software Maintenance And

Evolution: Research And Practice. 13: 331-350.

J-STD-016-1995. (2005). A Comparison of IEEE/EIA 12207, J-STD-016, and MIL-

STD-498. Last accessed on October 24, 2005.

http://www.abelia.com/pubsmain.htm

Kaibaili, H., Keller, R.K. and Lustman, F. (2001). Cohesion as Changeability

Indicator in Object-Oriented Systems. IEEE Computer Society. 39-46.

Keller, A. Hellerstein, J.L., Wolf, J.L. and Wu, K.L. (2004). The CHAMPS System:

Change Management with Planning and Scheduling.

Network Operations and Management Symposium. April 19-23. Korea:

IEEE/IFIP. 395 – 408.

Kendall, K.E. and Kendall, J.E. (1998). System Analysis and Design. Fourth Edition.

USA: Prentice Hall.

Kichenham, B.A., Travassos, G.H., Mayrhauser, A.V. and Schneidewind, N. (1999).

Towards an Ontology of Software Maintenance. Journal of Software

Maintenance: Research and Practice. 11: 365-389.

Kullor, C. and Eberlain, A. (2003). Aspect-Oriented Requirements Engineering for

Software Product Lines. Proceedings of the Tenth International Conference

and Workshop on the Engineering of Computer-Based System. USA: IEEE

Computer Society. 98-107.

 160

Kung, D.C., Liu, C.H. and Hsia, P. (2000). An object-oriented Web test model for

testing Web applications. The 24th Annual International Conference on Computer

Software and Applications. 537-542.

Lakhotia, A., Deprez, J.C. (1999). Restructuring Functions with Low Cohesion.

IEEE Computer Society Press. 381-390.

Lazaro M. and Marcos E. (2005). Research in Software Engineering: Paragidms and

Methods. PHISE’05.

Lee, J.K. and Jang, W.H. (2001). Component Identification Method with Coupling

and Cohesion. Proceedings of the Eight Asia-Pacific Software Engineering

Conference. December 4-7. China: IEEE Computer Society. 79-86.

Lee, M., Offutt, A.J. and Alexander, R. (2000). Algorithmic analysis of the impacts

of changes to object-oriented software. Proceedings of the 34th International

Conference on Technology of Object-Oriented Languages and Systems. July

30 - August 4. USA: IEEE Computer Society.. 61-70.

Lehman M.M. and Ramil J.F. (2000). Towards a Theory of Software Evolution – and

Its Practical Impact. International Symposium on Principles of Software

Evolution. November 1-2. Japan: IEEE Computer Society. 2-11.

Lehman, M.M. and Ramil, J.F. (2002). Software Evolution and Software Evolution

Processes. Annals of Software Engineering. 14: 275-309.

Lindvall, M. (1997). Evaluating Impact Analysis - A case Study. Journal of

Empirical Software Engineering. 2(2): 152-158.

Lindvall, M. and Sandahl, K. (1998). Traceability Aspects of Impacts Analysis in

Object-Oriented System. Journal of Software Maintenance Research and

Practice. 10: 37-57.

 161

Lu X. and Yali G. (2003). Risk Analysis in Project of Software Development.

Proceedings of the Engineering Management Conference on Management

Technologically Driven Organizations. November 2040. New York: IEEE

Computer Society. 72-75.

Lucca, G.A., Di Penta, M. and Gradara, S. (2002). An Approach to Classify Software

Maintenance Requests. Proceedings of the International Conference of

Software Maintenance. October 3-6. Canada: IEEE Computer Society. 93-

102.

Maarek, Y., Berry, D. and Kaiser, G. (1991). An Information Retrieval Approach for

Automatically Constructing Software Libraries. IEEE Transactions of

Software Engineering. 17(8). 800-813.

Madhavji, N.H. (1992). Environment Evolution: The Prism Model of Changes. IEEE

Transaction on Software Engineering. 8(5). 380-392.

Marcus A. and Meletic J.I. (2003). Recovering ocumentation-to-Sourcce-Code

Traceability Links Using Latent Semantic Indexing. Proceedings of the

Twenty Fifth International Conference on Software Engineering. May 3-10.

USA: IEEE Computer Society. 125-135.

Mayrhauser, A.V. and Lang, S. (1999). A Coding Scheme to Support Systematic

Analysis of Software Comprehension. IEEE Transaction of Software

Engineering. 25(4). 526-540.

McCabe. (2005). McCabe Software- Assuring Quality Throughout the Application

Lifecycle. Last accessed on October 24, 2005. http://www.mccabe.com

McConnel, S. (1997). Gauging Software Readiness with Defect Tracking. IEEE

Software. 14(3): 136-135.

MIL-STD-498. (2005). Roadmap for MIL-STD-498. Last accessed on October 24,

2005. http://www2.umassd.edu/SWPI/DOD/MIL-STD-498/ROADMAP.PDF

 162

Murphy, G.C., Notkin, D. and Sullivan, K. (1995). Software Reflexion Models:

Bringing the Gap Between Source and High-Level Models. Proceedings of

Third Symposium Foundations of Software Engineering. October 12-15.

USA: ACM. 18-28.

Nam, C., Lim, J.L., Kang, S. Bae, Lee J.H. (2004). Declarative development of Web

applications with active documents. Proceedings of the Russian-Korean

International Symposium on Science and Technology. IEEE Computer

Society. 68-72.

Natarajan, B., Gokhale, A., Yajnik, S. and Schmidt, D.C. (2000). DOORS: Towards

High-Performance Fault Tolerant. Proceedings of the Second International

Symposium on Distributed Objects and Applications. September 21-23.

Belgium: IEEE Computer Society. 39 – 48.

Nguyen, T.N., Munson, E.V., Boyland, J.T. and Thao, C. (2004). Flexible Fine-

grained Version Control for Software Documents. Proceedings of the 11th

Asia-Pacific Software Engineering. November 30 - December 3. Korea: IEEE

Computer Society. 212-219.

Nuseibeh, B. and Easterbrook S. (2000). Requirements Engineering: A Roadmap.

Proceedings of the International Conference on the Future of Software

Engineering. June 4-11. Ireland: ACM Press. 35-46.

Perry, D.E. (1994). Dimensions of Software Evolution. Proceedings of the

International Conference on Software Maintenance. USA: IEEE Computer

Society. 296-303.

Pressman. R.S. (2004). Software engineering, a practitioner’s approach. Sixth ed.

New York: Mc Graw Hill.

 163

Rajlich, V. and Wilde, N. (2002). The Role of Concepts in Program Comprehension,

Proceedings of 10th International Workshop on Program Comprehension.

June 27-29. France: IEEE Computer Society. 271-278.

Ramesh, B. and Jarke, M. (2001). Toward Reference Models for Requirements

Traceability, IEEE Transactions on Software Engineering. 27(1): 58-93.

Ramesh, B. (2002). Process Knowledge Management With Traceability, IEEE

Software. 19(3): 50-52.

Rational (2005). Rational Software Corporation. Last accessed on October 24, 2005.

www.rational.com.

Recon2. (2005). Recon2 Tool for C Programmers. Last accessed on October 24,

2005. http://www.cs.uwf.edu/~recon/recon2/

Rilling, J., Seffah, A., Bouthlier, C. (2002). The CONCEPT Project – Applying

Source Code Analysis to Reduce Information Complexity of Static and

Dynamic Visualization Techniques. Proceedings of the First International

Workshop on Visualization Software for Understanding and Analysis. UK:

IEEE Computer Society. 99-99.

Saemu, J., Prompoon, N. (2004). Tool and guidelines support for Capability Maturity

Model's software subcontract management. Proceedings of the 11th Asia-

Pacific Software Engineering Conference. 158–165.

Sefika, M., Sane A. and Campbellk, R.H. (1996). Monitoring Compliance of a

Software System with its High-Level Design Models. Proceedings of

Eighteen International Conference of Software Engineering. March 25-29.

Germany: IEEE Computer Society. 387-396.

Singer, J. and Vinson, N.G. (2002). Ethical Issues in Emperical Studies of Software

Engineering. IEEE Transactions on Software Engineering. 28(12): 1171-

1180).

 164

Small, A.W.; Downey, E.A. (2001). Managing Change: Some Important Aspects.

Proceedings of the Change Management and the New Industrial Revolution

(IEMC’01). October 7-9. USA: IEEE Computer Society. 50-57.

Sneed, H.M. (2001). Impact Analysis of maintenance tasks for a distributed object-

oriented system, Proceedings of the International Conference on Software

Maintenance. November 6-10. Italy: IEEE Computer Society. 180-189.

Sommerville, I. (2004). Software Engineering. Seventh Ed. USA: Addison-Wesley

Publishing Company.

Sulaiman, S. (2004). A Document-Like Software Visualization Method for Effective

Cognition of C-Based Software Systems, Universiti Teknologi Malaysia:

Ph.D. Thesis.

Teng, Q., Chen, X., Zhao, X., Zhu, W. and Zhang L. (2004). Extraction and

visualization of architectural structure based on cross references among

object files. Proceedings of the 28th Annual International Conference on

Computer Software and Applications. September 27-30. Hong Kong: IEEE

Computer Society. 508-513.

Tonella, P. (2003). Using a Concept Lattice of Decomposition Slices for Program

Understanding and Impact Analysis, IEEE Trans. Software Engineering.

2(6): 495-509.

Turver, R.J. and Munro, M. (1994). An Early impact analysis technique for software

maintenance, Journal of Software Maintenance: Research and Practice. 6

(1): 35-52.

Tvedt, R.T., Costa, P., Lindvall, M. (2002). Does the Code Match the Design? A

Process for Architecture Evaluation. Proceedings of the Eighteen

International Conference on Software Maintenance. October 4-6. Canada:

IEEE Computer Society. 393-401.

 165

Tvedt, R.T., Lindvall, M. and Costa, P. (2003). A Process for Software Architecture

Evaluation Using Metrics. Proceedings of the 27th Annual NASA

Goddard/IEEE Software Engineering Workshop. December 5-6. Maryland:

NASA Goddard/IEEE Software. 175-182.

Wan Kadir, W.N. (2005). Business Rule-Driven Object-Oriented Design. University

of Manchester: Ph.D. Thesis.

Webster, P.B., Oliveira, K.M. and Anquetil, N. (2005). A Risk Taxonomy Proposal

for Software Maintenance. Proceedings of the 21st IEEE International

Conference on Software Maintenance. 453-461.

Wei, Y., Zhang, S., Zhong, F. (2003). A Meta-Model for Large-Scale Software

System. International Conference on Systems, Man and Cybernatics. October

5-8. USA: IEEE Computer Society. 501-505.

Weiser, M. (1984). Program slicing. IEEE Transactions on Software Engineering.

10(4): 352-357.

White, B.A. (2000). Software Configuration Management Strategies and Rational

ClearCase. USA: Addison-Wesley.

Wilde, N., Buckellew, M., Page, H., Rajlich, V. (2001). A case study of feature

location in unstructured legacy Fortran code. Proceedings of the Fifth

European Conference on Software Maintenance and Reengineering. March

14-16. Portugal: IEEE Computer Society. 68-76.

Wilde, N., Casey, C. (1996). Early Field Experience with the Software

Reconnaissance Technique for Program Comprehension. Proceedings of the

Third Workshop Conference of Reverse Engineering, November 8-10. USA:

IEEE Computer Society. 270-276.

 166

Wilde, N., Gomez, J.A., Gust, T. and Strasburg D. (1992). Locating User

Functionality in Old Code. Proceedings of International Conference on

Software Maintenance. November 9-12. Sweden: IEEE Computer Society.

200-205.

Snelting G. (2000). Understanding Class Hierarchies Using Concept Analysis. ACM

Transactions on Programming Languages and Systems. 22(3):123-135.

Walrad, C. and Strom, D. (2002). The Importance of Branching Models in SCM.

Journal of Computer. 35(9): 31-38.

Wilkie, F.G. and Kitchenham, B.A. (1998). Coupling Measures and Change Ripples

in C++ Application Software. Proceedings of the Third International

Conference on Empirical Assessment and Evaluation in Software

Engineering. April 12-14. UK: IEEE Computer Society. 112-130.

Zelkowitz, M.V. and Wallace. D.R. (1998). Experimental Models for Validating

Technology. IEEE Computer. 31(2): 23-31.

Zhoa, J. (2002). Change impact analysis to support architectural evolution. Software

Maintenance and Evolution: Research and Practice. 14: 317-333.

