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ABSTRACT 

 
 
 
 

The need for software modifications especially during the maintenance phase, 

is inevitable and remains the most costly. A major problem to software maintainers is 

that seemingly small changes can ripple through the entire system to cause major 

unintended impacts. As a result, prior to performing the actual change, maintainers 

need mechanisms in order to understand and estimate how a change will affect the 

rest of the system. Current approaches to software evolution focus primarily on the 

limited scope of change impact analysis e.g. code. This research is based on the 

premise that a more effective solution to manage system evolution can be achieved 

by considering a traceability approach to pre-determine the potential effects of 

change. The aim of this research is to establish a software traceability model that can 

support change impact analysis. It identifies the potential effect to software 

components in the system that does not lie solely on code but extends to other high 

level components such as design and requirements. As such, in this research, 

modification to software is therefore considered as being driven by both high level 

and low level software components. This research applies a comprehensive static and 

dynamic analysis to provide better impact infrastructures. The main research 

contribution in this thesis can be seen in the ability to provide a new software 

traceability approach that supports both top-down and bottom-up tracing. In further 

proving the concept, some software prototype tools were developed to automate and 

support the potential effects. The significant achievement of the model was then 

demonstrated using a case study on a non-trivial industrial application software, and 

evaluated via a controlled experiment. The results when compared against existing 

benchmark proved to be significant and revealed some remarkable achievements in 

its objective to determine change impacts. 
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ABSTRAK 

 
 
 

Keperluan terhadap pengubahsuaian perisian terutama pada fasa 

penyenggaraan adalah suatu yang tidak dapat dielakkan dan masih melibatkan kos 

yang tinggi. Permasalahan utama kepada penyenggara perisian ialah pindaan yang 

nampaknya agak kecil boleh merebak ke seluruh sistem lalu menyebabkan impak 

luar jangka yang besar. Lantaran itu, sebelum kerja penyenggaraan dilakukan, 

penyenggara perlukan beberapa mekanisma untuk memahami dan menganggar 

bagaimana pindaan akan menjejaskan bahagian lain dalam sistem. Pendekatan 

semasa terhadap evolusi perisian lebih memfokuskan kepada skop analisa impak 

pindaan yang terhad, contohnya kod sumber. Kajian ini berasaskan kepada landasan 

iaitu penyelesaian efektif untuk menangani evolusi sistem boleh dicapai dengan 

mengambilkira pendekatan jejakan bagi mengenalpasti terlebih dahulu impak 

pindaan berpotensi. Tujuan kajian ini ialah untuk menghasilkan satu model jejakan 

perisian yang boleh membantu menganalisa impak pindaan. Ia mengenalpasti kesan 

berpotensi terhadap komponen perisian dalam sistem yang tidak terletak semata-mata 

kepada kod tetapi meluas kepada komponen aras tinggi seperti rekabentuk dan 

keperluan. Oleh itu dalam kajian ini, pengubahsuaian terhadap perisian boleh 

diambilkira dengan melibatkan kedua-dua komponen perisian aras tinggi dan aras 

rendah. Penyelidikan ini menggunakan analisa statik dan dinamik yang komprehensif 

untuk menyediakan infrastruktur impak yang lebih baik. Sumbangan utama kajian 

dalam tesis ini boleh dilihat dari segi keupayaan menyediakan satu pendekatan 

perisian jejakan baru yang membantu kedua-dua jejakan atas-bawah dan bawah-atas. 

Bagi membuktikan lagi pengesahan konsep, beberapa alatan prototaip perisian dibina 

untuk mengautomasi dan membantu kesan berpotensi. Pencapaiannya yang 

signifikan kemudian dipersembahkan dengan menggunakan satu kajian kes yang 

merupakan satu aplikasi perisian berasaskan industri dan dinilai melalui ekperimen 

terkawal. Keputusan yang diperolehi apabila dibandingkan dengan penanda aras 

terbukti ianya signifikan dan memperlihatkan beberapa pencapaian yang 

memberangsangkan dalam matlamatnya untuk mengenalpasti impak pindaan. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 

 
 
 
1.1 Introduction 
 
 

This chapter provides an introduction to the research work presented in this 

thesis.  It describes the research overview that motivates the introduction of a 

document-based software traceability to support change impact analysis of object-

oriented software.  This is followed by a discussion on the research background, 

problem statements, objectives and importance of the study.  Finally, it briefly 

explains the scope of work and the structure of the thesis. 

 
 
 
 
1.2 Introduction to Software Evolution 
 
 

It is unanimously accepted that software must be continuously changing in 

order for the software to remain relevant in use.  The need for changing a software 

system to keep it aligned with the users’ need and expectations has long been 

recognized within the software engineering community.  Due to inherent dynamic 

nature of business application, software evolution is seen as the long term result of 

software maintenance.  In the current decade, the term software evolution is often 

used as a synonym for software maintenance, broadly defined as modification of a 

software product after delivery (IEEE, 1998a), and both software maintenance and 

evolution assume changing the code as their basic operation.  
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The term software evolution lacks a standard definition, but some researchers 

and practitioners use it as a preferable substitute for maintenance (Bennett and 

Rajlich, 2000).  In short, one could say that the evolution of a software system is the 

results of observing the changes made to the system components over a long time 

span.  Consequently, the study of software evolution has aimed at analyzing the 

process of continuous change to discover trends and patterns, such as for example, 

the hypothesis that software evolution behaves as feedback processes (Lehman and 

Ramil, 2000).   

 
 

The maintenance process describes how to organize maintenance activities. 

Kitchenham et al. (1999) identify a number of domain factors believed to influence 

the maintenance process, namely i) maintenance activity type, ii) product, iii) 

peopleware and iv) process organization. Maintenance activity type covers the 

corrections, requirements changes and implementation changes. Product deals with 

the size and product composition. Peopleware describes the skills and user requests. 

Process organization manages the group and engineering resources that include 

methods, tools and technology. 

 
 

Software maintenance is basically triggered by a change request.  Change 

requests are typically raised by the clients or internal development staff for the 

demand to do software modification.  Traditionally, software modification can be 

classified into maintenance types that include corrective, adaptive, perfective and 

preventive.  Chapin et al. (2001) view software evolution in slightly different 

perspective. They use the classification based on maintainers’ activity of mutually 

exclusive software evolution clusters ranging from the support interface, 

documentation, software properties and business rules. Each cluster is characterized 

by some maintenance types.  They conclude that different types of maintenance or 

evolution may have different impact on software and business processes.  

 
 

For whatever reason of modification it may be, the real world software 

systems require continuous changes and enhancements to satisfy new and changed 

user requirements and expectations, to adapt to new and emerging business models 

and organizations, to adhere to changing legislation, to cope with technology 
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innovation and to preserve the system structures from deterioration (Canfora, 2004).  

Webster et al. (2005) in their study on risk management for software maintenance 

projects propose some taxonomy of risk factors that cover requirements, design, 

code, engineering specialities and legacy. Some common risk factors identified are 

incomplete specifications and limited understanding, high level complexity of the 

required change, direct or indirect impacts on current system’s functionalities, and 

inadequate test planning and preparation. The fact about software change is that the 

changes made by user requirements and operations are propagated onto software 

system (Bohner, 2002).  These changes will require a substantial extension to both 

the database and code. As change is the basic building block of software evolution, 

software change is considered a key research challenge in software engineering 

(Bennett and Rajlich, 2000).  

 
 

A large portion of total lifecycle cost is devoted to introduce new 

requirements and remove or change the existing software components (Ramesh and 

Jarke, 2001).  This intrinsically requires appropriate software traceability to manage 

it. However, there are at least three problems observed by the investigation of the 

current software traceability approaches.  First, most of the Computer Aided 

Software Engineering (CASE) tools and applications more focus on the high level 

software and yet are directly applicable to software development rather than 

maintenance.  While, the low level software e.g. code, is given less priority and very 

often left to users to decide.  This makes the software change impact analysis 

extremely difficult to manage at both levels. Secondly, there exists some research 

works (Jang et al., 2001; Lee et al, 2000; Tonella, 2003) on change impact analysis 

but the majority confine their solution at the limited space i.e. code, although more 

evolvable software can be achieved at the meta model level.  Finally, no proper 

visibility being made by the ripple effects of a proposed change across different 

levels of workproduct.  If this can be achieved, a more concrete estimation can be 

predicted that can support change decision, cost estimation and schedule plan. 

 
 

The key point to the above solutions is the software traceability.  Software 

traceability provides a platform as to how the relationships within software can be 

established and how the change impact can be implemented.  All these issues require 
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an extensive study on the existing traceability and impact analysis in the existing 

software system and research works before a new model and approach can be 

decided. 

 
 
 
 
1.3 Background of the Problem 
 
 

Software traceability is fundamental to both software development and 

maintenance of large systems.  It shows the ability to trace information from various 

resources that requires special skill and mechanism to manage it.  In this research 

problem, it focuses on software traceability to support change impact analysis.  

Following are some major issues to the research problems. 

 
 
 
 
1.3.1 Broader Maintenance Perspective 
 
 

Many researchers have been working on the code-based maintenance for their 

software evolution as mentioned earlier.  This type of maintenance is more focused 

but limited as it deals with a single problem, i.e. source code.  However, managing 

software change at a restricted level is not enough to appreciate the actual impacts in 

the software system.  Other levels of software lifecycle such as requirements, testing 

and design should also be considered as they are parts of the software system.  To 

observe the impact at the broader perspective is considerably hard as it involves 

software traceability within and across different workproducts.  

 
 

Software workproducts refer to explicit products of software as appeared in 

software documention. For instance, test plans, test cases, test logs and test results 

are the workproducts of testing document. Architectural design model and detailed 

design model are the workproducts of design document. Code is by itself a 

workproduct of source code. Requirements and specifications are the workproducts 

of software requirements specification document. Thus, at the broader perspective of 

change impact, it observes the impact within and across different workproducts such 
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within code and from code to design, specification, etc. Within a workproduct, the 

software components may be decomposed further into smaller elements, called 

artifacts. For instance, code can be decomposed into classes, methods, attributes and 

variables of software artifacts. In this thesis the term components and artifacts are 

sometimes used interchangeably which refer to the same thing.  

 
 

The fact about this traceability approach is that if the component relationships 

are too coarse, they must be decomposed to understand complex relationships.  On 

the other hand, if they are too granular, it is difficult to reconstruct them into more 

recognized, easily understood software components.  However, it is perceived that 

there should be some tradeoffs between these two granularities in order to observe 

the ripple effects of change. 

 
 
 
 
1.3.2 Effective Change Communication 
 
 

There is a need to communicate and share information within software 

development environment e.g. between software developers and management (Lu 

and Yali, 2003).  In Software Configuration Management (SCM) for example, the 

Change Control Board (CCB) needs to evaluate change requests before the actual 

change is implemented.  This requires CCB to consult other staff such as 

maintainers, software engineers and project manager.  A maintainer himself needs to 

examine among other tasks how much and which part of the program modules will 

be affected for change and regression testing, its complexity and what types of test 

cases and requirements will be involved.  

 
 

The software engineers need to examine the types of software components to 

use and more critically to identify or locate the right affected software components 

(Bohner, 2002).  The software manager is more concerned about the cost, duration 

and staffing before a change request is accepted.  This certainly requires a special 

repository to handle software components with appropriate links to various levels in 

software lifecycle.  Some of this information is not readily available in any CASE 
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tools that require the software development staff to manually explore the major 

analyses in some existing software models and documentations. 

 
 
 
 
1.3.3 Importance of System Documentation 
 
 

To established organizations with software engineering practices in place, 

software engineers always refer to system documentation as an important 

instrumentation for communication (IEEE, 1998). The high level management finds 

documentation very useful when communicating with the low level developers or 

vice-versa.  Despite this, many software engineers are still reluctant to make full use 

of the system documentation particularly to deal with software evolution (Nam et al., 

2004).  To them, documentation is abstract, seldom up-to-date and time consuming.  

However, many still believe that documentation is more significant if the software it 

documents is more visible and traceable to other parts of software components.  For 

example, within documentation the user can visualize the impacted requirements and 

design classes in the database repository. 

 
 
 
 
1.3.4 Incomplete Maintenance Supported CASE Tools 
 
 

Many CASE (Computer Aided Software Engineering) tools that exist today 

are aimed at addressing the issues of software development rather than software 

maintenance (Pressman, 2004).  Some claim that their tools can support both 

software development and maintenance, however their applications are mainly 

centered around managing, organizing and controlling the overall system 

components, very few focus on the impact analysis of change requests.  Deraman 

(1998) relates the current CASE tools as applications that do provide special upfront 

consistency checking of software components during development but tend to ignore 

its equally important relationships with code as it proceeds towards development and 

maintenance. The traceability relationships between code and its upper 



 7

functionalities are not explicitly defined and very often left to software engineers to 

decide. 

 
 

From the above scenarios, there is a need to integrate both the high level and 

low level software abstracts such that the effects of component traceability can be 

applied in the system thoroughly.  Two main issues need to be addressed here firstly, 

the software traceability within a software workproduct and secondly, the traceability 

across many workproducts.  Software traceability in this context reflects the 

underlying infrastructures of ripple effects of change that attempts to incorporate 

both the techniques and models in implementing a change impact. 

 
 
 
 
1.4 Statement of the Problem 
 
 

This research is intended to deal with the problems related to requirements 

traceability for change impact analysis as discussed in Section 1.2.  The main 

question is “How to produce an effective software traceability model and approach 

that can integrate the software components at different component levels to support 

change impact analysis of software maintenance?” 

 
 
The sub questions of the main research question are as follows: 

i. Why the current maintenance models, approaches and tools are still not 

able to support potential effects of change impact in the software system? 

ii. What is the best way to capture the potential effects of software 

components in the system? 

iii. How to measure the potential effects of a proposed change? 

iv. How to validate the usefulness of software traceability for software 

maintenance? 

 
 

Sub question (i) will be answered via literature reviews in Chapter 2.  This 

chapter will provide a special attention to explore the software evolution, its models 

and traceability issues.  From the impact analysis perspective, this chapter will 
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present a study on the detailed traceability process, the techniques and existing tools 

used.  The strengths and drawbacks are drawn based on a comparison framework in 

order to propose a new model and approach to support change impact analysis.  

 
 

The above study provides some leverage to answer the sub question (ii).  

Chapter 3 describes a design methodology and evaluation plan before the research is 

carried out.  Sub question (iii) will be counter balanced by a solution to measure the 

potential effects.  The sub questions (ii) and (iii) will be further explained in the 

traceability modeling and implementation as described in Chapter 4 and 5.  Lastly, 

sub question (iv) leads to the evaluation of the model and approach quantitatively 

and qualitatively as described in Chapter 6.  

 
 
 
 
1.5 Objectives of the Study 
 
 

The above problem statement serves as a premise to establish a set of specific 

objectives that will constitute major milestones of this research. 

 
 
To this end, the objectives of this research are listed as follows 

 

1) To build a new software traceability model to support change impact 

analysis that includes requirements, test cases, design and code. 

2) To establish a software traceability approach and mechanism that cover 

features including artifact dependencies, ripple effects, granularity and 

metrics. 

3) To develop software supporting tools to support the proposed model and 

approach. 

4) To demonstrate and evaluate the practicability of the software traceability 

model and approach to support change impact analysis. 
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1.6 Importance of the Study  
 
 

Software maintenance is recognized as the most expensive phase of the 

software lifecycle, with typical estimate of more than sixty percent of all effort 

expended by a development organization, and the percentage continues to rise as 

more software is produced (Han, 2001).  As software changes are introduced, 

avoiding defects becomes increasingly labor intensive.  Due to lack of advanced 

technologies, methods and tools, doing software modification has been difficult, 

tedious, time consuming and error prone.  Software maintainers need mechanisms to 

understand and solve maintenance tasks e.g. how a change impact analysis can be 

made for a software system.  

 
 

Bohner and Arnold (1996) describes a benefit of change impact analysis as  

 

 …by identifying potential impacts before making a change, we can greatly reduce 

the risks of embarking on a costly change because the cost of unexpected problems 

generally increases with the lateness of their discovery.  

 
 

Clearly, the software change impact is an important activity that needs to be 

explored in order to improve software evolution and traceability is seen as a core 

infrastructure to support impact analysis. 

 
 
 
 
1.7 Scope of Work 
 
 

Software traceability can be applied to some applications such as 

consistency-checking (Lucca et al., 2002) defect tracking (McConnel, 1997), cross 

referencing (Teng et al., 2004) and reuse (Ramesh and Jarke, 2001).  The techniques 

and approaches used may differ from one another due to different objectives and 

feature requirements.  Some of these approaches are geared toward system 

development while others are designed for system evolution. 
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In this scope of research, it needs to explore a software traceability 

specifically to support a change impact analysis within which it should be able to 

capture the impacts of change requests.  The models and techniques used should 

allow the implementation of impacts across different workproducts.  It needs to 

capture the software knowledge from the latest correct version of a complete system 

prior to implementation.  It is assumed that a new traceability approach needs to 

develop some reverse engineering tools if ones are not available in the research 

community to support and simplify the capturing process.  

 
 

The term a complete system here may refer to a very large scope as it may 

govern all the software models including the business model, specification, high 

level design, documentation, code, etc.  These models are comprised within the 

software lifecycle of software specification, design, coding and testing.  However, 

for the sake of research and implementation, this work will focus on some relevant 

information that includes a set of functional requirements, test cases, design and code 

as follows.  These software components or artifacts are seen to be the software 

development baseline (MIL-STD-498, 2005).  Software development baseline 

reflects the software products that are used and confined to the internal development 

staff rather than the external users or clients to support software evolution.  Thus, this 

baseline model is chosen to represent a smaller scope of a large complete system. 

 
 

The new work should be derived from a set of system documentation 

adhering to a certain software engineering standard e.g. MIL-STD-498 (MIL-STD-

498, 2005).  Nevertheless, it should not be tied up with the documentation 

environment as the main focus is not on the traceability and impact in system 

documentation but rather to its information contents.  With simple interface (not 

within this scope) it should allow system documentation to view the traceable 

software components as a result of implementing software traceability system.  

 
 

In this research approach, the scope is decided on object-oriented system to 

address the change impact analysis.  It should be noted that this research is not 

concerned with correcting the software components but only reporting them.  The 
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software engineers or maintainers should consider these results as an assistance to 

facilitate their initial prediction of change impact.  

 
 
 
 
1.8 Thesis Outline 
 
 

This thesis covers some discussions on the specific issues associated to 

software traceability for impact analysis and understanding how this new research is 

carried out.  The thesis is organized in the following outline. 

 
 

Chapter 2:  Discusses the literature review of the software evolution and 

traceability.  Few areas of interest are identified from which all the related 

issues, works and approaches are highlighted.  This chapter also discusses 

some techniques of impact analysis and software traceability. Next, is a 

discussion on some existing models and approaches by making a comparative 

study based on a defined comparison framework. This leads to improvement 

opportunities that form a basis to develop a new proposed software 

traceability model. 

 
 

Chapter 3:  Provides a research methodology that describes the research 

design and formulation of research problems and validation considerations.  

This chapter leads to an overview of data gathering and analysis including 

benchmarking. It is followed by some research assumptions. 

 
 

Chapter 4:  Discusses the detailed model of the proposed software 

traceability for impact analysis.  A set of formal notations are used to 

represent the conceptual model of the software traceability.  It is followed by 

some approaches and mechanisms to achieve the model specifications. 

 
 

Chapter 5:  Presents the design and functionality of some developed tools to 

support the software traceability model. This includes the implementation of 

the design and component tools. 
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Chapter 6:  The software traceability model is evaluated for its effectiveness, 

usability and accuracy.  The evaluation criteria and methods are described 

and implemented on the model that includes modeling validation, a case 

study and experiment. This research performs evaluation based on 

quantitative and qualitative results. Quantitative results are checked against a 

benchmark set forth and qualitative results are collected based on user 

perception and comparative study made on the existing models and 

approaches. 

 
 

Chapter 7:  The statements on the research achievements, contributions and 

conclusion of the thesis are presented in this chapter.   This is followed by the 

research limitations and suggestions for future work. 
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