NICKEL OXIDE BASED CATALYSTS FOR THE SIMULTANEOUS REACTIONS OF METHANATION AND DESULFURIZATION

CHING KUAN YONG

UNIVERSITI TEKNOLOGI MALAYSIA

NICKEL OXIDE BASED CATALYSTS FOR THE SIMULTANEOUS REACTIONS OF METHANATION AND DESULFURIZATION

CHING KUAN YONG

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Chemistry)

> Faculty of Science Universiti Teknologi Malaysia

> > NOVEMBER 2008

To my beloved father, mother, brothers and sisters,

who set me on my path.

ACKNOWLEDGEMENT

The development of this work was made possible above all through the expert guidance and encouragement of Professor Dr. Wan Azelee Wan Abu Bakar as my supervisor, and Associate Professor Dr. Mohammad Yusuf Bin Othman as my co-supervisor. I would like to express my sincere and deepest thanks for their invaluable advice and also being understanding and patience in solving problems until the completion of this thesis.

Special thanks dedicated to all who have helped me in this research: Associate Profesor Dr. Nor Aziah Binti Buang for her sincere helps in carrying out my research, Mr. Junaidi, Mr. Mokhtar, Mr. Hamzah, Mr. Hairol, Mrs. Nurul, Mr Jaafar Raji (Department of Physics), Mr. Zainal Abidin, Mr. Jefri (Faculty of Mechanical), Mr. Lim Kheng Wei (Institute of Ibnu Sina) and Mr. Said Ghani (Universiti Kebangsaan Malaysia). I am very grateful for their help in my laboratory works.

I also thank dozens of others – lecturers, supporting staffs, Department of Chemistry and my fellow friends who contributed in many ways to my research. I am grateful to Universiti Teknologi Malaysia and Ministry of Science, Technology and Innovation Malaysia for financial support.

Heartiest thanks are extended to my beloved family and Mr. Lau Kwan Yiew, who support me thickly and sweeten my life. Thanks to the love pouring into my life.

ABSTRACT

Malaysian crude natural gas is categorized as a sour gas due to the contamination of carbon dioxide (CO_2) and hydrogen sulfide (H_2S). Recently, the removal of these sour gases via chemical conversion technique becomes the most promising technique. The objective of this novel catalyst development is to achieve both low temperature and high conversion of sour gases to be applicable in gas industry. The advantage of catalytic technology is the utilization of CO₂ present in the production of methane gas. Supported mixed metal oxide catalysts were prepared by wetness impregnation method for the in-situ reactions of H_2S desulfurization and CO_2 methanation from ambient temperature up to 300°C. Fe/ Co/ Ni (10: 30: 60)-Al₂O₃ and Pr/ Co/ Ni (5: 35: 60)-Al₂O₃ catalysts were revealed as the most potential resulted from the catalytic activity screening by Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography (GC). Results showed that the conversion of H_2S to elemental sulfur over the catalysts was achieved 100% even around 250°C. Methanation of CO_2 in the presence of H_2S yielded 2.9% of CH_4 over Fe/ Co/ Ni (10: 30: 60)-Al₂O₃ catalyst and 6.1% of CH₄ over Pr/ Co/ Ni (5: 35: 60)-Al₂O₃ catalyst at maximum studied temperature of 300°C. X-ray Photoelectron Spectroscopy (XPS) revealed Ni₂O₃ and Fe₃O₄ as the surface active components on the Fe/ Co/ Ni (10: 30: 60)-Al₂O₃ catalyst, while Ni₂O₃ and Co₃O₄ on the Pr/ Co/ Ni (5: 35: 60)-Al₂O₃ catalyst. X-ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) showed that the supported catalysts are amorphous in structure. Results from Energy Dispersive X-ray Analysis (EDX) indicated the presence of 2.7% and 0.9% of sulfur on the spent Fe/ Co/ Ni (10: 30: 60)-Al₂O₃ and Pr/ Co/ Ni (5: 35: 60)-Al₂O₃ catalysts, respectively. There was 5.5% reduction of surface area over the spent Fe/ Co/ Ni (10: 30: 60)-Al₂O₃ catalyst characterized by Nitrogen Adsorption analysis. Meanwhile, there was 8.6% increment of surface area over the spent Pr/ Co/ Ni (5: 35: 60)-Al₂O₃ catalyst, which would explain the dramatic increased of catalytic performance over this catalyst at maximum studied temperature of 300°C. Characterization by FTIR and Thermogravimetry Analysis-Differential Thermal Analysis (TGA-DTA) revealed the existence of residue of nitrate and surface hydroxyl compounds on the catalysts. The aim to obtain high H_2S desulfurization rate at low temperature was achieved. However, improvement is still needed for the CO_2 methanation reaction at low temperature in the presence of H_2S .

ABSTRAK

Gas asli Malaysia tergolong sebagai gas masam disebabkan kewujudan gas karbon dioksida (CO_2) dan hidrogen sulfida (H_2S). Kebelakangan ini, penyingkiran gas-gas masam ini melalui kaedah penukaran kimia merupakan kaedah yang paling Pembangunan mangkin baru ini bertujuan untuk mencapai peratus berkesan. penukaran gas masam yang tinggi pada suhu yang sangat rendah, supaya dapat diaplikasikan di dalam industri gas asli. Kebaikan teknologi pemangkinan adalah menukarkan gas CO₂ yang sedia ada untuk penghasilan gas metana. Mangkin yang terdiri daripada campuran logam oksida berpenyokong disediakan dengan cara wetness impregnation untuk tindak balas penyahsulfuran H_2S dan metanasi CO_2 secara in-situ dari suhu bilik hingga 300°C. Mangkin Fe/ Co/ Ni (10: 30: 60)-Al₂O₃ dan Pr/ Co/ Ni (5: 35: 60)-Al₂O₃ ditentukan sebagai mangkin yang paling berpotensi hasil daripada ujian aktiviti pemangkinan dengan menggunakan FTIR dan GC. Hasil ujian menunjukkan penyahsulfuran H₂S mencapai 100% pada suhu sekitar 250°C. Tindak balas metanasi CO_2 dalam kehadiran H_2S menghasilkan 2.9% CH_4 dengan menggunakan mangkin Fe/ Co/ Ni (10: 30: 60)-Al₂O₃ dan 6.1% CH₄ dengan menggunakan mangkin Pr/ Co/ Ni (5: 35: 60)-Al₂O₃ pada suhu ujian maksimum 300°C. XPS dapat mengesan Ni₂O₃ dan Fe₃O₄ sebagai spesies permukaan yang aktif pada mangkin Fe/ Co/ Ni (10: 30: 60)-Al₂O₃. Di samping itu, Ni₂O₃ and Co₃O₄ dikesan sebagai spesies aktif pada mangkin Pr/ Co/ Ni (5: 35: 60)-Al₂O₃. Keputusan XRD dan FESEM mempamerkan struktur amorfus pada kedua-dua mangkin ini. Analisis EDX pada mangkin Fe/ Co/ Ni (10: 30: 60)-Al₂O₃ dan Pr/ Co/ Ni (5: 35: 60)-Al₂O₃ yang selepas ujian menunjukkan kehadiran sulfur sebanyak 2.7% dan 0.9% masing-masing. Daripada analisis Penjerapan Nitrogen, didapati sebanyak 5.5% penurunan pada luas permukaan mangkin Fe/ Co/ Ni (10: 30: 60)-Al₂O₃ selepas ujian. Peningkatan luas permukaan sebanyak 8.6% berlaku pada mangkin Pr/ Co/ Ni (5: 35: 60)-Al₂O₃ selepas ujian. Fenomena ini mungkin menerangkan peningkatan aktiviti pemangkinan secara mendadak oleh mangkin Pr/ Co/ Ni (5: 35: 60)-Al₂O₃ pada suhu tindak balas 300° C. Pencirian mangkin menggunakan FTIR dan TGA-DTA menunjukkan bahawa masih terdapat kehadiran sisa-sisa nitrat dan hidroksi pada kedua-dua mangkin ini. Tujuan untuk mendapatkan peratus penyingkiran gas H_2S yang tinggi pada suhu rendah telah dicapai. Walaubagaimanapun, usaha masih diperlukan untuk meningkatkan tindak balas metanasi pada suhu rendah dengan kehadiran H₂S.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	xviii
	LIST OF APPENDICES	XX
Ι	INTRODUCTION	1
	1.1 Natural Gas	1
	1.2 Research Background and Problem	
	Statement	2
	1.3 Current Technologies Used in	
	Purification of Natural Gas	5
	1.4 Objectives of the Research	9
	1.5 Scope of the Research	9
II	LITERATURE REVIEW	11
	2.1 Methanation Catalysts	11
	2.2 Supports for the Methanation Catalysts	20

III	EXPERIMENTAL	24
	3.1 Chemicals and Reagents	24
	3.2 Preparation of Catalysts	25
	3.3 Catalytic Activity Measurements	26
	3.3.1 Catalytic Screening by Fourier	
	Transform Infrared Spectroscopy	
	(FTIR)	28
	3.3.2 Detection of Methane Formation	
	by Gas Chromatography (GC)	29
	3.4 Characterization of Catalysts	31
	3.4.1 X-ray Photoelectron Spectroscopy	
	(XPS)	31
	3.4.2 X-ray Diffraction (XRD)	32
	3.4.3 Field Emission Scanning Electron	
	Microscope-Energy Dispersive X-	
	ray Analysis (FESEM-EDX)	32
	3.4.4 Surface Area and Porosity	
	Adsorption Analysis	33
	3.4.5 Fourier Transform Infrared	
	Spectroscopy (FTIR)	34
	3.4.6 Thermogravimetry Analysis-	
	Diffrential Thermal Analysis	
	(TGA-DTA)	35
IV	RESULTS AND DISCUSSION	36
	4.1 Catalytic Activity Measurements	36
	4.1.1 Catalytic Screening of Alumina	
	Supported Nickel Oxide Based	
	Catalyst with One Dopant	36
	4.1.2 Catalytic Screening of Alumina	
	Supported Nickel Oxide Based	
	Catalyst with Two or More	
	Dopants	41

	4.1.3 Catalytic Screening of Alumina	
	Supported Copper Oxide Based	
	Catalyst with Nickel as Dopant	52
	4.1.4 Catalytic Screening of Catalyst on	
	Various Supports	55
4.2	Determination of CO ₂ / H ₂ Methanation	
	Reaction by Gas Chromatography (GC)	58
4.3	Characterization of Catalysts	62
	4.3.1 X-ray Photoelectron Spectroscopy	
	(XPS)	62
	4.3.1.1 Fe/ Co/ Ni (10: 30: 60)-	
	Al ₂ O ₃ Catalyst	62
	4.3.1.2 Pr/ Co/ Ni (5: 35: 60)-	
	Al ₂ O ₃ Catalyst	69
	4.3.2 X-ray Diffraction (XRD)	77
	4.3.2.1 Fe/ Co/ Ni (10: 30: 60)-	
	Al ₂ O ₃ Catalyst	77
	4.3.2.2 Pr/ Co/ Ni (5: 35: 60)-	
	Al ₂ O ₃ Catalyst	80
	4.3.3 Field Emission Scanning Electron	
	Microscope (FESEM)	82
	4.3.4 Energy Dispersive X-ray Analysis	
	(EDX)	85
	4.3.5 Surface Area and Porosity	
	Adsorption Analysis	89
	4.3.6 Fourier Transform Infrared	
	Spectroscopy (FTIR)	92
	4.3.6.1 Fe/ Co/ Ni (10: 30: 60)-	
	Al ₂ O ₃ Catalyst	93
	4.3.6.2 Pr/ Co/ Ni (5: 35: 60)-	
	Al ₂ O ₃ Catalyst	96

	4.3.7 Thermogravimetry Analysis-	
	Differential Thermal Analysis	
	(TGA-DTA)	98
V	CONCLUSIONS AND	
	RECOMMENDATIONS	101
	5.1 Conclusions	101
	5.2 Recommendations	102
	REFERENCES	103
	APPENDICES A-G	116-124

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Chemical composition of crude natural gas from Telaga Bergading, Petronas Carigali Sdn. Bhd.	3
1.2	General chemical composition of crude natural gas from United States	3
3.1	Chemicals used for the preparation of catalysts	24
3.2	Various supported mixed metal oxide catalysts prepared	26
3.3	Reactant gas parameters for catalytic activity measurements in simulation condition, which is closed to the real composition	28
3.4	Infrared absorption bands for H ₂ S, CO, CO ₂ , CH ₄ and OH	29
3.5	IUPAC classification of pores	34
4.1	Comparison of CO_2 conversion and H_2S desulfurization on various Al_2O_3 supported NiO based catalysts with one dopant	36
4.2	Comparison of CO_2 conversion and H_2S desulfurization on various Al_2O_3 supported NiO based catalysts with two or more dopants	41
4.3	Testing results of CO ₂ / H ₂ methanation reaction during simultaneous reactions condition over various alumina supported catalysts	59
4.4	Parameters obtained by deconvolution of XPS spectra for Ni $(2p)$ peaks in fresh Fe/ Co/ Ni $(10: 30: 60)$ -Al ₂ O ₃ catalyst	64
4.5	Parameters obtained by deconvolution of XPS spectra for Fe $(2p)$ peaks in fresh Fe/ Co/ Ni $(10: 30: 60)$ -Al ₂ O ₃ catalyst	66

4.6	Parameters obtained by deconvolution of XPS spectra for Al $(2p)$ peaks in fresh Fe/ Co/ Ni $(10: 30: 60)$ -Al ₂ O ₃ catalyst	67
4.7	Parameters obtained by deconvolution of XPS spectra for O (1s) peaks in fresh Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst	68
4.8	Parameters obtained by deconvolution of XPS spectra for Ni (2 <i>p</i>) peaks in fresh and spent Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalysts	70
4.9	Parameters obtained by deconvolution of XPS spectra for Co $(2p)$ peaks in fresh and spent Pr/ Co Ni (5: 35: 60)-Al ₂ O ₃ catalysts	73
4.10	Parameters obtained by deconvolution of XPS spectra for Al (2 <i>p</i>) peaks in fresh and spent Pr/ Co Ni (5: 35: 60)-Al ₂ O ₃ catalysts	74
4.11	Parameters obtained by deconvolution of XPS spectra for O (1s) peaks in fresh and spent Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalysts	75
4.12	Peaks assignment in the X-ray diffraction patterns of Fe/Co/Ni (10: 30: 60)-Al ₂ O ₃ catalyst calcined at 900°C for 5 hours (d = distance between two lattice planes)	79
4.13	Peaks assignment in the X-ray diffraction patterns of Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst calcined at 900°C for 5 hours (d = distance between two lattice planes)	80
4.14	Comparison of elemental composition in the fresh and spent Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalysts, and Fe/ Co/ Ni (10: 30: 60) catalyst with different supports through EDX analysis	86
4.15	Comparison of elemental composition on the fresh and spent $Pr/Co/Ni$ (5: 35: 60)- Al_2O_3 catalysts, and $Pr/Co/Ni$ (5: 35: 60) catalyst over different supports through EDX analysis	88
4.16	BET surface area and BJH desorption average pore diameter of the fresh and spent forms of Fe/ Co/ Ni (10: $30: 60$)-Al ₂ O ₃ and Pr/ Co/ Ni (5: $35: 60$)-Al ₂ O ₃ catalysts	89
4.17	FTIR analysis for the fresh and spent catalysts of Fe/ Co/ Ni (10: $30: 60$)-Al ₂ O ₃	94

xii

4.18	FTIR analysis for the fresh and spent catalysts of Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃	97
4.19	Summary of TGA-DTA analysis for the fresh and spent Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ and Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalysts	99

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
3.1	Schematic diagram of preparation of sample glass tube for home-built micro reactor	27
3.2	Schematic diagram of home-built micro reactor	27
3.3	Calibration Graph of Standard 99.0% Methane Gas	30
4.1	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with cobalt with the ratio of Co: Ni = 40: 60	37
4.2	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with manganese with the ratio of Mn: Ni = 40: 60	38
4.3	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with copper with the ratio of Cu: Ni = 40: 60	39
4.4	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with praseodymium with the ratio of Pr: Ni = 40: 60	40
4.5	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with zirconia with the ratio of Zr: Ni = 40: 60	40
4.6	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with iron and cobalt with the ratio of Fe: Co: Ni = 5: 35: 60	42
4.7	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with iron and cobalt with the ratio of Fe: Co: Ni = 10: 30: 60	43

4.8	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with manganese and cobalt with the ratio of Mn: Co: Ni = 5: 35: 60	44
4.9	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with manganese and cobalt with the ratio of Mn: Co: Ni = 10: 30: 60	44
4.10	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with iron and manganese with the ratio of Fe: Mn: Ni = 5: 35: 60	45
4.11	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with iron and manganese with the ratio of Fe: Mn: Ni = 10: 30: 60	46
4.12	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with iron, manganese and cobalt with the ratio of Fe: Mn: Co: Ni = 5: 10: 25: 60	47
4.13	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with praseodymium and cobalt with the ratio of Pr: Co: Ni = 5: 35: 60	48
4.14	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with praseodymium and cobalt with the ratio of Pr: Co: Ni = 10: 30: 60	48
4.15	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with praseodymium and copper with the ratio of Pr: Cu: Ni = 5: 10: 85	49
4.16	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with praseodymium and copper with the ratio of Pr: Cu: Ni = 3: 7: 90	50
4.17	Catalytic screening of Al_2O_3 supported nickel oxide based catalyst doped with samarium and zirconium with the ratio of Sm: Zr: Ni = 5: 25: 70	50
4.18	FTIR spectrum of product gases obtained from catalytic screening of Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst during simultaneous reactions of CO ₂ methanation and H ₂ S desulfurization	52
4.19	Catalytic screening of alumina supported copper catalyst doped with nickel with the ratio of Ni: $Cu = 10$: 90	53

xv

4.20	Catalytic screening of alumina supported copper catalyst doped with cobalt and nickel with the ratio of Co: Ni: Cu = 5: 10: 85	54
4.21	Catalytic screening of alumina supported copper catalyst doped with manganese and nickel with the ratio of Mn: Ni: $Cu = 5$: 10: 85	54
4.22	Comparison of catalytic screening of Cu/ Ni catalyst with the ratio of 40: 60 on various supports (i) Al ₂ O ₃ beads, (ii) Cordierite, (iii) Photocatalytic ceramic beads (TiO ₂ / SiO ₂)	55
4.23	Comparison of catalytic screening of Fe/ Co/ Ni catalyst with the ratio of 10: 30: 60 on various supports (i) Al_2O_3 beads, (ii) Cordierite, (iii) Photocatalytic ceramic beads (TiO_2/SiO_2)	56
4.24	Comparison of catalytic screening of Pr/ Co/ Ni catalyst with the ratio of 5: 35: 60 on various supports (i) Al_2O_3 beads, (ii) Cordierite, (iii) Photocatalytic ceramic beads (TiO ₂ /SiO ₂)	57
4.25	Percentage formation of CH_4 during simultaneous reactions of CO_2 methanation and H_2S desulfurization over selected potential catalysts	60
4.26	High resolution Ni 2p XPS spectra obtained from fresh Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst	65
4.27	High resolution Fe 2p XPS spectra obtained from fresh Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst	66
4.28	High resolution Al 2 <i>p</i> XPS spectra obtained from fresh Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst	67
4.29	High resolution O 1s XPS spectra obtained from fresh Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst	69
4.30	High resolution Ni $2p$ XPS spectra obtained from (a) fresh and (b) spent Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalysts	70
4.31	High resolution Co $2p$ XPS spectra obtained from (a) fresh and (b) spent Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalysts	73
4.32	High resolution Al $2p$ XPS spectra obtained from (a) fresh and (b) spent Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalysts	74
4.33	High resolution O 1s XPS spectra obtained from (a) fresh and (b) spent Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalysts	76

xvi

xvii

4.34	XRD diffractogram of Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst calcined at 900°C for 5 hours	79
4.35	XRD diffractogram of Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst calcined at 900°C for 5 hours	81
4.36	FESEM micrographs of fresh Fe/ Co/ Ni-Al ₂ O ₃ catalyst with the ratio of (a) 5: 35: 60; (b) 10: 30: 60 with magnification of 3000 X and scale bar of 1.7 cm: 5 μ m	83
4.37	FESEM micrographs of spent Fe/ Co/ Ni (10: 30: 60)- Al ₂ O ₃ catalyst with magnification of (a) 1000 X; (b) 3000 X and scale bar of 1.7 cm: 5 μ m	83
4.38	FESEM micrographs of fresh Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst with magnification of (a) 1000 X; (b) 3000 X and scale bar of 1.7 cm: 5 μ m	84
4.39	FESEM micrographs of spent Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst with magnification of (a) 1000 X; (b) 3000 X and scale bar of 1.7 cm: 5 μ m	85
4.40	Comparison of EDX analysis for (a) fresh Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ and; (b) spent Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalysts	87
4.41	Comparison of EDX analysis for (a) fresh Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ and; (b) spent Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalysts	88
4.42	Isotherm plot of fresh Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst	90
4.43	Isotherm plot of spent Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst	91
4.44	Isotherm plot of fresh Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst	91
4.45	Isotherm plot of spent Pr/ Co/ Ni (5: 35: 60)-Al $_2O_3$ catalyst	92
4.46	Comparison of FTIR spectrum for (a) fresh Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst; and (b) spent Fe/ Co/ Ni (10: $30: 60$)-Al ₂ O ₃ catalyst	93
4.47	Comparison of FTIR spectrum for (a) fresh Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst; and (b) spent Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst	96

LIST OF ABBREVIATIONS

ABS	- Absorbance
BET	- Brunnauer, Emmet and Teller
BJH	- Barret-Joyner-Halenda
Btu	- British thermal unit
с	- Cubic
cf	- Cubic feet
СНА	- Concentric hemispherical analyzer
Cu Ka	- X-ray diffraction from Copper K energy levels rate of conversion
	(percentage)
d	- Pore diameter
DTA	- Differential Thermal Analysis
E_{b}	- Binding energy
$E_{\rm k}$	- Kinetic energy
$E_{\rm so}$	- Spinning orbital energy
EDX	- Energy Dispersive X-ray Analysis
ESR	- Electron Spin Resonance
eV	- Electronvolt
fcc	- Face-centered cubic
FESEM	- Field Emission Scanning Electron Microscope
FID	- Flame Ionization Detector
FTIR	- Fourier Transform Infrared
FWHM	- Full width half maximum
GC	- Gas Chromatography
ΔH	- Enthalpy change
h	- Hexagonal
hr	- Hour

hv	- Photon's energy
IUPAC	- International Union of Pure and Applied Chemistry
LNG	- Liquefied Natural Gas
m	- Monoclinic
MgKα	- X-ray diffraction from Magnesium K energy levels rate of
	conversion (percentage)
MS	- Mass Spectroscopy
P/ P _o	- Relative pressure; obtained by forming the ratio of the equilibrium
	pressure and vapour pressure $P_{\rm o}$ of the adsorbate at the temperature
	where the isotherm is measured
PDF	- Powder Diffraction File
ppm	- Part per million
SMSI	- Strong metal support interaction
tcf	- Trillion cubic feet
TGA	- Thermogravimetry Analysis
XPS	- X-ray Photoelectron Spectroscopy
XRD	- X-ray Diffraction
α ₀	- Cell constant
θ	- Half angle of diffraction beam
λ	- Wavelength

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Calculation of atomic weight percentage ratio of element in catalyst preparation	116
В	XRD diffractogram of Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst calcined at 400°C for 5 hours	117
С	XRD diffractogram of Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst calcined at 400°C for 5 hours	118
D	XRD diffractogram of Fe/ Co/ Ni (10: 30: 60)-TiO ₂ / SiO_2 catalyst calcined at 400°C for 5 hours	119
Е	XRD diffractogram of Pr/ Co/ Ni (5: 35: 60)- cordierite catalyst calcined at 400°C for 5 hours	120
F	Thermogram of fresh Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst	121
G	Thermogram of spent Fe/ Co/ Ni (10: 30: 60)-Al ₂ O ₃ catalyst	122
Н	Thermogram of fresh Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst	123
Ι	Thermogram of spent Pr/ Co/ Ni (5: 35: 60)-Al ₂ O ₃ catalyst	124

CHAPTER I

INTRODUCTION

1.1 Natural Gas

The principal hydrocarbon component of natural gas is methane. In many natural gas deposits, methane makes up 80 to 90 percent of the gas. Natural gas may contain other small hydrocarbon molecules such as ethane, propane, butane, pentane, and hexane. Besides these hydrocarbons, it may also comprise inorganic compounds such as nitrogen, helium, carbon dioxide and hydrogen sulfide. Natural gas is an ideal fuel. It requires minimal processing before use and has the highest calorific value of any fossil fuel.

Malaysia has the world's 13th largest natural gas reserves and 24th largest crude oil reserves. Malaysia is also the world's third largest producer of Liquefied Natural Gas (LNG) with production capacity of 23 million metric ton per year. Our country is important to world energy markets because of its 75 trillion cubic feet (tcf) of natural gas reserves and its net oil exports of over 940,000 barrels per day. Natural gas consumption in 2002 was estimated at 1.0 tcf, with LNG exports of around 0.7 tcf (mostly to Japan, South Korea and Taiwan) (Malaysia Oil and Gas, 2007).

Since natural gas contains no mineral, no ash residue is produced upon combustion, making it a cleaner fuel. Natural gas as the cleanest of the fossil fuels is second only to hydro and renewable energy resources in environmental friendliness. Due to its gaseous state, it mixes with oxygen easily for more efficient combustion. Gas is the most thermally efficient fuel when used in combined cycle gas turbine power plants, which are in turn the most competitive with regard to expense, speed of construction, reduced maintenance and overall operability. According to International Energy Agency forecasts, power generation in the Organization for Economic Co-operation and Development Pacific (Japan, Korea, Australia and New Zealand), China and East and South Asia (Brunei, Indonesia, Taiwan, South Korea, Malaysia, Philippines, Singapore, Vietnam and Thailand; Bangladesh, India and Pakistan) will by 2020 see natural gas growing up by 113%, coal by 83% and oil consumption rising by just 15% (Mueller, 2004a). Natural gas fueled power plants are the preferred source of electrical energy. This is by considering the limited availability of hydro and other renewable power, coal fueled power generation and growing worries over nuclear plant safety.

It is expected that total investment requirements in the gas sector will reach \$3.1 trillion, of which exploration and development will account for 55%, or \$1.7 trillion. Upstream gas investment will continue to be concentrated in Australia, Indonesia and Malaysia, all of which have large proven reserves. Innovation will bring previously inaccessible natural gas reserves to market, thereby tending to lower the cost and improve the competitiveness of gas (Mueller, 2004b).

1.2 Research Background and Problem Statement

Natural gas is combustible and gives a great deal of power upon consumption. Natural gas is the future energy resource for Malaysia and this is ensured by Malaysia large reserves and further strength by the existence of huge gas reserves in the nearby countries (Md. Yasin, 1987). However, the gas often contains the other light alkanes and a variety of inorganic compounds, including hydrogen sulfide (H₂S), carbon dioxide (CO₂), helium (He) and hydrogen (H₂). The composition of a natural gas as it comes from the well varies from one location to another. Table 1.1 shows the chemical composition of Malaysian crude natural gas, analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS). It is primarily consists of low density hydrocarbons (methane, ethane, propane) and impurities (CO₂, H_2S , O_2 , N_2 etc). Table 1.2 reveals the general chemical composition of crude natural gas from United States.

Gases	Composition (%)
CH_4	47.9
C_2H_6	5.9
C_3H_8	3.2
CO_2	23.5
H_2S	5.4
Others (CO, O ₂ , N ₂)	24.1

Table 1.1: Chemical composition of crude natural gas from Telaga Bergading,Petronas Carigali Sdn. Bhd. (Laboratory Services Unit (UNIPEM),2003).

 Table 1.2: General chemical composition of crude natural gas from United States (Kiricsi and Guczi, 1999).

Gases	Composition (%)
CH_4	89.5
C_2H_6	5.1
C_3H_8	0.7
CO_2	2.5
H_2S	1.0
Others (CO, O ₂ , N ₂)	2.2

Table 1.1 and 1.2 show the purity of Malaysian natural gas is lower than the United State's natural gas. Malaysian crude natural gas is categorized as a sour gas due to the contamination of H_2S . Hydrogen sulfide is the most toxic contaminant in the natural gas. The hydrogen sulfide in natural gas has several possible sources. One is the decomposition of amino acids which contain the thiol functional group, -SH. The anaerobic decay of sulfur-containing proteins or their thermal

decomposition at mild conditions could liberate the sulfur as H_2S . Another potential source is the anaerobic reduction of the sulfate ion, without its first being converted into organic sulfur compounds (Schobert, 1990). This gas is undesirable for several reasons. H_2S itself has an unpleasant smell, being the compound responsible for the unforgettable odour of rotten eggs. H_2S in the presence of water is extremely corrosive and can cause premature failure of valves, pipelines and pressure vessels. It can also cause catalyst poisoning in refinery vessels and necessitates that many other expensive precautionary measures be taken. Besides that, if H_2S is present in the gas when it is burned, sulfur oxides are formed as products of combustion. Not only the sulfur oxides themselves have irritating odors, but they also dissolves in water to form sulfurous and sulfuric acids, which are very corrosive. Most pipeline specifications limit H_2S content to 0.25 grain per 100 cf of gas, equivalent to about four parts per million (Petroleum Extension Service, 1972).

On the other hand, carbon dioxide is considered as diluents, which has no heating value. Therefore, CO_2 might reduce the heating value (Btu/ cf) below acceptable limits. This compound occupies space and is normally a part of the hydrocarbon environment. There are many disadvantages in having diluents in the gas stream, most associated with horsepower, pipeline capacity, internal corrosion, and freezing. The presence of carbon dioxide may enhance the formation of carbonic acid when it reacts with the vapour. Blocks of dry ice may lead to the corrosion and clogging to the process and delivery pipeline.

Typical pipeline-quality natural gas is composed of four main groups of compounds, 90-95% is made up of methane (CH₄); 2-4% is ethane (C₂H₆). Heavier ends through the C₆'s constitute 2-3%, 0.5-4% is CO₂ and N₂ as diluents with traces of water vapor and contaminants (Schobert, 1990). Natural gas that contains corrosive elements such as H₂S and CO₂ must be conditioned so that the flow-system equipment does not deteriorate and become a safety hazard or an economic loss. During corrosion of the pipeline, it disintegrates and loses its structural strength. If small quantities are involved, the conditioning may be by the injection of chemical inhibitors into the gas stream; if the quantities are large, the most economical method may be removal of the contaminant or the worst is where a gas pipeline renewal is

needed. Normally pipelines of 32 inches outer diameter or larger are assumed to be onshore projects. Offshore projects are normally involved pipelines with outer diameter of less than 30 inches. According to Oil and Gas Journal's Pipeline Economics Report (Warren, 1999; True, 1999), for proposed U.S. gas pipeline projects in the 1997-98 periods surveyed, the average land cost per mile was more than \$1.2 million/ mile. On the other hand, the off shore projects proposed average more than \$1.5 million/ mile. These figures show how the corrosion of the acidic gases leading to the severe economic loss. Besides, H₂S and CO₂ as the major impurities in Malaysian natural gas also reduce the quality and thus the market price of the gas. Therefore, our country is seeking for an efficient way to increase the production and the quality of our natural gas.

1.3 Current Technologies used in Purification of Natural Gas

Gas purification involves the removal of vapour-phase impurities from gas streams. A variety of conventional separation methods are presently being used to remove the "acid gasses" CO_2 and H_2S from crude natural gas. Some are selective for only H_2S removal, some only for CO_2 removal. However, commercial application of the various gas-purification processes are frequently plagued by unpredictable problems of corrosion (Lieberman, 1987), side reactions, foaming (Cury, 1981), and catalyst deactivation (Trimm, 1980).

Iron-sponge process is the oldest and also the most limited known for removal of sulfur compounds. It is a dry process consisting of iron oxide (Fe₂O₃) impregnated on wood chips or shavings. It is usually used on small gas volumes with low H₂S contents. A vessel can operate 30 to 60 days either without any regeneration or with the partial generation that can be affected with air passage through the vessel. The vessel must be recharged with new iron-sponge material when gas sweetening is no longer possible. This process is selective toward H₂S. If there is CO₂ in the stream, it will not be affected (Petroleum Extension Service, 1972). The primary disadvantage of this process is the difficult change out operation and disposal of the spent sponge. Hydrogen sulfide can also be removed by stripping. However, a toxic waste stream is created. The waste stream typically contains a high concentration of hydrogen sulfide (H_2S) plus trace amounts of heavy hydrocarbons.

The most widely used process in industry, the alkanolamine process, is a continuous operation liquid process using absorption for the acid gas removal with subsequent heat addition to strip the acid gas components from the absorbent solution. The alkanolamine absorbing solution is not selective and absorbs total acid gas components. The absorbing alkanolamine solution (weak base) chemically reacts with the H_2S and/ or CO_2 (weak acid) to give a water soluble salt. Similarly, a significant amount of waste was formed with the absorption (Petroleum Extension Service, 1972).

Membranes have clear advantage in terms of compactness, not having moving parts and being noise free. The issue not considered in this study is the environment impact of the permeate product streams. These streams will contain substantial amounts of wastes and cannot be discharged to the atmosphere. For this reason and also because of economic consideration the permeate streams will have to be treated by a suitable sulfur recovery process. In addition, the life spans of membranes are limited. They may need to be restored after some time (Hao *et al.*, 2002).

The Shell sulfinol process is unique in that it uses a mixture of solvents, which allows it to behave as both a chemical and physical solvent process. The solvent is composed of sulfolane, DIPA (di-isopropanolamine) and water. The sulfolane acts as the physical solvent while DIPA acts as the chemical solvent. This combination of absorption capabilities offers advantages both for loading and uploading of the solvent. In general, carbonyl sulfide (COS), carbon disulfide (CS₂) and mercaptans can be satisfactorily removed from the feed gas, along with H_2S and CO_2 , within certain limitations of concentrations in the feed gas. Disadvantages of sulfinol are: (i) the absorption of heavy hydrocarbons and aromatics and (ii) the expensive nature of the sulfolane in the solvent (Petroleum Extension Service, 1972).

Recently, the removal of sour gases via chemical conversion technique using catalyst becomes the most promising technique. Methanation has received attention from a viewpoint of environmental protection because the emission of CO_2 in the atmosphere brings about global warming by the greenhouse effect and these harmful gases can simultaneously be converted to useful methane gas (Hayakawa *et al.*, 1999). This process can increase the purity of the natural gas without wasting the undesired components but fully used them to increase the concentration of methane. However, this reaction is an eight electron process involving thermodynamics. It is difficult to achieve this reaction under mild conditions due to kinetic barriers. These conditions are inconvenient in a laboratory because they required specialized equipment, and the rate of the reaction is difficult to control. Therefore, the development of catalysts to lower the activation energy of this reaction is needed.

On the other hand, hydrogen sulfide in the crude natural gas can be reduced to elemental sulfur by the Claus process. H_2S is partially burned to create a mixture of H_2S and sulfur dioxide (SO₂). The H_2S and SO₂ then react in the presence of a catalyst to form sulfur and water. Sulfates formation is an undesired side reaction of Claus catalyst. However, when the proper metals are used, the spinel compound from the catalyst reacts to form sulfates that are unstable enough to react with H_2S and other compounds to form elemental sulfur. Thus, sulfates do not inhibit catalyst performance. Then the sulfur produced can be sold commercially. There are problem arises when significant amounts of hydrocarbons reduce the catalyst efficiency. Hydrocarbons reduce to form graphite, which contaminates the sulfur.

Equation 1.1 shows the general H_2S desulfurization reaction while Equation 1.2 shows the stoichiometric equation for CO₂/ H_2 conversion to methane or higher hydrocarbons.

$$\begin{array}{lll} H_{2}S_{(g)} + \frac{1}{2}O_{2(g)} & \rightarrow & S_{(s)} + H_{2}O_{(l)} \\ CO_{2(g)} + 4H_{2(g)} \rightarrow & CH_{4(g)} + C_{2}H_{6(g)} + C_{3}H_{8(g)} \dots + & 2H_{2}O_{(l)} \end{array}$$
(Equation 1.2)

Besides that, co-generation of heat is also possible because the methanation of CO₂ is an exothermic reaction, with $\Delta H = -165$ kJ/mol. Removal of H₂S is an oxidation reaction, while removal of CO₂ is a reduction reaction. Enthalpies of the reduction and oxidation reactions play an important role. CO₂ in this case can act as an oxidizing agent.

$$H_2S_{(g)} + CO_{2(g)} \rightarrow SO_{2(g)} + 2CO_{(g)} + H_{2(g)}$$
 (Equation 1.3)

The CO produced in the previous step can be converted to CH_4 in the presence of H_2 , as shown in Equation 1.4.

$$CO_{(g)} + 3H_{2(g)} \rightarrow CH_{4(g)} + H_2O_{(l)}$$
(Equation 1.4)

Catalytic activity is defined as the rate at which a chemical reaction reaches the equilibrium. From the industrial point of view, activity is also defined as the amount of reactant transformed into product per unit of time and unit of reactor volume. Meanwhile, the selectivity of a catalyst is defined as the rate of reactant conversion into the desired products. Selectivity usually depends on reaction parameters such as temperature, pressure, reactants composition and also on the catalyst nature. Therefore, the main effect of a catalyst is to provide an alternative reaction path that permits to decrease the activation energies of the different reaction steps, reaching therefore the equilibrium in an easier and faster way. On the other hand, the catalyst should be high selectivity towards yielding of CH_4 and minimizes the possibility of side reactions. Equation 1.5 shows an undesired side reaction in this study.

$$CO_{2(g)} + H_{2(g)} \rightarrow CO_{(g)} + H_2O_{(l)}$$
(Equation 1.5)

1.4 Objectives of the Research

The ultimate goal of this research is to synthesize a novel catalyst that is able to catalyze the in-situ reactions of CO_2/H_2 methanation and H_2S desulfurization at a very low temperature with 100 % conversion.

The objectives of this research are:

- To synthesize and modify supported Ni based catalyst for the in-situ reactions of methanation and desulfurization;
- To elucidate the catalytic activity of the prepared catalysts;
- To characterize and propose the active site of an excellent catalyst.

1.5 Scope of the Research

Various supported catalysts were prepared to catalyze the in-situ reactions of CO_2/H_2 methanation and H_2S desulfurization. In this research, dopants were chosen from the first row transition metal and rare earth metal to be added towards nickel oxide based catalyst. First, study on different ratio of the metal oxides to nickel was carried out. Then, different possible supports were tried on the potential catalysts to propose the best support. The catalytic activities of the prepared catalysts were tested using a home-built microreactor coupled with Fourier Transform Infrared Spectroscopy. The production of methane gas was detected by Gas Chromatography analysis to determine the yielding of methane. All the studies will be done based on trial and error method where different mixed metal oxides with different ratio were tested until the best performance catalyst was obtained. The characteristics of the novel catalyst were confirmed by the use of X-ray Photoelectron Spectroscopy for active surface components, X-Ray Diffraction for bulk structure, Field Emission Scanning Electron Microscope for morphology study, Energy Dispersive X-Ray Analysis for elemental composition study, Nitrogen Adsorption for pore texture and surface area of the catalyst, Fourier Transform Infrared Spectroscopy for the functional group study and Thermogravimetry Analysis to study the mass loss of the catalyst during temperature change. The active sites of the novel catalyst would be proposed. In general, it is a very demanding task to make a useful comparison of activity and selectivity of a catalyst under conditions appropriate for commercial operation.

References

- Agnelli, M. and Mirodatos, C. (2000). CO hydrogenation on nickel-based catalysts: Effects of copper addition. *Journal of Catalysis*. 192, 204-214. Elsevier.
- Akanuma, K., Nishizawa, K., Kadama, T., Mimora, K., Yoshida, T., Tsuji, M. and Tamaura, Y. (1993). Carbon dioxide decomposition into carbon with the rhodium-bearing magnetite activated by H₂-reduction. *Journal of Materials Science*. 28, 860-864. Springer.
- Arnoldy, P. and Moulijn, J.A. (1985). Temperature-programmed reduction of CoO/ Al₂O₃ catalysts. *Journal of Catalysis*. 93, 38-54.
- Barcicki, J., Borowiecki, T., Grzegorczyk, W., Nazimek, D., Denis, A. and Pielach, M. (1981). Effect of hydrogen sulfide on the activity of nickel catalysts for methanation. *Reaction Kinetics and Catalysis Letters*. 18 (3-4), 437-442.
- Barr, T.L. (1981). An ESCA study of the termination of passivation of elemental metals. *The Journal of Physical Chemistry*. 82 (16), 1801-1810.
- Bartholomew, C. H., Weatherbee, G. D. and Jarvi, G. A. (1979). Sulfur poisoning of nickel methanation catalysts I. In-situ deactivation by H₂S of nickel and nickel bimetallics. *Journal of Catalysis*. 60(2), 257-269.
- Bartholomew, C. H. and Uken, A. H. (1982). Metal boride catalysts in methanation of carbon monoxide III. Sulfur resistance of nickel boride catalysts compared to nickel and raney nickel. *Applied Catalysis*. 4, 19-29.
- Blanchard, F., Reymond, J.P., Pommier, B. and Teichner, S.J. (1982). On the mechanism of the Fischer-Tropsch synthesis involving unreduced iron catalyst. *Journal of Molecular Catalysis*. 17, 171-181.
- Burch, R. and Flambard, A.R. (1984). Support effects in nickel catalysts. *Journal of Catalysis*. 85, 16-24.
- Carpentier, J., Siffert, S., Lamonier, J.F., Laversin, H. and Aboukaïs. (2007). Synthesis and characterization of Cu-Co-Fe hydrotalcites and their calcined products. *Journal of Porous Materials*. 14, 103-110. Springer.
- Castaño, P., Pawelec, B., Fierro, J.L.G., Arandes, J.M. and Bilbao, J. (2007). Enhancement of pyrolysis gasoline hydrogenation over Pd-promoted Ni/ SiO₂- Al₂O₃ catalysts. *Fuel.* 86, 2262-2274. Elsevier.

- Cerro-Alarcón, M., Bachiller-Baeza, B., Guerrero-Ruiz, A. and Rodríguez-Ramos, I. (2006). Effect of the reduction–preparation method on the surface states and catalytic properties of supported-nickel particles. *Journal of Molecular Catalysis A: Chemical.* 258, 221-230. Elsevier.
- Chang, F.W., Kuo, M.S., Tsay, M.T. and Hsieh, M.C. (2003). Hydrogenation of CO₂ over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. *Applied catalysis A: General*. 247, 309-320. Elsevier.
- Cury, R.N. (1981). *Fundamentals of Natural Gas Conditioning*. Tulsa, Oklahoma: Penn Well Publishing Company.
- Curtis, V., Nicolaides, C.P., Coville, N.J., Hildebrandt, D. and Gilasser, D. (1999).
 The effect of sulfur on supported cobalt Fischer-Tropsch catalysts. *Catalysis Today*. 49, 33-40. Elsevier.
- Czekaj, I., Loviat, F., Raimondi, F., Wambach, J., Biollaz, S. and Wokaun, A. (2007). Characterization of surface processes at the Ni-based catalyst during the metantaion of biomass-derived synthesis gas: X-ray Photoelectron Spectroscopy (XPS). *Applied Catalysis A: General.* 329, 68-78. Elsevier.
- Davis, B.H. (2007). Fischer-Tropsch Synthesis: Comparison of performances of iron and cobalt catalysts. *Industrial and Engineering Chemistry Research*. 46, 8938-8945. American Chemical Society.
- De Boer, M., van Dillen, A.J., Koningsberger, D.C., Geus, J., Vuurman, M.A. and Wachs, I.E. (1991). Remarkable spreading behavior of molybdena on silica catalysts. An *in situ* EXAFS-Raman study. *Catalysis Letter*. 11, 227-240. Springer.
- Deo, G. and Wachs, I.E. (1991). Predicting molecular structures of surface metal oxide species on oxide supports under ambient conditions. *The Journal of Physical Chemistry*. 95, 5889-5895.
- Djaidja, A., Barama, A. and Bettahar, M.M. (2000). Oxidative transformation of methane over nickel catalysts supported on rare-earth metal oxides. *Catalysis Today*. 61, 303-307. Elsevier.
- Dong, X.L., Zhang, Z.D., Jin, S.R., Sun, W.M. and Chuang, Y.C. (1998). Surface characterizations of ultrafine Ni particles. *Nano Structured Materials*. 10 (4), 585-592. Pergamon.

- El-Shobaky, G.A., El-Molla, S.A. and Ali, A.M.I. (2003). Catalytic promotion of NiO/MgO system by doping with some transition metal cations. *Applied Catalysis A: General.* 253, 417-425. Elsevier.
- Erhan Aksoylu A. and İlsen Önsan, Z. (1997). Hydrogenation of carbon dioxides using coprecipitated and impregnated Ni/Al₂O₃ catalysts. *Applied Catalysis A: General.* 164, 1-11. Elsevier.
- Erhan Aksoylu, A., İnci İsli, A. and İlsen Önsan, Z. (1999). Interaction between nickel and molybdenum in Ni-Mo/Al₂O₃ catalysts: III. Effect of impregnation strategy. *Applied Catalysis A: General.* 183, 357-364. Elsevier.
- Fadley, C.S. and Shirley, D.A. (1969). Multiplet splitting of core-electron binding energies in transition metal ions. *Physical Review Letters*. 23 (24), 1397-1401.
- Finch, J. N. (1979). United States Patent 4168276. Retrieved on September 18, 1979 from http://patft.uspto.gov/
- Finch, J.N. and Ripley, D.L. (1976). United States Patent 3988334. Retrieved on October 26, 1976 from http://www.freepatentsonline.com/
- Fournier, J. A. (1986). Characterization of some iron catalysts for the reduction of carbon monoxide and the effect of residence time and temperature on the nature of carbon monoxide reduction products. PhD Thesis. Brown University, United States of America.
- Galtayries, A. and Grimblot, J. (1999). Formation and electronic properties of oxide and sulphide films of Co, Ni and Mo studied by XPS. *Journal of Electron Spectroscopy and Related Phenomena*. 98–99, 267–275. Elsevier.
- Garcia, L., French, R., Czernik, S. and Chornet, E. (2000). Catalytic steam reforming of bio-oils for the production of hydrogen: effects of catalyst composition. *Applied Catalysis A: General.* 201, 225-239. Elsevier.
- Hao, J., Rice, P.A. and Stern, S.A. (2002). Upgrading low-quality natural gas with H₂S- and CO₂-selective polymer membranes Part I-Process design and economics of membranes stages without recycle streams. *Journal of Membrane Science*. 209, 177-206. Elsevier.
- Happel, J. and Hnatow, M. A. (1981). United States Patent 4260553. Retrieved on April 7, 1981 from http://patft.uspto.gov/

- Han, Y.S., Li, J.B., Ning, X.S., Yang, X.Z. and Chi, B. (2004). Study on NiO excess in preparing NiAl₂O₄. *Materials Science and Engineering A*. 369, 241-244. Elsevier.
- Hashimoto, K., Yamasaki, M., Meguro, S., Sasaki, T., Katagiri, H., Izumiya, K., Kumagai, N., Habazaki, H., Akiyama, E. and Asami, K. (2002). Materials for global carbon dioxide recycling. *Corrosion Science*. 44, 371-386. Elsevier.
- Hayakawa, T., Suzuki, S., Nakamura, J., Uchijima, T., Hamakawa, S., Suzuki, K.,
 Shishido, T. and Takehira, K. (1999). CO₂ reforming of CH₄ over Ni/
 perovskite catalysts prepared by solid phase crystallization method. *Applied Catalysis A: General.* 183, 271-285. Elsevier.
- Iamir, E. M., Aliwi, S. M. and Naman, S. A. (2006). Thermal reduction of CO₂ in the presence of H₂S. *Petroleum Science and Technology*. 24, 117-127. Taylor and Francis.
- Iglesia, E. (1997). Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. *Applied Catalysis A: General.* 161, 59-78. Elsevier.
- Inui, T., Funabiki, M., Suehiro, M. And Sezume, T. (1979). Methanation of CO₂ and CO on supported nickel-based composite catalysts. *Journal of the Chemical Society, Faraday Transaction.* 75, 787-802.
- Inui, T. (1996). Highly effective conversion of carbon dioxide to valuable compounds on composite catalysts. *Catalysis Today*. 29, 329-337. Elsevier.
- Iyer, M., Ramkumar, S. and Fan, L.S. (2006). Enhanced hydrogen production integrated with CO₂ separation in a single type of report. *Annual Technical Progress Report*. United States of America: The Ohio-State University.
- Jackson, S.D. and Wells, P.B. (1986). Metal clusters as catalyst sites: Site-support and site-carbon interactions. *Applied Catalysis*. 25, 157-163.
- Jaggi, N. and Vij, D.R. (2006). Fourier Transform Infrared Spectroscopy. In Vij, D.R. (Ed.) *Handbook of Applied Solid State Spectroscopy*. (pp. 411-450). New York, USA: Springer. Ming, Jiang, Naoto Koizumi and Muneyoshi Yamada. Adsorption properties of Iron and Iron-Manganese Catalysts investigated by in-situ Diffuse Reflectance FTIR spectroscopy. *Journal of Physical Chemistry B*. 2000. 104: 7636-7643.

- Jiang, M., Koizumi, N. and Yamada, M. (2000). Adsorption properties of Iron and Iron-Manganese Catalysts investigated by in-situ Diffuse Reflectance FTIR spectroscopy. *The Journal of Physical Chemistry B.* 104, 7636-7643. American Chemical Society.
- Jiang, X.Z., Stevenson, S.A., Dumesic, J. A., Thomas F. Kelly, T.F. and Casper, R.J. (1984). Characterization of NiFe Alloy Particles Supported on Titania and Alumina: Scanning Transmission Electron Microscopy, Magnetic Susceptibility, Mossbauer Spectroscopy, and Chemisorption Measurements. *The Journal of Physical Chemistry*. 88, 6191-6198.
- Jose, A., R., Jonathan, C., H., Anatoly, I., F., Jae, Y., K. and Manuel, P. (2001). Experimental and theoretical studies on the reaction of H₂ with NiO. Role of O vacancies and mechanism for oxide reduction. *Journal of the American Chemical Society.* 124, 346-354. America Chemical Society.
- Kherbeche, A., Benharref, A. and Hubaut, R. (1996). Sulfur poisoning of nickelrare-earth based catalysts. *Reaction Kinetics and Catalysis Letters*. 57 (1), 13-20. Springer.
- Kiennemann, A., Kieffer, R. and Chornet, E. (1981). CO/ H₂ and CO₂/ H₂ reactions with amorphous carbon-metal catalysts. *Reaction Kinetics and Catalysis Letters.* 16 (4), 371-376. Springer.
- Kim, K.S. (1975). X-ray photoelectron spectroscopic studies of the electronic structure of CoO. *Physical Review B*. 11 (6), 2177-2187.
- Kiricsi, I. and Guczi, L. (1999). Environmental Friendly Reactions and Technologies. *Applied Catalysis*. 189, 151-276. Elsevier.
- Kodama, T., Kitayama, Y., Tsuji, M. and Tamaura, Y. (1997). Methanation of CO₂ using ultrafine Ni_xFe_{3-x}O₄. *Energy*. 22 (2-3), 183-187. Elsevier.
- Kohl, A.L. and Riesenfeld, F.C. (1985). *Gas Purification*. 4th. ed. United States of America: Gulf Publishing Company.
- Kozhukharov, V., Machkova, M. and Brashkova, N. (2003). Sol-gel route and characterization of supported perovskites for membrane applications. *Journal of Sol-Gel Science and Technology*. 26, 753-757. Springer.
- Krylov, O.V., Mamedov, A.Kh. and Mirzabekova, S.R. (1998). Interaction of carbon dioxide with methane on oxide catalysts. *Catalysis Today*. 42, 211-215. Elsevier.

- Kulshreshtha, S. K., Sasikala, R., Gupta, N. M. and Iyer, R. M. (1990). Carbon monoxide methanation over FeTi_{1-x}Sn_x intermetallics: Role of second phase. *Catalysis Letter.* 4 (2), 129-138. Springer.
- Kunz, U., Kirschning, A., Wen, H.L., Solodenko, W., Cecilia, R., Kappe, C.O. and Turek, T. (2005). Monolith polymer/ carrier mmaterials: Versatile composites for fine chemical synthesis. *Catalysis Today.* 105, 318-324. Elsevier.
- Laboratory Services Unit, UNIPEM. (2003). Faculty of Chemical Engineering and Natural Resources Engineering, Universiti Teknologi Malaysia. 49-52.
- Lamber, R. and Schulz-Ekloff, G. (1991). Characterization of microstructures in nickel alumina catalysts by analytical electron microscopy. *Surface Science*. 258 (1-3), 107-118.
- Li, G.H., Hu, L.J. and Hill, J.M. (2006). Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and coprecipitation. *Applied Catalysis A: General.* 301, 16-24. Elsevier.
- Li, T.Z., Yang, Y., Zhang, C.H., Tao, Z.C., Wan, H.J., An, X., Xiang, H.W. and Li, Y.W. (2007). Effect of Manganese incorporated manner on an iron-based catalyst for Fischer-Tropsch synthesis. *Journal of Natural Gas Chemistry*. 16, 244-251. Elsevier.
- Li, Y.M., Wang, R.J. and Chang, L. (1999). Study of reactions over sulfide catalysts in CO-CO₂-H₂-H₂O system. *Catalysis Today*. 51: 25-38. Elsevier.
- Lieberman, N.P. (1987). Troubleshooting Natural Gas Processing-Wellhead to Transmission. Tulsa, Oklahoma: Penn Well Publishing Company.
- Lorenz, P., Finster, J., Wendt, G., Salyn, J.V., Žumadilov, E.K. and Nefedov, V.I. (1979). ESCA investigations of some NiO/ SiO₂ and NiO-Al₂O₃/ SiO₂ catalysts. *Journal of Electron Spectroscopy and Related Phenomena*. 16, 267-276.
- Macêdo, M.I.F., Bertran, C.A. and Osawa, C.C. (2007). Kinetics of the $\gamma \rightarrow \alpha$ alumina phase transformation by quantitative X-ray diffraction. *Journal of Material Science*. 42, 2830-2836. Springer.
- Malaysia Oil and Gas, 2007

http://www.yellowpages.com.my/energyguide/

- Martínez, R., Romero, E., Guimon, C. and Bilbao, R. (2004). CO₂ reforming of methane over coprecipitated Ni–Al catalysts modified with lanthanum. *Applied Catalysis A: General.* 274, 139-149. Elsevier.
- Mashapa, T.N., Rademan, J.D. and Vuuren, J.J. (2007). Catalytic performance and deactivation of precipitated iron catalyst for selective oxidation of hydrogen sulfide to elemental sulfur in the waste gas streams form coal gasification. *Industrial and Engineering Chemistry Research*. 46, 6338-6344. American Chemical Society.
- McIntyre, N.S. and Zetaruk, D.G. (1977). X-ray photoelectron spectroscopic studies of iron oxides. *Analytical Chemistry*. 49 (11), 1521-1529.
- Medina, J.C., Butala, S.J., Bartholomew, C.H. and Lee, M.L. (2000a). Ironcatalyzed CO₂ hydrogenation as a mechanism for coalbed gas formation. *Fuel.* 79, 89-93. Elsevier.
- Medina, J.C., Butala, S.J., Bartholomew, C.H. and Lee, M.L. (2000b). Low temperature iron- and nickel-catalyzed reactions leading to coalbed gas formation. *Geochimica et Cosmochimica Acta*. 64 (4), 643-649. Pergamon.
- Md. Yassin, A.A. (1987). Natural-gas future energy for Malaysia. *Third Symposium of Malaysian Chemical Engineers*. 15-16 June. Kuala Lumpur, Malaysia: Universiti Teknologi Malaysia, 1-3.
- Miao, Q., Xiong, G., Sheng, S., Cui, W., Xu, L. and Guo, X. (1997). Partial oxidation of methane to syngas over nickel-based catalysts modified by alkali metal oxide and rare earth metal oxide. *Applied Catalysis A: General.* 154, 17-24. Elsevier.
- Mori, S., Xu, W. C., Ishidzuku, T., Ogasawara, N., Imai, J. and Kobayashi, K. (1998). Mechanochemical Activation of Catalysts for CO2 Methanation. *Applied Catalysis A: General.* 137, 255-268. Elsevier.
- Moulder, J.F., Stickle, W.F., Sobol, P.E. and Bomben, K.D. (1992). Handbook of Xray Photoelectron Spectroscopy. United States of America: Perkin-Elmer Corporation.
- Mueller, J. (2004a). Natural gas vs coal in Asian power struggle. *Asian Oil & Gas,* March/ April 2004, 14-15.
- Mueller, J. (2004b). Surging demand energies Asian investment plans. *Asian Oil & Gas*, January/ February 2004, 14-16.

- Nascente, P.A.P. (2005). Materials characterization by X-ray photoelectron spectroscopy. *Journal of Molecular Catalysis A: Chemical.* 228, 145-150. Elsevier.
- Natile, M.M. and Glisenti, A. (2003). New NiO/ Co₃O₄ and Fe₂O₃/ Co₃O₄ nanocomposite catalysts: Synthesis and characterization. *Chemistry of Materials*. 15, 2502-2510. American Chemical Society.
- Naumann, A. W. and Behan, A. S. (1979). U.S. Patent 4243554. Retrieved on January 6, 1981, from http://www.uspto.gov/patft/
- Nefedov, V.I., Gati, D., Dzhurinskii, B.F., Sergushin, N.P. and Salyn, Ya.V. (1975). Simple and coordination compounds. *Russian Journal of Inorganic Chemistry*. 20, 2307-2314.
- Niemantsverdriet, J. W. (1993). *Spectroscopy in Catalysis: An Introduction*. Federal Republic of Germany: VCH Verlagsgesellschaft mbH.
- Nikolova, D., Edreva-Kardjieva, R., Gouliev, G., Grozeva, T. and Tzvetkov, P. (2006). The state of (K)(Ni)Mo/g-Al2O3 catalysts after water–gas shift reaction in the presence of sulfur in the feed: XPS and EPR study. *Applied Catalysis A: General.* 297, 135-144. Elsevier.
- Olah, G. A. and Molnár, Á. (2003). *Hydrocarbon Chemistry*. 2nd. ed. New Jersey, USA: John Wiley & Sons, Inc.
- Petroleum Extension Service. (1972). *Field Handling of Natural Gas.* (3rd ed.) The University of Texas at Austin: Petroleum Extension Council.
- Reguig, B.A., Regragui, M., Morsli, M., Khelil, A., Addou, M. and Bernède, J.C. (2006). Effect of the precursor solution concentration on the NiO thin filmproperties deposited by spray pyrolysis. *Solar Energy Materials and Solar Cells.* 90, 1381-1392. Elsevier.
- Rethwisch, D.G. and Dumesic, J.A. (1988). Adsorptive and catalytic properties of carbon monoxide and carbon dioxide over supported metal oxides. In Ayers, W.T. (Ed.) *Catalytic activation of Carbon Dioxide*. (pp. 102-122). Washington, DC: American Chemical Society.
- Richardson, J.T. and Twigg, M.V. (1998). Reduction of impregnated NiO/ α-Al₂O₃.
 Association of Al³⁺ ions with NiO. *Applied Catalysis A: General.* 167, 57-64. Elsevier.
- Riedel, T. and Schaub, G. (2003). Low-temperature Fischer-Tropsch synthesis on cobalt catalysts – effects of CO₂. *Topics in Catalysis*. 26: 145-156. Springer.

- Saito, M. and Anderson, R.B. (1981). The activity of several molybdenum compounds for the methanation of CO₂. *Journal of Catalysis*. 67, 296-302.
- Salagre, P., Fierro, J.L.G., Medina, F. and Sueiras, J.E. (1996). Characterization of nickel species on several γ-alumina supported nickel samples. *Journal of Molecular Catalysis A: Chemical.* 106, 125-134. Elsevier.
- Savva, P.G., Goundani, K., Vakros, J., Bourikas, K., Fountzoula, Ch., Vattis, D., Lycourghiotis, A. and Kordulis, Ch. (2008). Benzene hydrogenation over Ni/ Al₂O₃ catalysts prepared by conventional and sol-gel techniques. *Applied Catalysis B: Environmental*. 79, 199-207. Elsevier.
- Schneeman, J.G. (1968). *Industrial X-ray Interpretation*. United States of America: Intex Publishing Company.
- Schobert, H. H. (1990). *The Chemistry of Hydrocarbon Fuels*. England: Butterworth & Co (Pulishers) Ltd.
- Seemann, M.C., Schildhaver, T.J., Biollaz, S.M.A., Stucki, S. and Wokaun, A. (2006). The regenerative effect of catalyst fluidization under methanation conditions. *Applied Catalysis A: General.* 313, 14-21. Elsevier.
- Shields, M.A., Dowling, N.I. and Clark, P.D. (2007). Catalytic H₂S conversion and SO₂ production over iron oxide and iron oxide/ γ-Al₂O₃ in liquid sulfur. *Industrial & Engineering Chemistry Research*. 46, 7721-7728. American Chemical Society.
- Sikorska-Iwan, M., Mrozek, R., Ostasz, A. and Rzaczynska, Z. (2003). Thermal Investigations Of Dehydration Of Lanthanide(III) 5-Nitroanthranilates. *Journal of Thermal Analysis and Calorimetry*. 74, 529-536.
- Silver, R.G., Jackson, N.B. and Ekerdt, J.G. (1988). Adsorption and reaction of carbon dioxide on zirconium dioxide. In Ayers, W.T. (Ed.). *Catalytic activation of Carbon Dioxide*. (pp. 123-132). Washington, DC: American Chemical Society.
- Smet, F.D., Ruiz, P., Delmon, B. and Devillers, M. (1996). Catalytic behaviour of multiphasic oxide catalysts containing lanthanides (La, Ce, Pr, Sm, Tb) in the selective oxidation of isobutene to methacrolein. *Catalysis Letters*. 41, 203-207. Springer.
- Somorjai, G.A. (1972). On the mechanism of sulphur poisoning of platinum catalysts. *Journal of Catalysis*. 27, 453-456.

- Somorjai, G.A. (1994). *Introduction to the Surface Chemistry and Catalysis*. New York, United States of America: John Wiley & Sons, Inc.
- Song, Z., Bao, X., Wild, U., Muhler, M. and Ertl, G. (1998). Oxidation of amorphous Ni-Zr alloys studied by XPS, UPS, ISS and XRD. *Applied Surface Science*. 134, 31-38. Elsevier.
- Souma, Y., Ando, H., Fujiwara, M. and Kieffer, R. (1995). Catalytic hydrogenation of carbon dioxide to hydrocarbons. *Energy Conversion and Management*. 36 (6-9), 593-596. Elsevier.
- Spencer, M.J.S. and Yarovsky, I. (2007). Ab-Initio molecular dynamics study of H₂S dissociation on the Fe(110) surface. *The Journal of Physical Chemistry C*. 111, 16372-16378. American Chemical Society.
- Stoop, F., Verbiest, A.M.G. and Van Der Wiele, K. (1986). The influence of the support on the catalytic properties of Ru catalysts in the CO hydrogenation. *Applied Catalysis.* 25, 51-57.
- Su, B.L. and Guo, S.D. (1999). Effects of rare earth oxides on stability of Ni/α-Al₂O₃ catalysts for steam reforming of methane. *Studies in Surface Science and Catalysis*. 126, 325-332.
- Takenaka, S., Shimizu, T. and Otsuka, K. (2004). Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts. *International Journal of Hydrogen Energy*. 29, 1065-1073. Elsevier.
- Tanabe, K. and Yamaguchi, T. (1994). Acid-base bifunctional catalysis by ZrO₂ and its mixed oxides. *Catalysis Today*. 20 (2), 185-197.
- Tavares, M. T., Alstrup, I., Bernardo, C. A. and Rostrup-Nielsen, J. R. (1996). Carbon formation and CO methanation on silica-supported nickel and nickelcopper catalystsin CO + H₂ mixtures. *Journal of Catalysis*. 158, 402-410.
- Trimm, D. L. (1980). *Design of Industrial Catalyst*. The Netherlands: Elsevier Scientific Publishing Company.
- True, W. R. W. (1999). Construction inflation could squeeze North American pipelines. Oil & Gas Journal. 96 (35), 33-55.
- Tsuji, M., Kato, H., Kodama, T., Chang, Shih Ger, Hesegawa, N. and Tamaura, Y. (1994). Methanation of CO₂ on H₂-reduced Ni (II)- or Co (II)-bearing ferrites at 200 °C. *Journal of Materials Science*. 29, 6227-6230.

- Vannice, M. A. J. (1977). The catalytic synthesis of hydrocarbons from H_2/CO mixtures over the Group VIII metals V. The catalytic behavior of silicasupported metals. *Journal of Catalysis*. 50(2), 228-236.
- Vannice, M.A. and Garten, R.L. (1979). Metal-support effects on the activity and selectivity of Ni catalysts in CO/H₂ synthesis reactions. *Journal of Catalysis*. 56 (2), 236-248.
- Vederine, J.C., Hollinger, G. and Minh, O.T. (1978). Investigations of Antigorite and Nickel Supported Catalysts by X-ray Photoelectron Spectroscopy. *The Journal of Physical Chemistry*. 82, 1515.
- Wachs, I.E. (1996). Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts. *Catalysis Today*. 27, 437-455. Elsevier.
- Wachs, I.E. (2005). Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. *Catalysis Today*. 100, 79-94. Elsevier.
- Wambach, J. and Freud, H. (1994). CO₂ activation on transition metal surfaces. In. Paul, J. and Pradier, C.M. (Ed.) *Carbon Dioxide Chemistry: Environmental Issues*. (pp. 31-43). Cambridge, UK: The Royal Society of Chemistry.
- Wan Abu Bakar, W.A. (2005). Personnel Communications. Universiti Teknologi Malaysia, Skudai.
- Wan Abu Bakar, W.A. (2006). Personnel Communications. Universiti Teknologi Malaysia, Skudai.
- Wan Abu Bakar, W.A. (2007). Personnel Communications. Universiti Teknologi Malaysia, Skudai.
- Wang, H.T., Xiao, T.C., Su, J.X., Liu, W.X. and Lu, Y.L. (1999). Catalytic purification of flue gas from civil-used stove. *Catalysis Today*. 53, 661-667. Elsevier.
- Wang, S.H., Liao, X.Y., Cao, D.B., Huo, C.F., Li, Y.W., Wang, J.G. and Jiao, H.J. (2007). Factors controlling the interaction of CO₂ with transition metal surfaces. *Journal of Physical Chemistry C*. 111, 16934-16940. American Chemical Society.
- Wang, W.D., Lin, P.Y., Fu, Y.L. and Cao, G.Y. (2002). Redox properties and catalytic behavior of praseodymium-modified (Ce-Zr)O₂ solid solutions in three- way catalysts. *Catalysis Letters*. 82, 19-27. Springer.

- Wang, W.J., Li, H.L., Kang, G.H., Huang, J.Z. and Xu, Z. (2006). Detailed analysis of factors to influence the electrochemical behaviors of Fe: NiOx films fabricated by magnetron sputtering technology. *International Journal of Hydrogen Energy*. 31, 1791 – 1796. Elsevier.
- Warren, R. (1999). Pipeline economic uncertainly trims plans for pipeline construction. *Oil and Gas Journal*. 97 (6), 36-41.
- Weast, R.C. and Selby, S.M. (Eds.) (1966). *Handbook of Chemistry and Physics*. (47th ed.) Ohio: The Chemical Rubber Co.
- Wojcieszak, R., Monteverdi, S., Mercy, M., Nowak, I., Ziolek, M. and Bettahar,
 M.M. (2004). Nickel containing MCM-41 and AlMCM-41 mesoporous molecular sieves. Characteristics and activity in the hydrogenation of benzene. *Applied Catalysis A: General.* 268, 241-253. Elsevier.
- Yamasaki, M., Komori, M., Akiyama, E., Habazaki, H., Kawashima, A., Asami, K. and Hashimoto, K. (1999). CO₂ methanation catalysts prepared from amorphous Ni-Zr-Sm and Ni-Zr-misch metal alloy precursors. *Materials Science and Engineering A.* 267, 220-226. Elsevier.
- Yamashita, T. and Hayes, P. (2007). Analysis of XPS spectra of Fe²⁺ and Fe³⁺ ions in oxide materials. *Applied Surface Science*. doi: 10.1016/j.apsusc.2007.09.063.
- Yan, J.Y., Kung, M.C., Sachtler, W.M.H. and Kung, H.H. (1997). Co/ Al₂O₃ lean NO_x reduction catalyst. *Journal of Catalysis*. 172, 178-186. Elsevier.
- Yoon, W.S., Hanson, J., McBreen, J. and Yang, X.Q. (2006). A study on the newly observed intermediates structures during the thermal decomposition of nickel-based layered cathode materials using time-resolved XRD. *Electrochemistry Communications.* 8, 859-862. Elsevier.
- Zeng, H.C., Lin, J. and Tau, K.L. (1995). Memory effect of ZrO₂ matrix on surface Co₃O₄-CO position. *Journal of Material Research*. 10, 3096-3105.
- Zhang, Y.Q., Jacobs, G., Sparks, D.E., Dry, M.E. and Davis, B.H. (2002). CO and CO₂ hydrogenation study on supported cobalt Fisher-Tropsch synthesis catalysts. *Catalysis Today*. 71, 411-418. Elsevier.
- Zhao, N., Xu, R., Wei, W. And Sun, Y.H. (2002). Cu/ Mn/ ZrO₂ catalyst for alcohol synthesis by Fischer-Tropsch modified elements. *Reaction Kinetics and Catalysis Letters*. 75 (2), 297-304. Akadémiai Kiadó, Budapest.

- Zheng, H.Y., An, M.Z. and Lu, J.F. (2008). Surface characterization of the Zn-Al-Al₂O₃ nanocomposite coating fabricated under ultrasound condition. *Applied Surface Science*. 254, 1644-1650. Elsevier.
- Zhou, Y., Gu, D.H., Geng, Y.Y. and Gan, F.X. (2006). Thermal, structural and optical properties of NiO_x films deposited by reactive dc-magnetron sputtering. *Materials Science and Engineering B*. 135, 125-128. Elsevier.