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ABSTRACT 

 
 
 
 

 Malaysian crude natural gas is categorized as a sour gas due to the 
contamination of carbon dioxide (CO2) and hydrogen sulfide (H2S).  Recently, the 
removal of these sour gases via chemical conversion technique becomes the most 
promising technique.  The objective of this novel catalyst development is to achieve 
both low temperature and high conversion of sour gases to be applicable in gas 
industry.  The advantage of catalytic technology is the utilization of CO2 present in 
the production of methane gas.  Supported mixed metal oxide catalysts were 
prepared by wetness impregnation method for the in-situ reactions of H2S 
desulfurization and CO2 methanation from ambient temperature up to 300oC.  Fe/ 
Co/ Ni (10: 30: 60)-Al2O3 and Pr/ Co/ Ni (5: 35: 60)-Al2O3 catalysts were revealed as 
the most potential resulted from the catalytic activity screening by Fourier Transform 
Infrared Spectroscopy (FTIR) and Gas Chromatography (GC).  Results showed that 
the conversion of H2S to elemental sulfur over the catalysts was achieved 100% even 
around 250oC.  Methanation of CO2 in the presence of H2S yielded 2.9% of CH4 over 
Fe/ Co/ Ni (10: 30: 60)-Al2O3 catalyst and 6.1% of CH4 over Pr/ Co/ Ni (5: 35: 60)-
Al2O3 catalyst at maximum studied temperature of 300oC.  X-ray Photoelectron 
Spectroscopy (XPS) revealed Ni2O3 and Fe3O4 as the surface active components on 
the Fe/ Co/ Ni (10: 30: 60)-Al2O3 catalyst, while Ni2O3 and Co3O4 on the Pr/ Co/ Ni 
(5: 35: 60)-Al2O3 catalyst.  X-ray Diffraction (XRD) and Field Emission Scanning 
Electron Microscope (FESEM) showed that the supported catalysts are amorphous in 
structure.  Results from Energy Dispersive X-ray Analysis (EDX) indicated the 
presence of 2.7% and 0.9% of sulfur on the spent Fe/ Co/ Ni (10: 30: 60)-Al2O3 and 
Pr/ Co/ Ni (5: 35: 60)-Al2O3 catalysts, respectively.  There was 5.5% reduction of 
surface area over the spent Fe/ Co/ Ni (10: 30: 60)-Al2O3 catalyst characterized by 
Nitrogen Adsorption analysis.  Meanwhile, there was 8.6% increment of surface area 
over the spent Pr/ Co/ Ni (5: 35: 60)-Al2O3 catalyst, which would explain the 
dramatic increased of catalytic performance over this catalyst at maximum studied 
temperature of 300oC.  Characterization by FTIR and Thermogravimetry Analysis-
Differential Thermal Analysis (TGA-DTA) revealed the existence of residue of 
nitrate and surface hydroxyl compounds on the catalysts.  The aim to obtain high H2S 
desulfurization rate at low temperature was achieved.  However, improvement is still 
needed for the CO2 methanation reaction at low temperature in the presence of H2S. 
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ABSTRAK 
 
 
 
 

 Gas asli Malaysia tergolong sebagai gas masam disebabkan kewujudan gas 
karbon dioksida (CO2) dan hidrogen sulfida (H2S).  Kebelakangan ini, penyingkiran 
gas-gas masam ini melalui kaedah penukaran kimia merupakan kaedah yang paling 
berkesan.  Pembangunan mangkin baru ini bertujuan untuk mencapai peratus 
penukaran gas masam yang tinggi pada suhu yang sangat rendah, supaya dapat 
diaplikasikan di dalam industri gas asli.  Kebaikan teknologi pemangkinan adalah 
menukarkan gas CO2 yang sedia ada untuk penghasilan gas metana.  Mangkin yang 
terdiri daripada campuran logam oksida berpenyokong disediakan dengan cara 
wetness impregnation untuk tindak balas penyahsulfuran H2S dan metanasi CO2 
secara in-situ dari suhu bilik hingga 300oC.  Mangkin Fe/ Co/ Ni (10: 30: 60)-Al2O3 
dan Pr/ Co/ Ni (5: 35: 60)-Al2O3 ditentukan sebagai mangkin yang paling berpotensi 
hasil daripada ujian aktiviti pemangkinan dengan menggunakan FTIR dan GC.  Hasil 
ujian menunjukkan penyahsulfuran H2S mencapai 100% pada suhu sekitar 250oC.  
Tindak balas metanasi CO2 dalam kehadiran H2S menghasilkan 2.9% CH4 dengan 
menggunakan mangkin Fe/ Co/ Ni (10: 30: 60)-Al2O3 dan 6.1% CH4 dengan 
menggunakan mangkin Pr/ Co/ Ni (5: 35: 60)-Al2O3 pada suhu ujian maksimum   
300oC.  XPS dapat mengesan Ni2O3 dan Fe3O4 sebagai spesies permukaan yang aktif 
pada mangkin Fe/ Co/ Ni (10: 30: 60)-Al2O3.  Di samping itu, Ni2O3 and Co3O4 
dikesan sebagai spesies aktif pada mangkin Pr/ Co/ Ni (5: 35: 60)-Al2O3.  Keputusan 
XRD dan FESEM mempamerkan struktur amorfus pada kedua-dua mangkin ini.  
Analisis EDX pada mangkin Fe/ Co/ Ni (10: 30: 60)-Al2O3 dan Pr/ Co/ Ni (5: 35: 
60)-Al2O3 yang selepas ujian menunjukkan kehadiran sulfur sebanyak 2.7% dan   
0.9% masing-masing.  Daripada analisis Penjerapan Nitrogen, didapati sebanyak  
5.5% penurunan pada luas permukaan mangkin Fe/ Co/ Ni (10: 30: 60)-Al2O3 
selepas ujian.  Peningkatan luas permukaan sebanyak 8.6% berlaku pada mangkin Pr/ 
Co/ Ni (5: 35: 60)-Al2O3 selepas ujian.  Fenomena ini mungkin menerangkan 
peningkatan aktiviti pemangkinan secara mendadak oleh mangkin Pr/ Co/ Ni (5: 35: 
60)-Al2O3 pada suhu tindak balas 300oC.  Pencirian mangkin menggunakan FTIR 
dan TGA-DTA menunjukkan bahawa masih terdapat kehadiran sisa-sisa nitrat dan 
hidroksi pada kedua-dua mangkin ini.  Tujuan untuk mendapatkan peratus 
penyingkiran gas H2S yang tinggi pada suhu rendah telah dicapai.  
Walaubagaimanapun, usaha masih diperlukan untuk meningkatkan tindak balas 
metanasi pada suhu rendah dengan kehadiran H2S.  
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CHAPTER I 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1 Natural Gas 

 
 

The principal hydrocarbon component of natural gas is methane.  In many 

natural gas deposits, methane makes up 80 to 90 percent of the gas.  Natural gas may 

contain other small hydrocarbon molecules such as ethane, propane, butane, pentane, 

and hexane.  Besides these hydrocarbons, it may also comprise inorganic compounds 

such as nitrogen, helium, carbon dioxide and hydrogen sulfide.  Natural gas is an 

ideal fuel.  It requires minimal processing before use and has the highest calorific 

value of any fossil fuel. 

 
 
Malaysia has the world's 13th largest natural gas reserves and 24th largest 

crude oil reserves.  Malaysia is also the world's third largest producer of Liquefied 

Natural Gas (LNG) with production capacity of 23 million metric ton per year.  Our 

country is important to world energy markets because of its 75 trillion cubic feet (tcf) 

of natural gas reserves and its net oil exports of over 940,000 barrels per day.  

Natural gas consumption in 2002 was estimated at 1.0 tcf, with LNG exports of 

around 0.7 tcf (mostly to Japan, South Korea and Taiwan) (Malaysia Oil and Gas, 

2007).  

 
 
Since natural gas contains no mineral, no ash residue is produced upon 

combustion, making it a cleaner fuel.  Natural gas as the cleanest of the fossil fuels is 

second only to hydro and renewable energy resources in environmental friendliness.  
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Due to its gaseous state, it mixes with oxygen easily for more efficient combustion.  

Gas is the most thermally efficient fuel when used in combined cycle gas turbine 

power plants, which are in turn the most competitive with regard to expense, speed 

of construction, reduced maintenance and overall operability.  According to 

International Energy Agency forecasts, power generation in the Organization for 

Economic Co-operation and Development Pacific (Japan, Korea, Australia and New 

Zealand), China and East and South Asia (Brunei, Indonesia, Taiwan, South Korea, 

Malaysia, Philippines, Singapore, Vietnam and Thailand; Bangladesh, India and 

Pakistan) will by 2020 see natural gas growing up by 113%, coal by 83% and oil 

consumption rising by just 15% (Mueller, 2004a).  Natural gas fueled power plants 

are the preferred source of electrical energy.  This is by considering the limited 

availability of hydro and other renewable power, coal fueled power generation and 

growing worries over nuclear plant safety.   

 
  
It is expected that total investment requirements in the gas sector will reach 

$3.1 trillion, of which exploration and development will account for 55%, or $1.7 

trillion.  Upstream gas investment will continue to be concentrated in Australia, 

Indonesia and Malaysia, all of which have large proven reserves.  Innovation will 

bring previously inaccessible natural gas reserves to market, thereby tending to lower 

the cost and improve the competitiveness of gas (Mueller, 2004b). 

 
 
 
 
1.2 Research Background and Problem Statement 

 
 

Natural gas is combustible and gives a great deal of power upon 

consumption.  Natural gas is the future energy resource for Malaysia and this is 

ensured by Malaysia large reserves and further strength by the existence of huge gas 

reserves in the nearby countries (Md. Yasin, 1987).  However, the gas often contains 

the other light alkanes and a variety of inorganic compounds, including hydrogen 

sulfide (H2S), carbon dioxide (CO2), helium (He) and hydrogen (H2).  The 

composition of a natural gas as it comes from the well varies from one location to 

another.  
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Table 1.1 shows the chemical composition of Malaysian crude natural gas, 

analyzed by using Gas Chromatography-Mass Spectroscopy (GC-MS).  It is 

primarily consists of low density hydrocarbons (methane, ethane, propane) and 

impurities (CO2, H2S, O2, N2 etc).  Table 1.2 reveals the general chemical 

composition of crude natural gas from United States.   

 
 
Table 1.1: Chemical composition of crude natural gas from Telaga Bergading, 

Petronas Carigali Sdn. Bhd. (Laboratory Services Unit (UNIPEM), 

2003).  

Gases Composition (%) 

CH4 47.9 

C2H6 5.9 

C3H8 3.2 

CO2 23.5 

H2S 5.4 

Others (CO, O2, N2) 24.1 

  
 

Table 1.2: General chemical composition of crude natural gas from United States 

(Kiricsi and Guczi, 1999). 

Gases Composition (%) 

CH4 89.5 

C2H6 5.1 

C3H8 0.7 

CO2 2.5 

H2S 1.0 

Others (CO, O2, N2) 2.2 

 
 
Table 1.1 and 1.2 show the purity of Malaysian natural gas is lower than the 

United State’s natural gas.  Malaysian crude natural gas is categorized as a sour gas 

due to the contamination of H2S.  Hydrogen sulfide is the most toxic contaminant in 

the natural gas.  The hydrogen sulfide in natural gas has several possible sources.  

One is the decomposition of amino acids which contain the thiol functional group,     

-SH.  The anaerobic decay of sulfur-containing proteins or their thermal 
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decomposition at mild conditions could liberate the sulfur as H2S.  Another potential 

source is the anaerobic reduction of the sulfate ion, without its first being converted 

into organic sulfur compounds (Schobert, 1990).  This gas is undesirable for several 

reasons.  H2S itself has an unpleasant smell, being the compound responsible for the 

unforgettable odour of rotten eggs.  H2S in the presence of water is extremely 

corrosive and can cause premature failure of valves, pipelines and pressure vessels.  

It can also cause catalyst poisoning in refinery vessels and necessitates that many 

other expensive precautionary measures be taken.  Besides that, if H2S is present in 

the gas when it is burned, sulfur oxides are formed as products of combustion.  Not 

only the sulfur oxides themselves have irritating odors, but they also dissolves in 

water to form sulfurous and sulfuric acids, which are very corrosive.  Most pipeline 

specifications limit H2S content to 0.25 grain per 100 cf of gas, equivalent to about 

four parts per million (Petroleum Extension Service, 1972). 

 
 
On the other hand, carbon dioxide is considered as diluents, which has no 

heating value.  Therefore, CO2 might reduce the heating value (Btu/ cf) below 

acceptable limits.  This compound occupies space and is normally a part of the 

hydrocarbon environment.  There are many disadvantages in having diluents in the 

gas stream, most associated with horsepower, pipeline capacity, internal corrosion, 

and freezing.  The presence of carbon dioxide may enhance the formation of 

carbonic acid when it reacts with the vapour.  Blocks of dry ice may lead to the 

corrosion and clogging to the process and delivery pipeline.  

 
 
Typical pipeline-quality natural gas is composed of four main groups of 

compounds, 90-95% is made up of methane (CH4); 2-4% is ethane (C2H6).  Heavier 

ends through the C6’s constitute 2-3%, 0.5-4% is CO2 and N2 as diluents with traces 

of water vapor and contaminants (Schobert, 1990).  Natural gas that contains 

corrosive elements such as H2S and CO2 must be conditioned so that the flow-system 

equipment does not deteriorate and become a safety hazard or an economic loss.  

During corrosion of the pipeline, it disintegrates and loses its structural strength.  If 

small quantities are involved, the conditioning may be by the injection of chemical 

inhibitors into the gas stream; if the quantities are large, the most economical method 

may be removal of the contaminant or the worst is where a gas pipeline renewal is 
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needed.  Normally pipelines of 32 inches outer diameter or larger are assumed to be 

onshore projects.  Offshore projects are normally involved pipelines with outer 

diameter of less than 30 inches.  According to Oil and Gas Journal’s Pipeline 

Economics Report (Warren, 1999; True, 1999), for proposed U.S. gas pipeline 

projects in the 1997-98 periods surveyed, the average land cost per mile was more 

than $1.2 million/ mile.  On the other hand, the off shore projects proposed average 

more than $1.5 million/ mile.  These figures show how the corrosion of the acidic 

gases leading to the severe economic loss.  Besides, H2S and CO2 as the major 

impurities in Malaysian natural gas also reduce the quality and thus the market price 

of the gas.  Therefore, our country is seeking for an efficient way to increase the 

production and the quality of our natural gas.  

 
 
 
 

1.3 Current Technologies used in Purification of Natural Gas 

 
 
Gas purification involves the removal of vapour-phase impurities from gas 

streams.  A variety of conventional separation methods are presently being used to 

remove the “acid gasses” CO2 and H2S from crude natural gas.  Some are selective 

for only H2S removal, some only for CO2 removal.  However, commercial 

application of the various gas-purification processes are frequently plagued by 

unpredictable problems of corrosion (Lieberman, 1987), side reactions, foaming 

(Cury, 1981), and catalyst deactivation (Trimm, 1980). 

 
 
Iron-sponge process is the oldest and also the most limited known for 

removal of sulfur compounds.  It is a dry process consisting of iron oxide (Fe2O3) 

impregnated on wood chips or shavings.  It is usually used on small gas volumes 

with low H2S contents.  A vessel can operate 30 to 60 days either without any 

regeneration or with the partial generation that can be affected with air passage 

through the vessel.  The vessel must be recharged with new iron-sponge material 

when gas sweetening is no longer possible.  This process is selective toward H2S.  If 

there is CO2 in the stream, it will not be affected (Petroleum Extension Service, 

1972).  The primary disadvantage of this process is the difficult change out operation 
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and disposal of the spent sponge.  Hydrogen sulfide can also be removed by 

stripping.  However, a toxic waste stream is created.  The waste stream typically 

contains a high concentration of hydrogen sulfide (H2S) plus trace amounts of heavy 

hydrocarbons.  

 
 
The most widely used process in industry, the alkanolamine process, is a 

continuous operation liquid process using absorption for the acid gas removal with 

subsequent heat addition to strip the acid gas components from the absorbent 

solution.  The alkanolamine absorbing solution is not selective and absorbs total acid 

gas components.  The absorbing alkanolamine solution (weak base) chemically 

reacts with the H2S and/ or CO2 (weak acid) to give a water soluble salt.  Similarly, a 

significant amount of waste was formed with the absorption (Petroleum Extension 

Service, 1972). 

 
 
Membranes have clear advantage in terms of compactness, not having 

moving parts and being noise free.  The issue not considered in this study is the 

environment impact of the permeate product streams.  These streams will contain 

substantial amounts of wastes and cannot be discharged to the atmosphere.  For this 

reason and also because of economic consideration the permeate streams will have to 

be treated by a suitable sulfur recovery process.  In addition, the life spans of 

membranes are limited.  They may need to be restored after some time (Hao et al., 

2002). 

 
 
The Shell sulfinol process is unique in that it uses a mixture of solvents, 

which allows it to behave as both a chemical and physical solvent process.  The 

solvent is composed of sulfolane, DIPA (di-isopropanolamine) and water.  The 

sulfolane acts as the physical solvent while DIPA acts as the chemical solvent.  This 

combination of absorption capabilities offers advantages both for loading and 

uploading of the solvent.  In general, carbonyl sulfide (COS), carbon disulfide (CS2) 

and mercaptans can be satisfactorily removed from the feed gas, along with H2S and 

CO2, within certain limitations of concentrations in the feed gas.  Disadvantages of 

sulfinol are: (i) the absorption of heavy hydrocarbons and aromatics and (ii) the 

expensive nature of the sulfolane in the solvent (Petroleum Extension Service, 1972). 
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Recently, the removal of sour gases via chemical conversion technique using 

catalyst becomes the most promising technique.  Methanation has received attention 

from a viewpoint of environmental protection because the emission of CO2 in the 

atmosphere brings about global warming by the greenhouse effect and these harmful 

gases can simultaneously be converted to useful methane gas (Hayakawa et al., 

1999).  This process can increase the purity of the natural gas without wasting the 

undesired components but fully used them to increase the concentration of methane.  

However, this reaction is an eight electron process involving thermodynamics.  It is 

difficult to achieve this reaction under mild conditions due to kinetic barriers.  These 

conditions are inconvenient in a laboratory because they required specialized 

equipment, and the rate of the reaction is difficult to control.  Therefore, the 

development of catalysts to lower the activation energy of this reaction is needed. 

  
 

On the other hand, hydrogen sulfide in the crude natural gas can be reduced 

to elemental sulfur by the Claus process.  H2S is partially burned to create a mixture 

of H2S and sulfur dioxide (SO2).  The H2S and SO2 then react in the presence of a 

catalyst to form sulfur and water.  Sulfates formation is an undesired side reaction of 

Claus catalyst.  However, when the proper metals are used, the spinel compound 

from the catalyst reacts to form sulfates that are unstable enough to react with H2S 

and other compounds to form elemental sulfur.  Thus, sulfates do not inhibit catalyst 

performance.  Then the sulfur produced can be sold commercially.  There are 

problem arises when significant amounts of hydrocarbons reduce the catalyst 

efficiency.  Hydrocarbons reduce to form graphite, which contaminates the sulfur. 

 
 
Equation 1.1 shows the general H2S desulfurization reaction while Equation 

1.2 shows the stoichiometric equation for CO2/ H2 conversion to methane or higher 

hydrocarbons. 

 
 
H2S (g)  + ½ O2 (g)      →    S (s) + H2O (l)        (Equation 1.1) 

CO2 (g)  + 4H2 (g)  →  CH4 (g) + C2H6 (g) + C3H8 (g)… +  2H2O (l)   (Equation 1.2) 
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Besides that, co-generation of heat is also possible because the methanation 

of CO2 is an exothermic reaction, with �H = -165 kJ/mol.  Removal of H2S is an 

oxidation reaction, while removal of CO2 is a reduction reaction.  Enthalpies of the 

reduction and oxidation reactions play an important role.  CO2 in this case can act as 

an oxidizing agent.  

 
 H2S (g) + CO2 (g) → SO2 (g) + 2CO (g) + H2 (g)                            (Equation 1.3)

  

The CO produced in the previous step can be converted to CH4 in the presence of H2, 

as shown in Equation 1.4.  

  

CO (g) + 3H2 (g) → CH4 (g) + H2O (l)         (Equation 1.4) 

 
 
Catalytic activity is defined as the rate at which a chemical reaction reaches 

the equilibrium.  From the industrial point of view, activity is also defined as the 

amount of reactant transformed into product per unit of time and unit of reactor 

volume.  Meanwhile, the selectivity of a catalyst is defined as the rate of reactant 

conversion into the desired products.  Selectivity usually depends on reaction 

parameters such as temperature, pressure, reactants composition and also on the 

catalyst nature.  Therefore, the main effect of a catalyst is to provide an alternative 

reaction path that permits to decrease the activation energies of the different reaction 

steps, reaching therefore the equilibrium in an easier and faster way.  On the other 

hand, the catalyst should be high selectivity towards yielding of CH4 and minimizes 

the possibility of side reactions.  Equation 1.5 shows an undesired side reaction in 

this study. 

 

CO2 (g) + H2 (g) → CO (g) + H2O (l)         (Equation 1.5) 
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1.4 Objectives of the Research 

 
 
The ultimate goal of this research is to synthesize a novel catalyst that is able 

to catalyze the in-situ reactions of CO2/ H2 methanation and H2S desulfurization at a 

very low temperature with 100 % conversion. 

The objectives of this research are: 

• To synthesize and modify supported Ni based catalyst for the in-situ 

reactions of methanation and desulfurization; 

• To elucidate the catalytic activity of the prepared catalysts;  

• To characterize and propose the active site of an excellent catalyst. 

 
 
 

 
1.5 Scope of the Research 

 
 
Various supported catalysts were prepared to catalyze the in-situ reactions of 

CO2/ H2 methanation and H2S desulfurization.  In this research, dopants were chosen 

from the first row transition metal and rare earth metal to be added towards nickel 

oxide based catalyst.  First, study on different ratio of the metal oxides to nickel was 

carried out.  Then, different possible supports were tried on the potential catalysts to 

propose the best support.  The catalytic activities of the prepared catalysts were 

tested using a home-built microreactor coupled with Fourier Transform Infrared 

Spectroscopy.  The production of methane gas was detected by Gas Chromatography 

analysis to determine the yielding of methane.  All the studies will be done based on 

trial and error method where different mixed metal oxides with different ratio were 

tested until the best performance catalyst was obtained.  The characteristics of the 

novel catalyst were confirmed by the use of X-ray Photoelectron Spectroscopy for 

active surface components, X-Ray Diffraction for bulk structure, Field Emission 

Scanning Electron Microscope for morphology study, Energy Dispersive X-Ray 

Analysis for elemental composition study, Nitrogen Adsorption for pore texture and 

surface area of the catalyst, Fourier Transform Infrared Spectroscopy for the 

functional group study and Thermogravimetry Analysis to study the mass loss of the 

catalyst during temperature change.  The active sites of the novel catalyst would be 
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proposed.  In general, it is a very demanding task to make a useful comparison of 

activity and selectivity of a catalyst under conditions appropriate for commercial 

operation. 
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