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Abstract 

 
 

 

Metal-organic vapour phase epitaxy  (MOVPE) is a versatile system that is 

capable of growing various materials especially the II-VI and III-V semiconductor 

materials. However, growth conditions for each individual system are different from 

the other and need to be individually calibrated. The work presented in this thesis is 

to calibrate and determine the growth parameters for the growth of indium arsenide 

(InAs) quantum dots on gallium arsenide (GaAs) substrates via Stranski-Krastanov 

self-assembled growth mode. The experiment was done in the cleanroom using a 

newly installed MOVPE system at Ibnu Sina Institute for Fundamental Science 

Studies, UTM. The effect of various growth parameters on the dot nucleation have 

been studied using atomic force microscopy (AFM) for structural information and 

photoluminescence (PL) for optical characterization. The growth parameters studied 

include growth rate, temperature, and  V/III ratio. A total of 15 samples have been 

grown with five samples represent each selected parameter. The surface morphology 

of each samples for each parameter was observed using AFM. Graphs of dots height 

and width were plotted and the optimal growth parameters were obtained. The result 

shows that optimal parameters for the InAs quantum dots growth were temperature 

of 550 
o
C, V/III ratio of 10 and growth time of 4 seconds.  Three more samples with 

optimal  parameters were then grown for the  PL and energy dispersive X-ray (EDX) 

characterization. The results show strong confinement quantum dots have been 

successfully grown in this experiment. The results of this study can be used for 

further improvement of the indium arsenide quantum dots growth. 
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Abstrak 

 
 

Metal-organic vapour phase epitaxy  (MOVPE) merupakan satu sistem yang 

serba boleh berkeupayaan menumbuhkan pelbagai bahan terutamanya bahan-bahan 

semikonduktor kumpulan II-VI dan III-V. Walaubagaimanapun keadaan 

pertumbuhan untuk setiap sistem adalah berbeza antara satu sama lainnya dan perlu 

ditentukurkan secara individu. Kerja yang dibentangkan di dalam tesis ini adalah 

untuk proses tentukuran dan penentuan parameter optimum bagi pertumbuhan bintik 

kuantum indium arsenida (InAs) di atas substrat gallium arsenida (GaAs) melalui 

mod pengumpulan-kendiri Stranski-Krastanov. Eksperimen dilakukan di Bilik 

Bersih, Institut Kajian Sains Fundamental Ibnu Sina, UTM menggunakan alat 

MOVPE yang baru dipasang. Maklumat struktur bagi kesan pelbagai parameter 

pertumbuhan ke atas penukleusan bintik dikaji menggunakan atomic force 

microscope (AFM) manakala fotoluminesens (PL) pula digunakan bagi pencirian 

optik. Parameter pertumbuhan yang dikaji termasuklah kadar pertumbuhan, suhu 

dan nisbah V/III. Sebanyak 15 sampel telah ditumbuhkan dengan lima sampel 

mewakili tiap parameter. Morfologi permukaan setiap sampel untuk setiap 

parameter dilihat menggunakan AFM. Graf dari ketinggian dan kelebaran bintik 

diplotkan dan parameter optimum diperolehi. Hasil kajian menunjukkan dot terbaik 

diperolehi pada suhu optimum 550 
o
C, nisbah V/III adalah 10 dan masa 

pertumbuhan 4 saat.  Tiga lagi sampel dengan parameter optimal kemudiannya 

ditumbuhkan untuk pencirian PL dan energy dispersive X-ray (EDX). Hasilnya 

menunjukkan bintik kuantum yang terkurung kuat telah berjaya ditumbuhkan dalam 

eksperimen ini berasaskan parameter optimum. Hasil dari kajian ini boleh digunakan 

untuk memperbaiki lagi pertumbuhan bintik kuantum indium arsenida. 
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CHAPTER I 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Research 

 

 The modern lives we enjoy today are mostly contributed by the dramatic 

development in the microelectronic field. From the history of the semiconductor 

development starting 60 years ago, starting with the invention of the first transistor in 

1947 by John Bardeen and Walter Brattain and following with the development of 

Integrated circuits in 1958 by Jack Kilby until now, the size of the integrated circuits 

have been shrunk in size and increased in number of transistors per area.  

 

 As predict by Gordon Moore, the size of the transistor will reduce half every 

1.5 years. It have been 45 years since the introduction of the Moore’s law, the 

development of the semiconductor technology until today still following this law. 

Pioneer by the Intel Corp, the size of the transistor are predicted to have gate length 

of 25nm in year 2013 using nano-lithography (Intel Corp, 2008). There are also 

researches for higher efficiency laser diode, this interest brought up by researchers in 

order to achieve smaller size, lower power consumption, and lower cost, 

semiconductor lasers used as optical transmitters in optical networks and high-speed 

optical LANs to replace the strained quantum-well lasers which optical output is 

sensitive to changes in ambient temperature (Fujitsu Corp, 2007), the researchers are 

focus on higher dots density, higher uniformity among the dots, smaller dots size and 

control of dots growth array which cannot  use the conventionally lithography 

technique due to technology limitation of minimization.  
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1.2 Problem with Future Minimization  

 

 Smaller transistor will offer smaller operating power and faster operating 

speed. The exponential growth of information technology over the past few decades 

has been largely enabled by scaling of metal–oxide–semiconductor field-effect 

transistors (MOSFETs) and complementary- metal–oxide–semiconductor (CMOS) 

into the nanometer regime (Chen Q et. al., 2004). Individual transistors with gate 

length as small as 15nm have been fabricated using gallium arsenide (Gordon et. al., 

1997), but further miniaturization became a question when the size of the transistor 

entering the quantum region. 

 

1.2.1 Technology Limitation 

 

 The fabrication of semiconductor wafer heavily relied on the lithography 

technique. New lithography technique such as the electron-beam lithography, X-ray 

lithography and plasma etching offer high resolution of etching result. The best 

resolution can be obtained is 15nm for electron-beam lithography, 20nm for X-ray 

lithography and 15nm for plasma etching. Obviously we cannot meet the challenges 

for future miniaturization for transistor such as MOSFETs and CMOS.  With leading 

edge lithography technique, it is still difficult for transistors to be made sufficiently 

uniform and reliable to build into a densely integrated computer containing a billion 

or more of them. 

   

 To produce a ELSCI (Extra Large Scale Circuit Integration), billions of 

smaller and faster transistors get packed into a single piece of silicon about an square 

inch size, it power consumption and heat generated in the processor core becomes a 

significant technical challenge. Intel
®
 comes out with new depleted substrate 

transistor; it was fabricated on an ultra-thin silicon layer to reduce current tunneling 

leakage. However, the leakage through this ultra-thin insulator layer becomes one of 

the largest sources of power consumption of chips. Intel
®
 then replaced this silicon 

layers with other high dielectric material which grow atomically layer by layer, 

however such complicated process will increase the cost and the semiconductor 

material within the transistor will lost it bulk properties when further scaling and this 

meets another dead end. 
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1.2.2 Semiconductor Bulk Properties Limitation 

 

 The transistors widely use today are MOSFETs and CMOS which working 

on semiconductor bulk properties, when the further minimization of the integrated 

circuit, the transistor size will follow the same path and now the bulk properties of 

the semiconductor devices had meet the end of the road. Some of the characteristic of 

the limitation for down scaling of the semiconductor devices or transistor are as 

below: (Gordon et. al., 1997) 

 

 High electrical field – Bias voltage apply over the short length of the gate can 

cause the “Avalanche Breakdown”. Majority of the electrons will be excited out 

from the semiconductor at high energy and causes the circuits to surge.  

 

 Heat problem – Further miniaturization means more transistors per area in the 

integrated circuit, the structure of the transistors and other components become 

more compact. With the same materials applied with same thermal efficiency, 

extra heats from the devices which will cause overheat and malfunction to the 

devices.  

 

 Lost of bulk material properties – Doping in small scale will result in non-

uniformity; this will require the doping atoms to form a regular array.  

 

 Shrinkage of depletion regions – The depletion regions will become too thin and 

quantum tunneling of electron from the source to the drain will occur and 

interrupt the transistor function.  

 

 Shrinkage of Insulator layer – The insulator layer will also becomes thinner 

following the down size of the transistor and when the thickness become too thin, 

electrons will escape through tunneling.  
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1.3 Quantum Effect on Quantum Confinement 

 

 When the dimension of the semiconductor structure scaling down to nano 

region, two noticeable effects i.e. the energy quantization and the electron tunneling 

will start to occur. When the semiconductor structures reduce to a certain dimension, 

the bulk properties will start to disappear.  

 

 

1.3.1 Quantum Confinement 

 

 The scaling of the material to nano region is called quantum confinement, in 

term of low dimensional semiconductor; it was describe as confinement of the 

exciton within the physical boundaries of the semiconductor (Strouse, 2003). The 

confinement regimes refer to the size in semiconductor quantum structures that 

comparing the Bohr radius (aB) to the diameter of the nano-crystal (D), 

  

 Strongly-confined regime: D < 2aB 

 Intermediate confinement regime: D ~ 2aB 

 Weakly-confined regime: D > 2aB 

 

 The exciton Bohr radius (aB ~ 5.0 - 5.5 nm) is the distance between the 

electron and the hole within an exciton. The exactions here are referring to coulomb 

correlated electron/hole pair in a semiconductor. It is the elementary excitation state 

in a semiconductor. This phenomenal happen when a photon collides into a 

semiconductor, which is then excites an electron from valence band into the 

conduction band and the missing electron in the valence band leaves a hole of 

opposite electric charge behind it, and consequently to which it is attracted by 

Coulomb force. The exciton results as the binding of the electron with its hole. For 

good quantum properties, one will need strong confinement around 10 nm. All 

materials have three-dimensional surfaces and in semiconductor material were no 

exceptional either. The confinement for the semiconductor material’s structure can 

be one-dimensional confinement, two-dimensional confinements or three-

dimensional confinements. 
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One-Dimensional Confinement 

 

 

 

 

 

 

 

 

 

Figure 1.1a: Thin film    Figure 1.1b: Thin film density of state 

 

 One-dimensional confinement semiconductor structure is called the quantum 

well; the quantum well is a higher band-gap material sandwich between two lower 

band-gap materials to form an energy threshold as shown in Figure 1.1a. It energy 

will quantized due to the confined one dimensional resulting step-like density of 

states as shown in Figure 1.1b. 

 

Two-Dimensional Confinement 

 

 

 

 

 

 

 

 

 

Figure 1.2a: Quantum wire  Figure 1.2b: Quantum wire density of state 

 

 Two-dimensional confinement semiconductor structures is called quantum 

wire, a rod like shape which allow electron mobility in one-dimension as shown in 

Low Band-Gap Material (GaAs) 

High Band-Gap Material (InAs) 

 

Bulk Material 

Quantum Wires  
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Figure 1.2a. It energy will quantized in two-dimensional space resulting the density 

of states as shown in Figure 1.2b. 

Three-Dimensional Confinement 

 

 

 

 

 

 

 

 

 

Figure 1.3a: Quantum dot  Figure 1.3b: Quantum dot density of state 

 

 Finally the three-dimensional confinement semiconductor structures is called 

quantum dot. The quantum dot as its name indicates is confined in three-dimensional 

space into a sphere or cube shape such as in Figure 1.3a. The electron movement is 

restricted in all three dimensions resulting a discrete energy as shown in Figure 1.3b. 

 

 

1.3.2 Tunneling Effect 

 

 The dimension of the semiconductor structures while scaling down into nano 

region, will reach a critical dimension when electron not longer flow normally but 

tunneling into the other layers of materials. Quantum tunneling is a quantum 

mechanical phenomenon, where wave can penetrate through barrier materials which 

are not possible classically. In quantum mechanic, the electron either can be a 

particle or wave function, and since the electron is a wave function, it will have 

probability to tunneling through barrier material (Gerhard et. al., 1994). Few 

parameters that related to tunneling are: 

 mass of particle: reduces tunneling exponentially  

 height of barrier: reduces tunneling exponentially  

 width of barrier: reduces tunneling exponentially  

 dissipation: reduces tunneling, perhaps to zero  

Bulk Material 

Quantum Dots  
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Figure 1.4a: Tunneling effect    Figure 1.4b: Tunneling barrier 

  

 The tunneling in semiconductor can be described in Figure 1.4a, where an 

electron wave function is tunneling through the high band-gap barrier. The tunneling 

coefficient largely affected by the width d and the height  of the barrier as shown in 

Figure 1.4b. The tunneling effect in nano region in semiconductor will be one of the 

main limitations on future scaling of transistor size. For this reason, instead of 

avoiding this tunneling effect, scientists around the world are researching a new type 

of semiconductor operating using the tunneling effect. One such device is single-

electron transistor or SET. 

 

 

1.4  Application of Quantum Dots 

 

 Single-electron transistors operating in the principle as one electron tunneling 

through the island dot located in the middle of the transistor as shown in Figure 1.5a 

and 1.5b. Figure 1.5a is a single-electron transistor fabricated using etching 

technique while the selective area growth single-electron transistor in Figure 1.5b is 

fabricated by Hokkaido University of Japan (Motohisa et. al., 1996) 

 

 

 

 

    

 

 

 

Figure 1.5a: Lithography etched SET            Figure 1.5b: Self-assembled SET
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 In 1982 it was first theorized that quantum dot (QD) lasers would have better 

temperature stabilities (Arakawa et. al., 1982). Since then other improvements have 

also been predicted for QD lasers (Asada et. al., 1986]. A quantum dots laser 

operating in the principle as photons emitter at high energy band gap as shown in 

Figure 1.6a.  Generation of high power and high efficiency laser is possible using 

smaller quantum dots (Figure 1.6b) which will produce shorter light wavelength and 

thus increase the laser power. 

 

  

 

 

 

  

 

     

      

   Figure 1.6a: Diagram of photon emission from quantum laser 

     

 

 

 

 

 

 

 

 

 

  Figure 1.6b: Quantum dots size effect on emission photon wavelength. 

 

The first quantum dot lasers were based on a single layer of dots and lased at 77K 

(Kirstaedter et. al., 1996; Ledentsov et. al., 2000). These early lasers were found to 

have high characteristic temperatures and low threshold currents, as predicted by 

theory (Arakawa et. al., 1982; Asada et. al., 1986; Lott et. al., 2000). In order to 

obtain room temperature lasing several layers of dots were grown (Ledentsov et. al., 

e- e- e-

e- e- e-

h+ h+ h+

h+h+h+

conduction band

n-type AlGaAs GaAs quantum 

structure

photon emission

p-type AlGaAs

valance band

e- e- e-

e- e- e-

h+ h+ h+

h+h+h+

conduction band

n-type AlGaAs GaAs quantum 

structure

photon emission

p-type AlGaAs

valance band
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2000). Improvements to the threshold current densities were made by embedding the 

dots into a well structure and including AlGaAs in the barrier layers (Ledentsov et. 

al., 2000). Lasers based on several layers of dots, operating at room temperature, 

were reported soon afterwards (Heinrichsdorff et. al., 1997). Quantum dot VCSELs, 

emitting at 1.3¹m, have been demonstrated (Lott et. al., 2000). Other devices have 

been predicted to improve with the use of quantum dots in their active regions. There 

are now many reports of quantum dot infrared photodetectors that show signs of 

improved performance over quantum well infrared photodetectors (Liu et. al., 2001; 

Tang et. al., 2001; Stiff-Roberts et. al., 2002) 

 

1.5  Research Problem 

 

1. This study was done using a new MOVPE machine assembled at Nanophysics 

Laboratory, Ibn Sina Institute for Fundamnetal Science, UTM with unknown 

growth parameters 

 

2. Growth parameters are vary from one chamber to the other based on the design 

and source flow 

 

3. Limited growth technique or recipe to achieve thesis objectives, a little different 

growth design, recipe and chamber can produce a far different result. 

 

 

 

1.6  Research Objectives 

 

This work is based on the following research objectives: 

a) To grow the Indium Arsenide quantum dots using Metal-Organic Chemical 

Vapour Epitaxy (MOVPE) under three different parameters: 

 

 Temperature 

 V/III ratio 

 Source Rate 
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b) To obtain the best growth parameter for all three parameters studies for 

Indium Arsenide quantum dots 

 

 

1.7 Research Scope 

 

 Fabrication of the indium arsenide (InAs) quantum dots using metal organic 

vapour phase epitaxy (MOVPE), on gallium arsenide (GaAs) wafers. Three 

parameters studies are growth temperature, source rate and V/III ratio to get the 

optimal dot formation. 

 

 Observe the indium arsenide quantum dots formation trend under the atomic 

force microscopy and photoluminesence. This observation will provide 

information and understanding about the optimal condition to get the confined 

dots size, height, density and distribution. 

 

 

1.8 Thesis Summary 

 

This thesis is divided into five chapters. Chapter I Introduces the limitation of current 

technology in Solid State Nanotechnology and the advantage of the quantum dots 

behind the quantum confinement energy and quantum tunneling. Research objectives 

and scopes of this thesis are also explained in this chapter. 

 

Chapter II summarizes all the theory related to this study by reviewing related 

literatures. This includes the theory and experiments about the self assembly 

quantum dots formation. 

 

Chapter III explains the experimental set-up and procedures for growing of quantum 

dots using MOVPE. Including in this chapter is the calibration of the MOVPE 

system and samples characterization. The experimental results are then discussed in 

Chapter IV and Chapter V presents the conclusion of this study and suggestion for 

future improvement. 
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