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ABSTRACT 
 
 
 
 

Nanostructures such as quantum dot and nanocluster have occupied the centre 
of scientific interest because of their unique electronic nature. In this research, the 
electronic structures of silicon quantum dot were studied. The quantum dot was 
homologized with nanocluster since there is no strict distinction between these two 
nanostructures. The simulations in this research were carried out by using VASP 
(Vienna Ab-Initio Software Package) which utilizes the method of density functional 
theory and plane wave basis set. In order to speed up the computational time, 
parallelization was implemented on VASP. First, silicon clusters with surface 
passivated by hydrogen, SinHm were simulated and the density of states (DOS) as 
well as bandstructure for each cluster was yielded. From the DOS graphs, discrete 
spectrum was observed instead of bulk-like continuous DOS which is the evolvement 
from bulk to nano-size. Bandstructure graphs also showed the discrete energy level 
in consistence with the discrete energy spectrum from DOS. It was found that the 
bandgap for hydrogenated silicon clusters increases with the decrease in size. Bare 
silicon clusters, Sin were also simulated from 1 to 15 number of silicon atom (n). 
Optimization was performed to obtain the ground state structure. The bandgaps for 
the ground state silicon clusters do not show a decreasing trend with the increment of 
cluster size as that of hydrogenated silicon cluster. The electronic structures of 
optimized clusters are affected by the surface orientation of the clusters. A 
comparison of the bandgap values for SinHm and Sin was made. Finally, the current-
voltage (I-V) characteristic and conductance-voltage spectrum (G-V) of single-
electron transistor (SET) were studied with a simple toy model. These transport 
properties have shown the relativity of the electronic structure and the electron 
transport, where the conductance gap increases with the energy difference between 
Fermi level of the gold lead and the nearest molecular energy level of silicon cluster.  
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ABSTRAK 
 
 
 
 

Nanostruktur seperti bintik kuantum dan nano kluster telah menjadi matlamat 
kajian dalam bidang sains disebabkan sifat elektronik semulajadinya. Dalam kajian 
ini, struktur elektronik bintik kuantum silikon telah dikaji. Bintik kuantum telah 
dianggap sama dengan nano kluster, oleh kerana tiada perbezaan yang ketara antara 
kedua-dua nanostruktur ini. Simulasi kajian telah dijalankan dengan menggunakan 
perisian VASP (Vienna Ab-Initio Software Package) yang menggunakan teori 
fungsian ketumpatan dan set basis gelombang satah. Untuk menyingkatkan masa 
pengiraan, keselarian telah dilaksanakankan ke atas VASP. Simulasi ke atas kluster 
silikon  yang permukaannya dipasifkan dengan hidrogen, SinHm telah dilakukan dan 
ketumpatan keadaan dengan struktur jalur telah diperolehi. Daripada graf ketumpatan 
keadaan, spektrum diskrit telah didapati. Perubahan ketumpatan keadaan daripada 
selanjar bagi struktur pukal ke diskrit spektrum bagi nanostruktur merupakan evolusi 
nano. Jalur struktur juga menunjukkan aras tenaga diskret yang selaras dengan 
spektrum diskrit daripada ketumpatan keadaan. Jurang jalur untuk silikon 
terhidrogenasi telah didapati semakin mengurang semasa saiz kluster meningkat. 
Simulasi ke atas kluster silikon tulen (tak terhidrogenasi), Sin yang mempunyai 
bilangan atom (n) dari 1 ke 15 juga dilakukan. Pengoptimuman dilakukan untuk 
mendapatkan struktur keadaan dasar. Jurang jalur bagi struktur keadaan dasar 
kluster-kluster itu tidak mempunyai aliran yang menurun dengan peningkatan saiz 
kluster seperti yang berlaku pada kluster silikon terhidrogenasi. Struktur elektronik 
kluster-kluster optimum dipengaruhi oleh orientasi permukaan kluster. Perbandingan 
nilai jurang jalur bagi SinHm dan Sin dilakukan. Akhirnya, ciri arus-voltan (I-V) dan 
konduktans-voltan (G-V) bagi transistor elekron tunggal dikaji dengan menggunakan 
satu model yang mudah. Sifat-sifat pengangkutan elektron itu menunjukkan 
perkaitan antara struktur elektronik dengan pengangkutan elektron, di mana jurang 
konduktans semakin bertambah apabila perbezaan tenaga antara aras Fermi elektrod 
emas dengan aras tenaga molekular yang paling dekat bertambah. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Nanotechnology and Nanoscience 

 

 

Nanotechnology and nanoscience had emerged as a very popular and 

important issue in every field including science (physics, chemistry and biology) and 

engineering over the decade. This is the trend of technology as many things get 

smaller and smaller by time and when it exceeds the ability of microtechnology, it 

comes to nanotechnology. This is the phenomenon of miniaturization which 

consequently leads to the brand new era of technology with novel concepts and 

devices.  

 

The word “nano” refers to the size of 10-9 meter. One can imagine how small 

a nanometer is when a human hair with diameter approximately 100 µm is sliced 105 

times, a bacterial cell is divided 100 times, and ten hydrogen atoms are lined up. 

Nanoscience is concerned with study of objects which is anywhere from hundreds to 

tens of nanometer in size, whilst nanotechnology is related to the practical 

application of materials and devices in the same size range. Nanotechnology is 

sometimes called molecular manufacturing which is a branch engineering that deals 

with the design and manufacture of extremely small electronic circuits and 

mechanical device built at molecular level of matter.  



 2 

 

 

Indeed, the emergence of nanotechnology already happened in the late 19th 

century when colloidal science started but it is not referred to nanotechnology at the 

time. In year 1959, Richard Feynman in his talk “There’s Plenty of Room at the 

Bottom” had firstly mentioned some of the nanotechnology concepts [1].  He 

described a process by which the ability to manipulate individual atoms and 

molecules might be developed. In 1947, the term “nanotechnology” was defined by 

Professor Norio Taniguchi from Tokyo Science University.  

 

When things shrink into nanoscale, quantum effects come into play and 

classical theory unable to explain what happens in this extremely small size. Hence, 

the attributes of nanoscale particles are in between the atom and bulk materials. 

These attributes will vary by size which leads to the ability of material behavior 

engineering. This revolution have made nanotechnology and nanoscience a very 

exotic field which still need a lot more efforts in research to open up and reveal its 

under covered ability.  

 

 

 

 

1.2 Application of Nanotechnology 

 

 

The advancements in science and technology have allowed the 

miniaturization of amazingly complex devices. A lot of the nano-devices are being 

researched widely and intensively, hence its market potential is bright. A portion of it 

is as yet conceptual, though realization is not an impossible matter. It is worth to 

point out that nanotechnology has remarkably brought together technologies from 

physics, biology and chemistry. 
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1.2.1 Nanoelectronics, Nanocomputing and Nanophotonics 

 

 

According to Moore’s law, the number of transistors on a microprocessor 

would double periodically approximately every 18 months. Without taking account 

of the cost, this prediction had indicated that the transistors will be smaller in order to 

obey the law. To increase the density of transistors on one chip, the size of transistors 

must be small enough. Nanotechnology can achieve this target and open up the new 

phase of Moore’s law with nanoelectronics and nanocomputing. 

 

 

Nanocomputing is the use of the structures on the scale of within 100 

nanometers to accomplish any of the tasks that modern computers can do.  This kind 

of computing will adopt a new concept of operation, which is quantum principle. 

Thus, nanocomputing can also be termed as quantum computing. In making 

computers faster, power consumption and heat dissipation are the problems that need 

to be concerned. Amazingly, nanotechnology may overcome these problems. There 

was an analysis with unbelievable outcome: A CPU-scale system containing a 

million transistors would fit within a 400 nm cube, run at 1 GHz, and consume 60 

nanoWatts [2]. A desktop nanocomputer consuming 100 watts of power would 

process 1018 instructions per second. Indubitably, the memory would increase in 

consistent with the power and speed. The factor that contributes to these distinct 

abilities is quantum bits or qubits. Classical computers rely on bits, which 1 represent 

ON state and 0 represent OFF state. Quantum computing consumes the law of 

quantum mechanics that allow an atom to be arranged in a coherent superposition of 

states 0 and 1. This means an atom can be in both states at the same time. While N 

bits can store a single number out of 2N possibilities, a qubit can store all 2N number 

available. 

 

 

In order to create quantum computers, nanoelectronics are needed. There are 

plenty of nanoelectronic devices have been proposed, among which are: single-

electron transistor (SET), resonant tunneling diodes (RTD), spin transistor, quantum 

cellular automata (QCA), carbon nanotubes (CNT), ultra-scaled FETs, superlattice 
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arrays, and molecular electronic devices. The nanostructures that build these 

nanoelectronics can be categorized into three: quantum well, quantum wires and 

quantum dots. The operations of these devices are governed by quantum principles. 

CNT is one of the popular research targets owing to its special attributes, for instance, 

it is stronger than steel and it can be used in a lot of applications in field of biology, 

chemistry as well as physics.  

 

 

Fabricating nanoelectronics could open new way of making nanophotonic 

devices. Nanophotonic is the manipulation and emission of light includes near field 

and far field light using nano-scale materials. It could revolutionize the fields of 

telecommunication, computing as well as sensing. Its applications includes storing 

data, as switch operating in computers, and converting electrical energy into light of 

variable wavelength for the purpose of light sources. 

 

 

 

 

1.3 Introduction to Modeling and Simulation 

 

 

Modeling is the technique of representing a real-word syste or phenomenon 

with a set of mathematical equations or physical model. A computer simulation then 

attempts to use the models on a computer so that it can be studied to see how the 

system works. Prediction may be made about the behavior and performance of the 

system by changing its variables. In this research, nanostructures are the system 

targets of the modeling and simulation. 

 

 

Simulation is a useful and important part of modeling nanostructures to gain 

insight into the attributes of a structure or a whole system with several structures 

connected. It is a method to predict the behavior transformation for a variable 

changing before performing a practical experiment. The simulation can then be 

proven by the results of experiment. This is also a beneficial approach to test the 
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most optimal and the best performance of a device which is built by those 

nanostructures before the real fabrication.  

 

 

Besides, simulation can give detailed theoretical explanation to the 

phenomenon that could not be explained by experiment solely. Among the examples 

are the reconstruction of the nanostructures and the occupation of the electrons. With 

the 3D graphical viewer and animation, we can view the atomic structure models and 

the process of the structure transformation. With computer simulation done prior to 

experiment, the mastering of the nanostructures principles is improved and ‘trial and 

error’ could be reduced during experiment. 

 

 

However, there isn’t a comprehensive simulator which can take into account 

every factor that would contribute to the system changes. Many of those only adopt 

the approximation which is the most optimal and closest to the real system for the 

representation. For nanostructures, first principle calculation is an appropriate 

simulation approach for studying the electronic structures and properties.  The 

advantage of this calculation is that, it can be done without any experimental data. 

However, it could be a massive calculation that consumes a very long time to 

accomplish.  

 

 

Computational science becomes an essential tool in modeling and simulation. 

It is the application of computational and numerical technique to solve large and 

complex problem, for example, complex mathematics that involved a large number 

of calculations. Therefore, modeling and simulation are commonly accomplished by 

the aid computational science and therefore they are always referred to computer 

modeling and computer simulation. Computational science could be defined as an 

interdisciplinary approach that uses concepts and skills from the science, computer 

science and mathematic disciplines to solve complex problems which allow the study 

of various phenomena. It can be illustrated by Figure 1.1. To improve the 

performance and speed of large computation, one of the approaches is parallel 

computing. Parallel computing can reduce the computing time of computational 
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costly calculations such as first principle calculations mentioned above, where it 

distributes the calculation to two or more processors or computers. 

 

 

 

 

 

1.4 Research Objectives 

 

 

The main interest of this research is to study the electronic structures of 

silicon quantum dots in the form of clusters. The objectives of this research can be 

summarized as the following: 

 

a) to study the electronic structures of quantum dots with variable size and 

structures. 

 

b) to study the relation between the bandgap and the size as well as the effect of 

structure of the quantum dot, and 

 

c) to study the relation between the electronic structure of the quantum dot and 

the I-V characteristic of single-electron transistor. 

 

Mathematics 
Applied 
Science 

Computer 
Science 

Computational 
science 

Figure  1.1. Computational science is defined as the intersection of the 
three disciplines, i.e. computer science, mathematics and applied science. 
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1.5 Scopes of Study 

 

 

The study scopes of this research are as the following: 

 

a) Quantum dot is simulated as isolated small range nanocluster. 

 

b) Silicon is adopted as the material of the quantum dot. 

 

c) Bandstructure and energy spectrum are studied for the electronic structures of 

quantum dot. 

 

d) Density functional theory is used to calculate and simulate the electronic 

structures of quantum dot. 

 

e) To build a parallel computing system to speed up the calculation. 

 

 

 

 

1.6 Thesis Overview 

 

 

Quantum dot is a crucial part in single-electron transistor (SET) that govern 

the performance of the device. In the next chapter, SET is introduced and its 

operation principle is discussed. From this chapter, the characteristics of quantum dot 

in SET could be understood, where the objective of modeling and simulating 

quantum dot is manifested. 

 

 

In chapter 3, theory of nanostructures and quantum dot is discussed. The 

attribute of the evolvement from bulk to nanoscale structure is showed. In this 

extremely small size, the theory that governs its properties is quantum theory. There 

are a lot of approaches to simulate the electronic structures of quantum dot. Density 



 8 

functional theory is a sufficient method in doing this. Its theory is discussed in the 

next chapter, Chapter 4. 

 

 

Chapter 5 is discussing the methodology of the simulation. Vienna Ab-initio 

Software Package which is utilized in this study is introduced. The steps and process 

of simulation is explained. Following this, Chapter 6 would be results and discussion. 

Figures and graphs showing the electronic structures of quantum dot are showed, and 

the results are discussed and interpreted.  

 

 

Finally Chapter 7 which is the conclusion. Theories and results discussed in 

the previous chapters are summarized and concluded here. Furthermore, suggestion 

is given on how to make the simulation work better and more complete. 
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