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ABSTRACT

Nanostructures such as quantum dot and nanocluster have occupied the centre
of scientific interest because of their unique electronic nature. In this research, the
electronic gructures of silicon quantum dot were studied. The quantum dot was
homologized with nanocluster since there is no strict distinction between these two
nanostructures. The simulations in this research were carried out by using VASP
(Vienna Ab-Initio Software Package) which utilizes the method of density functional
theory and plane wave basis set. In order to speed up the computationa time,
pardlelization was implemented on VASP. First, slicon clusters with surface
passivated by hydrogen, Sip\Hm were simulated and the density of states (DOS) as
well as bandstructure for each cluster was yielded. From the DOS graphs, discrete
spectrum was observed instead of bulk-like continuous DOS which is the evolvement
from bulk to nano-size. Bandstructure graphs also showed the discrete energy level
in consistence with the discrete energy spectrum from DOS. It was found that the
bandgap for hydrogenated silicon clusters increases with the decrease in size. Bare
silicon clusters, Si, were dso smulated from 1 to 15 number of slicon atom (n).
Optimization was performed to obtain the ground state structure. The bandgaps for
the ground state silicon clusters do not show a decreasing trend with the increment of
cluster size as that of hydrogenated silicon cluster. The electronic structures of
optimized clusters are affected by the surface orientation of the clusters. A
comparison of the bandgap values for Si,Hm and Si, was made. Finally, the current-
voltage (I-V) characteristic and conductance-voltage spectrum (G-V) of single-
electron transistor (SET) were studied with a ssimple toy model. These transport
properties have shown the relativity of the electronic structure and the electron
transport, where the conductance gap increases with the energy difference between
Fermi level of the gold lead and the nearest molecular energy level of silicon cluster.
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ABSTRAK

Nanostruktur seperti bintik kuantum dan nano kluster telah menjadi matlamat
kajian dalam bidang sains disebabkan sifat elektronik semulajadinya. Dalam kajian
ini, struktur eektronik bintik kuantum glikon telah dikgji. Bintik kuantum telah
dianggap sama dengan nano kluster, oleh kerana tiada perbezaan yang ketara antara
kedua-dua nanostruktur ini. Simulasi kajian telah dijalankan dengan menggunakan
perisan VASP (Vienna Ab-Initio Software Package) yang menggunakan teori
fungsian ketumpatan dan set basis gelombang satah. Untuk menyingkatkan masa
pengiraan, keselarian telah dilaksanakankan ke atas VASP. Simulasi ke atas kluster
silikon yang permukaannya dipasifkan dengan hidrogen, SipHm telah dilakukan dan
ketumpatan keadaan dengan struktur jalur telah diperolehi. Daripada graf ketumpatan
keadaan, spektrum diskrit telah didapati. Perubahan ketumpatan keadaan daripada
selanjar bagi struktur pukal ke diskrit spektrum bagi nanostruktur merupakan evolusi
nano. Jalur struktur juga menunjukkan aras tenaga diskret yang selaras dengan
spektrum diskrit daripada ketumpatan keadaan. Jurang jalur untuk silikon
terhidrogenasi telah didapati semakin mengurang semasa saiz kluster meningkat.
Simulasi ke atas kluster silikon tulen (tak terhidrogenasi), Sin yang mempunyai
bilangan atom (n) dari 1 ke 15 juga dilakukan. Pengoptimuman dilakukan untuk
mendapatkan struktur keadaan dasar. Jurang jalur bagi struktur keadaan dasar
kluster-kluster itu tidak mempunyai aliran yang menurun dengan peningkatan saiz
kluster seperti yang berlaku pada kluster silikon terhidrogenasi. Struktur elektronik
kluster-kluster optimum dipengaruhi oleh orientasi permukaan kluster. Perbandingan
nilai jurang jalur bagi SipHm dan Si, dilakukan. Akhirnya, ciri arus-voltan (I-V) dan
konduktans-voltan (G-V) bagi transistor elekron tunggal dikaji dengan menggunakan
satu model yang mudah. Sifat-sifat pengangkutan elektron itu menunjukkan
perkaitan antara struktur elektronik dengan pengangkutan elektron, di mana jurang
konduktans semakin bertambah apabila perbezaan tenaga antara aras Fermi elektrod
emas dengan aras tenaga molekular yang paling dekat bertambah.
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CHAPTER 1

INTRODUCTION

11  Nanotechnology and Nanoscience

Nanotechnology and nanoscience had emerged as ya pggrular and
important issue in every field including sciencéygics, chemistry and biology) and
engineering over the decade. This is the trendeolirtology as many things get
smaller and smaller by time and when it exceedsatiiity of microtechnology, it
comes to nanotechnology. This is the phenomenonmuofiaturization which
consequently leads to the brand new era of techgolith novel concepts and

devices.

The word “nano” refers to the size of 1fheter. One can imagine how small
a nanometer is when a human hair with diameterceqipately 100 pm is sliced 10
times, a bacterial cell is divided 100 times, aed hydrogen atoms are lined up.
Nanoscience is concerned with study of objects iwisanywhere from hundreds to
tens of nanometer in size, whilst nanotechnologyretated to the practical
application of materials and devices in the sanze sange. Nanotechnology is
sometimes called molecular manufacturing which manch engineering that deals
with the design and manufacture of extremely sn®éictronic circuits and

mechanical device built at molecular level of nratte



Indeed, the emergence of nanotechnology alreadpem in the late 19
century when colloidal science started but it is rederred to nanotechnology at the
time. In year 1959, Richard Feynman in his talk éfidis Plenty of Room at the
Bottom” had firstly mentioned some of the nanotedbgy concepts [1]. He
described a process by which the ability to mamifsulindividual atoms and
molecules might be developed. In 1947, the terrm6technology” was defined by
Professor Norio Taniguchi from Tokyo Science Unsst.

When things shrink into nanoscale, quantum effedsie into play and
classical theory unable to explain what happernkismextremely small size. Hence,
the attributes of nanoscale particles are in batwie atom and bulk materials.
These attributes will vary by size which leads lie &bility of material behavior
engineering. This revolution have made nanoteclyyland nanoscience a very
exotic field which still need a lot more efforts iesearch to open up and reveal its

under covered ability.

12  Application of Nanotechnology

The advancements in science and technology havewed the
miniaturization of amazingly complex devices. A tftthe nano-devices are being
researched widely and intensively, hence its map&étntial is bright. A portion of it
is as yet conceptual, though realization is noimapossible matter. It is worth to
point out that nanotechnology has remarkably browgbether technologies from
physics, biology and chemistry.



1.2.1 Nanoeectronics, Nanocomputing and Nanophotonics

According to Moore’s law, the number of transistors a microprocessor
would double periodically approximately every 18ntits. Without taking account
of the cost, this prediction had indicated thattth@sistors will be smaller in order to
obey the law. To increase the density of transssterone chip, the size of transistors
must be small enough. Nanotechnology can achigsdalget and open up the new

phase of Moore’s law with nanoelectronics and nanguuting.

Nanocomputing is the use of the structures on taesof within 100
nanometers to accomplish any of the tasks that mactemputers can do. This kind
of computing will adopt a new concept of operatiarhich is quantum principle.
Thus, nanocomputing can also be termed as quantumputing. In making
computers faster, power consumption and heat dissipare the problems that need
to be concerned. Amazingly, nanotechnology may eee these problems. There
was an analysis with unbelievable outcome: A CPélessystem containing a
million transistors would fit within a 400 nm cubein at 1 GHz, and consume 60
nanoWatts [2]. A desktop nanocomputer consuming Wa@s of power would
process 18 instructions per second. Indubitably, the memoruld increase in
consistent with the power and speed. The factor ¢batributes to these distinct
abilities is quantum bits or qubits. Classical comaps rely on bits, which 1 represent
ON state and O represent OFF state. Quantum camgpgbnsumes the law of
guantum mechanics that allow an atom to be arramgadcoherent superposition of
states 0 and 1. This means an atom can be in bt sat the same time. While N
bits can store a single number out Bfpdssibilities, a qubit can store all Bumber

available.

In order to create quantum computers, nanoelecisarie needed. There are
plenty of nanoelectronic devices have been propoastbng which are: single-
electron transistor (SET), resonant tunneling dsod@TD), spin transistor, quantum
cellular automata (QCA), carbon nanotubes (CNTatdcaled FETS, superlattice



arrays, and molecular electronic devices. The ramdsres that build these
nanoelectronics can be categorized into three: tquarwell, quantum wires and
quantum dots. The operations of these devices@rerged by quantum principles.
CNT is one of the popular research targets owingstspecial attributes, for instance,
it is stronger than steel and it can be used ot afl applications in field of biology,

chemistry as well as physics.

Fabricating nanoelectronics could open new way aking nanophotonic
devices. Nanophotonic is the manipulation and eomssf light includes near field
and far field light using nano-scale materialscduld revolutionize the fields of
telecommunication, computing as well as sensirggafiplications includes storing
data, as switch operating in computers, and coingeelectrical energy into light of

variable wavelength for the purpose of light soarce

1.3  Introduction to Modeling and Simulation

Modeling is the technique of representing a reateisyste or phenomenon
with a set of mathematical equations or physicatlehoA computer simulation then
attempts to use the models on a computer so tlwnitbe studied to see how the
system works. Prediction may be made about thevimhand performance of the
system by changing its variables. In this reseanamostructures are the system

targets of the modeling and simulation.

Simulation is a useful and important part of magglhanostructures to gain
insight into the attributes of a structure or a {ehsystem with several structures
connected. It is a method to predict the behawiansformation for a variable
changing before performing a practical experimdrte simulation can then be

proven by the results of experiment. This is alsbeaeficial approach to test the



most optimal and the best performance of a devidectwis built by those

nanostructures before the real fabrication.

Besides, simulation can give detailed theoreticaplanation to the
phenomenon that could not be explained by expetis@erly. Among the examples
are the reconstruction of the nanostructures amadticupation of the electrons. With
the 3D graphical viewer and animation, we can wiegvatomic structure models and
the process of the structure transformation. Wamguter simulation done prior to
experiment, the mastering of the nanostructurexipies is improved and ‘trial and

error’ could be reduced during experiment.

However, there isn't a comprehensive simulator Whian take into account
every factor that would contribute to the systeranges. Many of those only adopt
the approximation which is the most optimal andsekt to the real system for the
representation. For nanostructures, first principldculation is an appropriate
simulation approach for studying the electronicuctiires and properties. The
advantage of this calculation is that, it can beedwithout any experimental data.
However, it could be a massive calculation thatscomes a very long time to

accomplish.

Computational science becomes an essential tonbuheling and simulation.
It is the application of computational and numdriechnique to solve large and
complex problem, for example, complex mathematied involved a large number
of calculations. Therefore, modeling and simulattsa commonly accomplished by
the aid computational science and therefore theyadways referred to computer
modeling and computer simulation. Computationa¢iscé could be defined as an
interdisciplinary approach that uses concepts &l srom the science, computer
science and mathematic disciplines to solve compiteklems which allow the study
of various phenomena. It can be illustrated by Feégd.1. To improve the
performance and speed of large computation, on¢hefapproaches is parallel

computing. Parallel computing can reduce the comgutime of computational



costly calculations such as first principle caltiolas mentioned above, where it

distributes the calculation to two or more processw computers.

Applied

Mathematics Science _
7] Computational

science

Computer
Science

Figure 1.1. Computational science is defined asritersection of the
three disciplines, i.e. computer science, mathermaind applied science.

14  Research Objectives

The main interest of this research is to study eleztronic structures of
silicon quantum dots in the form of clusters. Tlgeotives of this research can be

summarized as the following:

a) to study the electronic structures of quantum deits variable size and

structures.

b) to study the relation between the bandgap anditeeas well as the effect of

structure of the quantum dot, and

C) to study the relation between the electronic stmecof the quantum dot and

the |-V characteristic of single-electron transisto



15  Scopesof Study

The study scopes of this research are as the fiokpw

a) Quantum dot is simulated as isolated small rangeciaster.

b) Silicon is adopted as the material of the quantoin d

C) Bandstructure and energy spectrum are studiedhéoelectronic structures of

quantum dot.

d) Density functional theory is used to calculate @nuulate the electronic

structures of quantum dot.

e) To build a parallel computing system to speed epctdculation.

1.6 Thesis Overview

Quantum dot is a crucial part in single-electransistor (SET) that govern
the performance of the device. In the next chap®#]T is introduced and its
operation principle is discussed. From this chaphber characteristics of quantum dot
in SET could be understood, where the objectivemamideling and simulating

guantum dot is manifested.

In chapter 3, theory of nanostructures and quandomis discussed. The
attribute of the evolvement from bulk to nanoscsireicture is showed. In this
extremely small size, the theory that governs iitpprties is quantum theory. There

are a lot of approaches to simulate the electrstniectures of quantum dot. Density



functional theory is a sufficient method in doirgst Its theory is discussed in the

next chapter, Chapter 4.

Chapter 5 is discussing the methodology of the kitimn. Vienna Ab-initio
Software Package which is utilized in this studinisoduced. The steps and process
of simulation is explained. Following this, Chapewould be results and discussion.
Figures and graphs showing the electronic strustafeuantum dot are showed, and

the results are discussed and interpreted.

Finally Chapter 7 which is the conclusion. Theormesl results discussed in
the previous chapters are summarized and concloeexl Furthermore, suggestion

is given on how to make the simulation work betted more complete.
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