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ABSTRACT 

 

 

 

 

With the evolution of Very Large Scale Integration (VLSI) fabrication 

technology, circuit size has grown and line width has decreased. In effect, the 

transistor transit time and the time to drive signal lines across chips have also 

decreased. Thus, interconnections have become the dominating factor in 

determining circuit performance and reliability in the design of a VLSI circuit. 

Clock distribution network, which is one of the biggest and most important nets in 

any synchronous VLSI chip, is sensitive to these variations. The increased line 

resistance is one of the primary reasons for the increasing significance of clock 

distribution networks on synchronous performance. Furthermore, failing to control 

the clock skew can also severely limit the maximum performance of the entire 

system and create catastrophic race conditions in which an incorrect data signal may 

be latched by register. This thesis proposes a Computer Aided-Design (CAD) 

software module for useful-skew tree synthesis in deep-sub-micron VLSI design. 

Building the proposed CAD software module involves the implementations of the 

abstract topology generation algorithm, skew constraints scheduling algorithm and 

clock tree construction algorithm. Due to the lack of availability of circuit data and 

necessary software tools, we introduced a different test methodology to test the 

reliability of the proposed CAD software module. Two different test data have been 

used to verify the functionality of the CAD software module. Tests on the random 

input data show that our CAD software module successfully synthesizes clock trees 

that satisfy the entire clock skew constraints, and at the same time, achieve a shorter 

wire-length. Tests on benchmark circuit’s data show that our CAD software module 

successfully synthesizes clock trees that not only satisfy the skew constraint value, 

but also further reduced the computed applicable clock period of the circuit. 
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ABSTRAK 

 

 

 

 

Evolusi perkembangan teknologi fabrikasi “Very Large Scale Integraion” 

(VLSI) telah menyebabkan saiz litar semakin besar dan saiz lebar pengalir mengecil. 

Keadaan ini menyebabkan masa melintasi transistor telah berkurangan dan seterusnya 

masa memandu isyarat melintasi cip turut berkurangan. Oleh itu, penyambung-

penyambung dalaman cip menjadi faktor utama menentukan prestasi dan 

kebolehpercayaan rekabentuk litar VLSI sekarang. Rangkaian pengagihan isyarat jam, 

merupakan salah satu rangkaian terluas dan terpenting bagi cip segerak VLSI, amatlah 

sensitif kepada perubahan perkembangan ini. Penambahan rintangan akibat daripada 

pengurangan saiz lebar pengalir merupakan salah satu sebab utama penambahan 

kepentingan oleh rangkaian isyarat jam dalam menentukan prestasi kesegerakan litar. 

Tambahan pula, kegagalan mengawal pencongan jam menghadkan lagi maksima 

prestasi keseluruhan sistem dan boleh mewujudkan keadaan pelarian data, iaitu data-

data yang salah akan diselak oleh pendaftar. Tesis ini mencadangkan satu modul 

perisian Rekabentuk Bantuan Komputer (CAD) yang dapat mensintesiskan “useful-skew 

tree” untuk rekabentuk VLSI sub-mikro-dalam. Pembangunan modul perisisian yang 

dicadangan tersebut melibatkan implementasi algoritma penjanaan topologi abstrak, 

penjadualan pencongan jam dan pembinaan pepohon jam. Disebabkan kekurangan data-

data litar dan perisian-perisian yang penting, kami memperkenalkan metodologi ujian 

yang berbeza untuk menguji kebolehpercayaan modul perisian CAD yang dicadangkan. 

Terdapat dua data ujian yang berbeza telah digunakan untuk mengenalpasti kewibawaan 

modul perisisan CAD tersebut. Keputusan ujian pada data-data rawak masukan 

menunjukkan pepohon jam yang disintesiskan oleh modul perisisan CAD dapat 

memuaskan semua kekangan pencongan jam, dan pada masa yang sama dapat mencapai 

panjangan wayar yang lebih pendek. Keputusan ujian pada data-data litar tanda aras 

menunjukkan modul perisian CAD kami berjaya mensintesiskan pepohon jam yang 

bukan sahaja dapat memuaskan semua kekangan pencongan jam, bahkan juga dapat 

mengurangkan tempoh jam litar. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

The thesis proposes a Computer Aided-Design (CAD) software module for 

useful-skew tree (UST) synthesis in deep-sub-micron VLSI integrated circuit design. 

The CAD software module is coded in C and Perl, and runs in a Microsoft Windows 

2000 PC environment. In this chapter the project background, problem statement, 

research objectives, scope of work, and thesis organization are presented. 

 

 

 

 

1.1 Background 

 

 

The last few decades brought explosive growth in the electronics industry due 

to the rapid advances in integration technologies and the different benefits of large 

scale system design. The manufacturing capability and complexity, combined with 

the economic benefits of large electronic systems, are forcing a revolution in the 

design of these systems and challenging system designers who are involved in the 

design of integrated circuits. Integrated circuits today consist of hundreds of millions 

of transistors. Due to the tremendous increase in complexity, automating the design 

process has become a crucial issue.  

 

 

The phase associated with the task of automatically designing a circuit using 

Computer Aided Design (CAD) tools is called Electronic Design Automation (EDA). 

The objective of the EDA research field is to fully automate the tasks for nearly 

every aspect of the development cycle, from the circuit specification and design entry 
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to the performance analysis, layout generation and verification. A large subset of 

problems in VLSI EDA is computationally intensive, and future EDA tools will 

require even more accuracy and computational capabilities. For a complicated 

problem in the modern VLSI design, an appropriate approach is to use a “divide-and-

conquer” strategy, in which the whole design task is broken down into several sub-

tasks (Sherwani, 1996). These sub-tasks are then more manageable to be solved 

using mathematical and heuristic techniques. 

 

 

 Due to the large number of components and the details required by the 

fabrication process, the physical design needs the help of computers. As a result, 

almost all phases of physical design extensively use CAD tools and many phases 

have already been partially or fully automated. The design is carried out in stages. 

The final circuit of such an IC can have up to a billion of components; it is delivered 

in a step-by-step manner. This is accomplished in several stages such as partitioning, 

floorplanning, placement, routing, and compaction. The different stages of physical 

design cycle are shown in Figure 1.1. A fully tested and error-free design at the 

switch level can be the starting point for a physical design. It is to be realized as the 

final circuit using (typically) a million components in the foundry’s library.  

 

 

 

Figure 1.1: Physical design cycle 
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 Among all the stages, routing is a difficult problem, and much research has 

been performed on this subject. This is because almost all problems in routing are 

computationally complex. Essentially, the task of routing stage is to complete the 

interconnections between blocks according to a specified netlist. The goal of a router 

is to complete all these circuit connections using the shortest possible wire length, 

routing with least number of layers and achieving timing optimization. This is 

usually performed in three phases, referred to as the Global Routing, Detailed 

Routing and Specialized Routing.  

 

 

 In physical design of VLSI system, there are two types of nets that need 

special attention in routing: Clock nets and Power/Ground nets. Clock nets need to 

be routed with great precision, since the actual length of the path of a net from its 

entry point to its terminals determines the maximum clock frequency on which a chip 

may operate. In a synchronous system, chip performance is directly proportional to 

its clock frequency. A clock router needs to take several factors into account, 

including the resistance and capacitance of the metal layers, noise and cross talk in 

wires, and the type of load to be driven. In addition, the clock signal must arrive 

simultaneously at all functional units with little or no waveform distortion. The clock 

is also known as major power-consuming net. The clock net is only about 4% of the 

total routing length of the entire interconnects, but power consumption of clock net is 

not minor (Magen et al., 2004). In addition, compared to power and ground routing, 

clock routing is relatively more complex. 

 

 

 As a result, designing a clock distribution network has thus become critical 

not only for correct synchronization of data, but also can improve circuit 

performance and reduces power dissipation. Consequently, one of the challenges that 

EDA engineers have to face is to develop a new modeling capability and synthesis 

techniques that help to control the clock distribution network routing effectively. 
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1.2 Problem Statement 

 

 

 When the VLSI feature size becomes progressively smaller, moving into the 

Deep Submicron or Ultra-Deep Submicron Technology (sometimes, referred as 

nanometer VLSI) era, previously negligible variation effects start to affect circuit 

performance and yield significantly. Clock skew, is one of the variation effects that is 

always eliminated by previous clock distribution network design, where conventional 

clock designs have placed emphasis on seeking zero clock skew. Due to deep-sub-

micron below 0.25 µm process, the long global interconnect lines become highly 

resistive as line dimensions are decreased. This increased line resistance is one of the 

primary reasons for the increasing significance of interconnection delay and now is 

of greater importance than the device delays. The interconnection delays eventually 

contribute to a large part of the clock signal delay. This leads to new problem to 

arise, as achieving a near-zero skew design is more and more difficult. Thus, the 

clock skew cannot longer be ignored. The control of clock skew can also severely 

limit the maximum performance of the entire system and create catastrophic race 

conditions in which an incorrect data signal may latch within a register.  

 

 

 As a result, in the modern high speed VLSI design era, clock design plays a 

crucial role in determining chip performance and facilitating timing and design 

convergence. Clock routing is important in the layout design of a synchronous digital 

system as it influences correctness, area, speed, power dissipation, power/ground 

supply noise, process variations and thermal issues of the synthesized system. 

Consequently, the automatic synthesis of the clock tree network has gained 

considerable attention in the design community. 

 

 

The clock net is usually one of the first nets to be routed, and consequently 

block own routing areas for nets routed subsequently. As it is one of the largest nets, 

the area occupied is also a concern. Also, the clock net accounts for a significant 

fraction of the system power dissipation as it switches most frequently and is a large 

net. Carrying the heaviest load and switching at a high frequency, the clock typically 

dissipates about 40% of the total interconnect power in a synchronous digital system 

(Magen et al., 2004). 
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 In short, drastically increased requirements for high performance and high 

speed VLSI circuits have posed challenges to the clock routing design, where clock 

distribution network with elaborated timing characteristics and minimal wire-length 

is crucial for multi-GHz VLSI designs. However, today's CAD systems do not help 

much with the problems of time and often leave the final analysis to the designer. 

High performance clock design is indeed and area of active research. 

 

 

 Responding to the problem stated above, a CAD software module specifically 

for clock tree synthesis is proposed. By providing as inputs, the post-placement 

layout data, together with the data paths propagation delay and the clock pins’ 

coordination and loading capacitance, a Useful-skew Tree (UST) is synthesized. The 

output clock tree data is written in a netlist file, which will contain the information 

on how the entire clock sinks are routed toward the clock source. 

 

 

 

 

1.3 Objective 

 

 

The objective of this thesis is to propose the development of a Computer 

Aided-Design (CAD) software module for Useful-skew Tree (UST) synthesis in 

deep-sub-micron VLSI integrated circuit design. The design of this CAD software 

module applies several routing algorithms, including the UST/DME algorithm for 

useful-skew tree generation, Balanced Bipartition (BB) method for abstract topology 

generation, and Deoker’s graph-theoretic approach for clock skew scheduling. 

 

 

 

 

1.4 Scope of Work 

 

 

(i) A demonstration application prototype is developed to be used in the system 

validation of the proposed CAD software module. 

 

 

(ii) Ideally, the clock tree synthesis should be performed on the post-placement 

layout data. Due to lack of availability of actual circuit data and necessary 
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software tools, the performance evaluation to our CAD software module is 

restricted to:- 

 

 

(a) Actual circuit data, is applied with International Symposium on 

Circuits and Systems (ISCAS89) benchmark circuits which are re-

created manually with Tanner Tools. 

(b) The required data such as data path delays, coordination and loading 

capacitance of each clock pin is extracted, and then transformed 

manually to our CAD software module readable format. 

(c) The reliability of synthesized clock tree is verified by manually 

comparing the computed skew value with the prescribed skew 

constraints.(as applying the synthesized clock tree to actual circuit 

layout is impossible to be performed in current stage) 

 

 

 

 

1.5 Project Approach and Tools 

 

 

Figure 1.2 illustrates the overview of project workflow to the development of 

the proposed CAD software module. On completing of the software sub-modules, the 

sub-modules are integrated and tested. The tests are conducted using (i) 3 

randomized input data and (ii) actual circuit data of ISCAS89 benchmark circuit. A 

front-end GUI program is developed using Perl for use in demonstration of the 

results. Satisfactory outcomes from the performance evaluation successfully 

conclude the research.  
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Figure 1.2: Project workflow of CAD software module development 

 

 

 The following software tools are used in this work. 

 

 

i. Microsoft Visual C++ 6.0 – used to develop the entire core program 

of proposed CAD software module.  

ii. Perl scripting – used to develop the netlist parsers and the front-end 

prototyping program.  

iii. Tanner Tools – used to re-produce ISCAS89 benchmark circuit in 

layout drawing design. 
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1.6 Research Contribution 

 

 

i. Investigation on the clock distribution network routing issue in deep 

submicron technology VLSI design, and systematic study on the clock 

skew scheduling and clock tree routing technique for an efficient 

implementation. 

 

 

ii. Delivering a CAD software module for useful-skew tree synthesis where 

the synthesized clock tree layout is not only minimized in term of wire-

length, but also fulfills the prescribed skew constraint values. 

 

 

 

 

1.7 Thesis Organization 

 

 

This thesis is organized into seven chapters. First chapter is the introduction 

chapter. It covers the background of the research, the problem statement, research 

objectives, scope of work, project approach and tools, and the significance of the 

research. 

 

 

The second chapter reviews the fundamental concept of clock distribution 

network design research. It consists of some previous related research work and 

background theory. 

 

 

 Chapter three describes the algorithm of the abstract topology generation and 

clock skew scheduling algorithm. Both of the algorithms are used to pre-process the 

post-placement layout data so as to transform it to the required input data of 

UST/DME algorithm. 

 

 

Chapter four focuses on the description of our main clock tree construction 

algorithm, UST/DME algorithm. The architecture design of the proposed CAD 
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software module is presented where the UST/DME algorithm is applied as the main 

engine of the useful-skew tree synthesis. 

 

 

Chapter five delivers the detailed implementation work of the proposed CAD 

software module which is integrated from the useful-skew tree construction sub-

module, abstract topology generation sub-module and clock skew scheduling sub-

module. 

 

 

In Chapter Six, the testing methodology is presented. We discuss on how the 

test platform is set-up and how the skew values of synthesized clock tree can be 

computed.  

 

 

Chapter Seven shows the experimental results of the functionality test to the 

developed CAD software module. Part of ISCAS89 benchmark circuits is used in the 

experiments. 

 

 

The final chapter summarizes the research findings and suggests potential 

future work. 
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