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ABSTRACT 
 
 

Laser diode is popular to be used as an optical pumping source, taking an 
advantage because it is small in size and light in weight. On the other hand, the laser 
diode creates a lot of heat dissipation because it was injected by a current. Due to the 
cuteness of active medium, it will generate a large beam divergence. In attempt to 
demonstrate the issue and overcome these problems, two laser diodes were 
characterized and an investigation is carried out to stabilize the output. The first laser 
diode bar was purposely employed to highlight the issue of beam divergence. The 
second laser diode is highly collimated and capable to be focused. However, both 
lasers are not stable, meaning no cooling is provided. Two collimators model 
FLA40B and FLA15 were used to reduce the beam divergence of laser diodes. The 
stability of laser diode is identified by operating the laser in free running mode. 
Knowing that the output turn out to be very small, the result indicates that the laser 
required stabilizer. Fan extractor and heat sink were introduced in the system. 
Realizing that the output is still not stable, a Thermoelectric Cooler (TEC) was 
designed and constructed. After stabilizing the lasers system, they were utilized to 
pump orthovanadate Nd:YVO4 crystal disk. The fluorescence beams were detected 
via spectrum analyzer. The pumping by using collimated high power laser diode was 
further enhanced by focusing the beam into an active medium and filtering the 
emission radiation using IR filter. The result obtained shows that, the laser diode 
produce output power of 1.8 W without cooling system with differential responsivity 
of 0.21 W/A and an efficiency of 8%. With TEC provided the laser power increased 
up to 4.6 W with power conversion of 12%. The output power of collimated beam 
achieved up to 8.6 W with differential responsivity of 0.54 W/A and an efficiency of 
27%. Both laser diodes produced fundamental wavelength center at 808 nm. This is a 
suitable absorption band for orthovanadate crystal. However, the spectrum gain of 
the laser diodes is kept on broadening at higher pumping current. Changes in 
refractive index and the increase in active zone were the cause to the spectrum gain’s 
broadening. The emission spectrum comprised of 878 nm, 917 nm with majority line 
of 1064 nm. It is also noticed that by focusing the high power laser diode and 
filtering the output, the emission radiation becomes more pronounce and significant.  
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ABSTRAK 
 
 

Diod laser sangat popular digunakan sebagai sumber pengepaman optik 
disebabkan saiznya yang kecil dan ringan. Sebaliknya diod laser ini menghasilkan 
pembebasan haba yang tinggi disebabkan ianya dipam menggunakan arus elektrik. 
Menarik tentang medium aktif ini ialah ianya dapat menghasilkan cahaya yang 
mencapah. Dalam percubaan untuk melakukan demonstrasi ini dan mencari 
penyelesaiannya, dua diod laser telah dicirikan dan siasatan telah dijalankan untuk 
menstabilkan keluaran. Diod laser yang pertama telah digunakan untuk tujuan 
memahami isu pencapahan cahaya. Diod laser yang kedua pula adalah daripada jenis 
yang terarah dan boleh difokuskan. Walaubagaimanapun kedua-duanya tidak stabil. 
Bermaksud tiada sistem penyejukan disediakan. Dua jenis penjajar iaitu FL40B dan 
FLA15 telah digunakan untuk mengurangkan kecapahan cahaya daripada diod laser. 
Kestabilan diod laser ini dikenalpasti dengan mengoperasikannya dalam mod bebas. 
Diketahui keluarannya terlalu kecil, menunjukkan laser tersebut memerlukan 
penstabil. Kipas dan penyerap haba telah diperkenalkan dalam sistem ini. Disedari 
keluaran laser masih lagi tidak stabil, penyejuk elektriktermo (TEC) telah direka dan 
dibina. Setelah sistem laser distabilkan, ia seterusnya digunakan untuk mengepam 
cakera kristal Nd:YVO4. Cahaya pendafluor telah dikesan menggunakan penganalisis 
spektrum. Pengepaman menggunakan diod laser berkuasa tinggi yang terarah 
seterusnya ditingkatkan dengan memfokuskan cahaya tersebut ke dalam medium 
aktif dan menapis sinaran keluaran menggunakan penapis infra merah. Keputusan 
yang diperolehi menunjukkan diod laser menghasilkan kuasa keluaran sebanyak 1.8 
W tanpa sistem penyejukan dengan pembezaan responsiviti sebanyak 0.21 W/A dan 
kecekapan 8%. Kuasa keluaran telah ditingkatkan sebanyak 4.6 W dengan kecekapan 
12% apabila menggunakan TEC. Kuasa keluaran daripada cahaya yang terarah 
mencapai sehingga 8.6 W dengan pembezaan responsiviti sebanyak 0.54 W/A dan 
kecekapan 27%. Kedua-dua diod laser menghasilkan panjang gelombang asas pada 
808 nm. Ia adalah jalur penyerapan yang sangat bagus untuk cakera orthovanadat. 
Walaubagaimanapun spektrum gandaan diod laser semakin melebar pada 
pengepaman arus yang tinggi. Perubahan indeks biasan dan peningkatan dalam zon 
aktif adalah punca kepada pelebaran spektrum gandaan ini. Spektrum keluaran 
panjang gelombang 808 nm, 917 nm dengan 1064 nm adalah majoriti garis tersebut. 
Didapati dengan memfokuskan diod laser dan menapis keluarannya, sinaran keluaran 
menjadi lebih jelas dan signifikan.   
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CHAPTER I 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Overview 
 
 
 Semiconductor laser, first discovered in 1962 was thought to be a 

breakthrough invention that would revolutionize industry (Welch, 2000). July 1962 

Keyes and Quist presented a paper, “Recombination Radiation Emitted by Gallium 

Arsenide Diodes,” at the Solid State Device Research Conference (SSDRC) in 

Durham, NH. This paper described intense luminescence with a quantum efficiency 

of approximately 85 % from GaAs junctions at 77 oK. These results were so startling 

that they energized a number of research group to consider the question of 

semiconductor laser.  

 

 The paper announcing the first semiconductor laser operation was the 

General Electric paper submitted in September 1962 and appearing in the November 

1, 1962, edition of Physical Review Letters (Hall et al, 1962). The resulting diodes 

were cooled to 77 oK and operated in pulsed mode.  

 

 Laser research then began to diverge into number of separate areas. The idea 

of using heterosturctures in semiconductor diode laser was a very powerful idea and 

was proposed by Kroemer (1963), resulting in reduce threshold continuous wave, cw 

emission. Such a structure requires two interfaces of different indexes of refraction, 

one on top and one below the active region formed two junctions so called 

heterostructure or double heterostructure. However the heterostructure concept 

required the development of appropriate materials processing technologies, such as 

liquid phase epitaxy (LPE), metal-organic chemical vapor deposition (MOCVD), and 
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molecular beam epitaxy (MBE) (Hecht). Therefore the original proposal of Kroemer 

went relatively unnoticed.  

 

 Nelson (1963) first demonstrated the liquid phase epitaxy growth of GaAs on 

GaAs. Distributed feedback lasers (DFB lasers) were another another major track in 

laser development. DFB lasers incorporate an intrinsic grating to force single 

longitudinal mode operation. Kolgenik and Shank (1971) first developed the 

experimental and theoretical ideas behind DFB lasers.  

 

 Vertical-cavity surface-emitting lasers (VCSEL) were later developments in 

semiconductor laser technology. In this type of laser, lights not emitted from the edge 

of the device but rather through the entire top layer of the semiconductor crystal 

itself.  Soda et al. (1979) demonstrated the first VCSEL. This was a double 

heterostructure InGaAsP device operating at 1.3 µm. It used metal mirrors and lased 

at 77 oK.  

 
 

1.1.1 Semiconductor Materials 
 
 

The next major technology breakthrough for semiconductor lasers and 

specifically high-powered lasers was the conceptual development and experimental 

realization of psuedomorphic material, otherwise referred to as strained layer 

materials. Up to this time crystal growth was limited to the material systems that 

were lattice matched to a common substrate. In mid-1980s, layers that were on the 

order of 10 nm could be grown in the midst of a lattice match layer structure where 

the lattice mismatch could be significant.  

 

For AlGaAs lasers grown on GaAs subtrates, emission wavelengths could be 

extended from less than 780 nm to longer than 1100 nm, easily reaching the emission 

wavelengths necessary for pumping of Er doped fiber amplifiers (Welch, 2000). It 

was further shown that the incorporation of In in the active region of an AlGaAs 

laser inhibited the migration of defects in the material thus improving the reliability 

of the material. From these developments came high-power lasers operating at 980 
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nm and the first short wavelength laser could meet a 20-year lifetime required for 

communication systems.  

 

Pseudomorphic materials were critical to the development of another class of 

high power lasers, which is GaAsP lasers for the emission of 810 nm. Meanwhile 

AlGaInP lasers could produce emission between 630 and 680 nm. Pseudomorphic 

concepts have since been applied to AlGaInN laser for efficient operation in the 380 

to 470 nm region and in the AsSb-based materials, the lasing properties is in the mid-

IR.  

 
 
1.1.2 Laser Diode Application 
 
 
 The first use of MOCVD and MBE was in the fabrication of AlGaAs lasers 

operating between 780 and 860 nm. From this material system came the first 

application of high power semiconductor laser, that of pumping Nd:YAG lasers at 

wavelength around 810 nm. The use of diode pumping Nd:YAG lasers enabled a 

dramatic reduction in size and a significant increase in operating efficiency as 

compared to flashlamps pumped solid-state laser. High power semiconductor laser 

used for pumping Nd:YAG lasers were first commercially introduced in 1984 at 

output powers of 100 mW. Today monolithic laser arrays have been demonstrated at 

output powers approaching 200 W cw where reliable opration of 60 W is 

commercially available.  

 

 Second application that has been impacted by high-power semiconductor 

lasers has been optical storage. Read-only applications within optical data storage 

have existed for a number of years at 830 and 780 nm. It has been the advances in 

high power laser technology that have pushed the reliable output powers to greater 

than 30 mW that has enabled the ability to write on optical discs. Initially, this was 

introduced to that market at 830 nm, followed closely behind by 780 nm and more 

recently 650-680 nm lasers, the movement to shorter wavelength for benefits of 

higher storage capacities.  
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 Other applications that have benefited from higher power semiconductor 

lasers in the early years of their development include free-space/satellite 

communications, where extensive work and a number of demonstration were 

successful at secure free-space optical links, direct diode material processing 

applications including heat treatment of metal surfaces, medical applications such as 

photodynamic therapy, hair removal and other therapeutic applications.  

 
 
1.1.3 Diode Pumped Solid State Material 
 
 

Studies of diode pumped solid state was done by several researcher. The 

active feedback control in Q-switched diode pumped Nd:YVO4 laser by monitoring 

the fluorescence intensity from laser crystal was presented by Wenjie et al. (1999). 

The Q-switched pulse energy is stable with proposed feedback scheme based on the 

fluorescence intensity. Chen (1999) reported a high-power diode-end-pumped 

Nd:YVO4 laser at 1.34 µm in influence of Auger upconversion. The strong 

dependence of the slope efficiency on the dopant concentration is attributed to an 

Auger upconversion process..  

 

 A research about an inexpensive diode-pumped mode-locked Nd:YVO4 laser 

for nonlinear optical microscopy was done by Yang in year 2000. The resulting self-

defocusing lens couples with an aperture appearing in the gain medium and then 

produces a cavity loss modulation. The laser was shown to be useful for probing 

polar structures of nonlinear optical materials with second harmonic microscopy. The 

effective stimulated emission cross-section in a diode pumped Nd:YVO4 micro-laser 

at 1064 nm with various doping concentrations was presented by Mukhopadhyay 

(2002). In this method a micro-laser is formed by keeping a small piece of the 

sample in a plane resonator under semi-monolithic configuration and a fiber coupled 

diode laser was used for pumping. The overlap integrals in this method were 

estimated by measuring the thermal lens focal length at the threshold. 

 

A design of diode-pumped high efficiency Nd:YVO4/LBO red laser is 

reported by Zheng (2002). With an incident pump laser of 800 mW, using type-I and 

type-II CPM LBO, 97 and 52 mW TEM00 mode red laser outputs were obtained. A 
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laser diode directly end-pumped, passively Q-switched Nd:YVO4/CR: YAG laser 

was presented by Zheng (2001). From this paper a KTP crystal was inserted into the 

cavity, Q-switched 532 nm with an average power of 56 mW, pulse width of 28.4 ns, 

repetition rate of 118.2 kHz and peak power of 16.7W was obtained at last. A fiber-

coupled diode-single-end-pumped Nd:YVO4 laser with an Nd:YVO4 crystal of 0.3 

at% doping concentration and 3 X 3 X 10 mm3 dimensions was reported by Zhang 

(2003).  

 
A high-power Q-switched Nd:YAG/Cr:YAG laser mounted in a silicon 

microbench was presented by Evekull (2003). The use of microstructure silicon 

carriers provides efficient thermal control, compact integration and alignment of 

active and passive optical components Lee (2003) analyzed a linear cavity for 

intracavity frequency doubling of a diode-pumped acousto-optic Q-switched 

Nd:YAG rod laser, and showed that a green laser beam with a short pulse width can 

be generated efficiently. Minimum laser pulse width of approximately 32 ns was 

obtained around 1 kHz repetition rate for both green and IR laser beams. 

 

Cheng (2000) demonstrated diode-pumped CW and passively Q-switched 

Nd:YVO4 laser using an ultra-thin (100 lm) crystal as the gain medium. diode-

pumped normal Nd:YVO4 laser using thick (e.g. 1 mm) crystal as the gain medium 

often operates in multiple modes and is difficult to realize Cr4.:YAG passively Q 

switched laser in such a cavity. A diode-pumped Nd : YVO4 laser passively Q 

switched with GaAs is studied theoretically and experimentally by Ping Li (2001). 

The experimental results show reasonable agreement with the theoretical results on 

the whole. Minassian (2003) reported that the first operation of a diode-side-pumped 

Nd:YVO4 laser in a bounce geometry at 1342 nm. A master oscillator power 

amplifier (MOPA) version of the bounce-geometry produces 20 W of output power. 

These results represent the highest power at 1342 nm from a Nd:YVO4 oscillator and 

oscillator-single-amplifier MOPA system.  

 

 The thermal lensing effect induced by high-power diode pumping in the 

grazing incidence side-pumped Nd:YVO4 laser geometry is numerically modeled 

and analyzed by Bermudez G (2002). The 3D temperature distributions and the 

correspondent thermally induced lens in Nd:YVO4 crystal are calculated for the 
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straight and zig-zag paths of the laser beam. A practical method is described and 

used for determination of the effective stimulated emission cross-section (e) in an 

operating diode pumped Nd:YVO4 micro-laser at 1064 nm with various doping 

concentrations Waichman (2002) have used diode arrays in a linear configuration to 

side-pump passively Q-switched and free-running Nd:YAG and Nd:YVO4 lasers. 

The gain distribution found was used to evaluate the pump power density, which in 

turn, was used to calculate the dependence of the laser pulse width on the pumping 

power.  

 

Bernal presented an ABCD transfer matrix spatial mode analysis of a diode-

side-pumped Nd:YVO4 laser resonator. The mode spot size behavior of the 

oscillating Gaussian beam in the sagittal and tangential planes is used to determine 

the best configuration for the diode-sidepumped Nd:YVO4 laser resonator. Yang 

reported an inexpensive diode-pumped Nd:YVO4 laser mode-locked with combined 

effects of nonlinear mirror (NLM) and cascaded second-order optical nonlinearities 

(CSON) in a KTP crystal. The laser was shown to be useful for probing polar 

structures of nonlinear optical materials with second harmonic microscopy. Wenjie 

(1999) implemented active feedback control in a Q-switched diode-pumped 

Nd:YVO4 laser by monitoring the fluorescence intensity from the laser crystal. The 

Q-switched pulse energy is stabler with his feedback scheme based on the 

fluorescence intensity than that with the conventional Q-switching when pumping 

source is not stable. 

 
Martin was done a research about a Nd:YAG laser having a ring 

configuration, with a Faraday rotator to provide unidirectional operation has been 

end-pumped by a single 20 W diode bar equipped with a beam-shaper. Using a thin 

intracavity etalon for wavelength selection, a single-frequency output of 4.2 W is 

obtained on the 1061.4 nm transition.  Hailin Wang (2003) reports on the 

characterization of a diode-side-pumped CW Nd:YAG laser. A side-pumped 

configuration with 9 laser diodes is used for the laser. Output power of the laser 

under different output couplers, resonator lengths and temperatures of the cooling 

water has been studied.  
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 Yu (2002) reports on the characterization of a side-pumped 40 W CW 

Nd:YAG laser. A side-pumping con4guration with six laser diodes is used for the 

laser. Output power and beam quality of the laser under di6erent output couplings, 

cavity lengths, types of cavity and di6erent temperatures of the cooling water have 

been experimentally studied. Chen (2004) studied about a high-power diode-pumped 

Nd:YAG laser at 1123 nm is acousto-optically Q-switched at a pulse repetition rate 

range of 5–20 kHz. The general agreement indicates that the simple model is 

adequate for a first order prediction of the low-gain laser characteristics. High 

efficiency laser performance of 2mm diameter and 20mm long Nd:YAG crystal rod 

transversely pumped by laser diode array was presented by Kundu (2001). The 

complete solid-state Nd:YAG laser was described to be simple, compact and highly 

efficient. 

 
 
1.2 Problem Statement 
 
 

Laser diodes have widely application because of it compactness and high 

power. However because of divergence, it might reduce a lot of its power. As a 

result, the power may not enough to excite a solid state material. Furthermore 

because lasers have been pumped by forward-bias current, a lot of energy have been 

dissipated into heat which also contribute in stability of the laser output power. 

Hence this project was carried out to investigate the stability of laser diode. In 

additional the spectrum of high power laser diode might be broaden and overlap with 

emission spectrum. This will cause the difficulty in analyzing the emission spectrum. 

The way to reduce or eliminate this problem needs to be found. 

 
 
 
 

1.3 Research Objective 
 
 

The main objective of this project is to investigate the performance of high 

power laser diode used to pump solid state material. In attempt to achieve these 

goals, we carried out some of these following works: 

1. To characterize laser diode bar 
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2. To develop thermoelectric cooler as a stabilizer 

3. To collimate the divergence mode laser diode bar 

4. To estimate laser diode efficiency 

5. To analyze the absorption spectrum 

6. To analyze the emission spectrum 
 
 
 
 
1.4 Research Scope 

 
 
In this project two types of laser diode were employed; diverged laser diode 

and collimated laser diode. Thermoelectric cooler was developed to stabilize the 

laser diode. Neodymium orthovanadate (Nd:YVO4) crystal was employed as a laser 

medium. The characterization of laser beam was carried out by using spectrum 

analyzer, powermeter, CCD profiler and oscilloscope.  

 
 
 
 
1.5 Thesis outline 
 
 

The thesis is divided into five chapters. In the first chapter, it reviews some of 

previous research on development of laser diode, and its application in various field 

of research. 

 

Chapter II reviews the theory of the diode-pumped solid-state laser including 

properties of semiconductor laser, laser diode working principal, efficiency and 

solid-state material including the energy level.  

 

Chapter III described about the experimental methods and techniques used in 

laser diode. This will include the calibration the laser diode, development of cooling 

system and setup on pumping of the gain material. 

 

Chapter IV discussed the experimental results gained from the Chapter III. It 

will discussed the development of the cooling system, characterized the divergence 
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and collimated laser diode and also characterized the fluorescence of the Nd:YVO4 

crystal after been pumping by laser diode.  

 

Finally, the conclusions of the project are noted in chapter V. These provide 

with the summarization of the whole project and also problems arisen during the 

period of study. Finally, a few suggestions are recommended for future study.  
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