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ABSTRACT 

 Breast cancer is one of the most common cancers and the leading cause of cancer 

death among women worldwide. Breast cancer incidence is increasing over the years 

with more than 1 million new cases reported each year. In addition to that, an average of 

373000 women died globally every year in conjunction to the disease. In Malaysia, 

National Cancer Registry report for the year 2003-2005 states that, the incidence rate of 

breast cancer in Malaysian population is 47.4 per 100000 populations with Chinese is at 

the highest rate of 59.9, followed by Indian at 54.2 and Malay at 34.9 per 100000 

populations. With the yearly increasing trend, improvement in diagnosis and treatment 

method is desirable to increase survival rate. 

 In the current medical practice, the goal of breast ultrasound imaging in breast 

cancer diagnostic is to achieve a more specific conclusion following a suspicious 

mammographic finding and to prevent unnecessary biopsies to find breast cancers 

missed by mammography.
 
However, the sensitivity of ultrasound imaging in breast 

cancer detection is so much lower. This limits ultrasound imaging from taking a 

dominant role in breast screening. Tough ultrasonography has been declares as the 

current mainstay in breast cancer diagnosis, studies show that the proportion of patient 

in whom breast ultrasonography is considered necessary is only 40%. This means that, 

ultrasonography is not indicated for the rest 60% of patients referred for breast imaging. 

This practice explains major constraint of ultrasonography in breast imaging that limits 

its usage for diagnostic of breast symptoms and for screening asymptomatic patients. 

Hence, innovation to ultrasound imaging is very crucial so that this modality is capable 
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to explore and manipulate additional properties of breast cancer for better discrimination 

result. 

 Therefore, a hybrid imaging method that combines ultrasound and magnetism 

has been developed in this study. The aim is to create an imaging platform that is 

capable to access the acoustic and bioelectric properties of breast tissue for cancer 

detection. In Hybrid Magnetoacoustic Method (HMM), ultrasound wave and magnetic 

field are combined to produce Lorentz Force interaction in tissue to access tissue 

conductivity. Biological tissue is a conductive element due to the presence of random 

charges that support cell metabolism. Propagation of ultrasound wave inside the breast 

tissue will cause the charges to move at high velocity due to the back and forth motion 

of the wave. Moving charges in the present of magnetic field will experience Lorentz 

Force. Lorentz Force separates the positive and negative charges, producing an 

externally detectable voltage that can be collected using skin electrodes. Simultaneously, 

the ultrasound wave that is initially used to stimulate tissue ionic motion is sensed back 

by the ultrasound receiver for tissue acoustic evaluation. 

 A series of experiment and quantification on the output of  HMM to breast tissue 

mimicking phantoms and real breast tissue samples harvested from laboratory mice 

show that the combination of acoustic and bioelectric properties is a promising way of 

breast cancer diagnostic. The result shows that acoustic attenuation is lowest for breast 

tissue mimicking phantom (0.392±0.405 dBmm
-1

). Normal breast tissues experience the 

highest attenuation (2.329±1.103 dBmm
-1

), followed by cancerous tissue (1.76±1.08 

dBmm
-
1) with the difference of 0.569±0.023dB. In addition to that, mean 
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magnetoacoustic voltage results for tissue mimicking gels, normal tissue and cancerous 

tissue group are 0.56±0.21 µV, 0.42±0.16 µV and 0.8±0.21 µV respectively.    

 The experimental data was then fed to an artificial neural network for 

classification. The network was trained using the steepest descent with momentum back 

propagation algorithm with Logsig and Purelin transfer functions. The measurement of 

ANN performance was observed by using the Mean-Squared Error (MSE) and total 

prediction accuracy of the network to the testing data. The classification performance of 

the ANN for testing and validation data is 90.94% and 90%. The classification result 

shows the advantages of HMM in providing additional bioelectric parameter of tissue 

instead of only acoustic properties for breast cancer diagnosis consideration. The 

system’s high percentage of accuracy shows that the output of HMM is very useful in 

assisting diagnosis. This additional capability is hoped to improve the existing breast 

oncology diagnosis. 
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 ABSTRAK 

 Penyakit barah payudara merupakan penyakit barah yang paling banyak dihidapi 

oleh wanita dan merupakan penyebab kematian wanita tertinggi di dunia. Jumlah pesakit 

barah payudara telah meningkat dengan pengesanan  sejuta kes baru yang dilaporkan 

setiap tahun. Secara purata 373000 kematian turut dilaporkan setiap tahun disebabkan 

oleh barah payudara. Di Malaysia, laporan Pendaftar Kanser Nasional menyatakan, 

kadar insiden barah payudara oleh warganegara Malaysia berdasarkan populasi kaum 

adalah 47.4 bagi setiap 100000 populasi dengan kaum cina mempunyai kadar tertinggi 

pada 59.9, diikuti kaum india pada 54.2 dan Melayu pada 34.9 bagi setiap 100000 

populasi. Dengan peningkatan kadar insiden setiap tahun, penambahbaikan dari aspek 

diagnosis dan rawatan kanser payudara adalah penting bagi meningkatkan kadar 

survival. 

 Dari aspek pengesanan barah payudara, modaliti ultrabunyi digunakan bagi 

memperoleh penemuan yang lebih spesifik selepas pengesanan dengan menggunakan 

mammografi adalah meragukan. Ia juga digunakan bagi mengurangkan jumlah prosedur 

biopsi ke atas pesakit. Walaubagaimanapun, ultrabunyi adalah kurang sensitif  dalam 

mengesan barah payudara. Ini mengehadkan fungsi ultrabunyi sebagai modaliti 

pengimejan yang digunakan hanya untuk pengesanan sis dan sebagai alat untuk 

memanduarah proses biopsi. Kajian turut menunjukkan bahawa diagnosis barah 

payudara melalui ultrabunyi hanya disarankan kepada 40% pesakit yang mempunyai 

masalah payudara. Ini menunjukkan, sebanyak 60% pesakit yang dirujuk kerana 

masalah ketumbuhan di payudara tidak disarankan menggunakan ultrabunyi. Situasi ini 

jelas menunjukkan kekurangan modaliti ultrabunyi yang mengehadkan fungsinya untuk 



8 
 

mengesan barah payudara. Oleh yang demikian, inovasi ke atas pengimejan ultrabunyi 

adalah amat penting bagi membolehkan modaliti ini mengeksploitasi ciri-ciri tisu yang 

lain dan menambahbaik proses diagnostik barah payudara yang sedia ada. 

 Oleh yang demikian, kaedah pengimejan hibrid magnetoakustik telah 

dibangunkan di dalam kajian ini. Matlamat kepada pembangunan modaliti ini adalah 

untuk mencipta platform pengimejan yang mampu mengakses ciri-ciri akustik dan 

bioelektrik tisu. Di dalam kaedah ini, interaksi di antara gelombang ultrabunyi dan 

medan magnet menghasilkan daya Lorentz yang digunakan bagi mengukur pengaliran 

elektrik di dalam tisu. Tisu biologi merupakan bahan pengalir elektrik disebabkan 

kewujudan partikel ion di dalam sel. Pergerakan gelombang ultrabunyi di dalam tisu 

menyebabkan partikel ion di dalam tisu turut bergerak. Pergerakan ion di dalam medan 

magnet menghasilkan daya Lorentz yang memisahkan ion positif dan negatif bagi 

membolehkan pengukuran voltan dilakukan. Selain itu, gelombang ultrabunyi yang pada 

mulanya digunakan bagi menggerakkan partikel ion di dalam tisu digera semula bagi 

membolehkan ciri-ciri akustik tisu diukur. 

 Keputusan pengukuran keluaran ultrabunyi dan voltan HMM ke atas tisu tiruan 

dan sampel tisu payudara yang diambil daripada tikus makmal menunjukkan gabungan 

ciri-ciri akustik dan bioelektrik merupakan satu kaedah yang berpotensi tinggi bagi 

mengesan barah payudara. Kadar redaman ultrabunyi didapati paling rendah pada tisu 

tiruan (0.392±0.405 dBmm
-1

). Ujian ke atas tisu sebenar menunjukkan kadar redaman 

paling tinggi berlaku pada tisu normal (2.329±1.103 dBmm
-
1) berbanding tisu kanser 

(1.76±1.08 dBmm
-
1) dengan perbezaan sebanyak 0.569±0.023dB. Selain itu, keputusan 
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voltan megnetoakustik pada tisu tiruan, tisu normal dan tisu kanser menunjukkan bacaan 

min 0.56±0.21 µV, 0.42±0.16 µV dan 0.8±0.21 µV setiap satunya. 

 Seterusnya, keputusan bagi eksperimen tersebut telah digunakan sebagai input 

dalam pembinaan rangkaian neural (artificial neural netwok) yang dilatih menggunakan 

algorithm steepest descent back propagation with momentum. Prestasi rangkain neural 

tersebut diukur melalui nilai mean squared error (MSE) dan ketepatannya di dalam 

klasifikasi data ujian dan data validasi. Keputusan klasifikasi menunjukkan ketepatan 

rangkaian neural tersebut adalah 90.94% bagi data ujian dan 90% bagi data validasi. 

Peratus ketepatan yang tinggi itu menunjukkan keluaran HMM adalah sangat berguna 

bagi membantu proses diagnosis onkologi. Kemampuan tambahan ini diharapkan dapat 

memperbaiki kaedah diagnosis bayah payudara yang sedia ada. 
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CHAPTER 1 - INTRODUCTION 

  

1.1  OVERVIEW 

 Breast cancer is the most common cancer in woman worldwide [15, 101]. In the 

west, earlier research has demonstrated that 1 in 9 women will develop breast cancer in 

their life and this risk has been further stratified according to age, with patient up to 25 

years, 1 in 15000; up to age 30, 1 in 1900 and  up to 40, 1 in 200 [15, 101]. In the South 

East Asian region, the incident of breast cancer has escalated over the past 20 years 

especially in Philippine, Malaysia and Singapore [16, 102-103]. With the westernization 

of Asian countries, changes in reproductive factors, lifestyle and environmental 

exposures have been proposed to explain the trend [16]. 

 Breast cancer is a disease of uncontrolled breast cells growth, in which the cells 

acquire genetic alteration that allows them to proliferate outside the context of normal 

tissue development [6]. In the cancerous tissue, changes in density occur due to 

uncontrolled cell growth [6, 25, 29] excessive accumulation of protein in stroma [28, 36-

37] and enhancement of capillary density [30, 41-43]. On the other hand, changes in 

conductivity also occur due to increase cellular water and electrolyte content as well as 

altered membrane permeability and blood perfusion to support metabolism requirements 

[19, 28, 36-37]. 

 In the current medical practice, ultrasonography plays an important role as an 

adjunct modality to mammography [45-47]. In addition to that, ultrasonography is also 

superior to mammography due to its non-ionizing radiations [53]. It is a reliable 
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modality for solid and cystic benign differentiations with up to 99% reported sensitivity 

[45, 55-56]. Other than that, ultrasound is used for pregnant and lactating mothers as 

well as for patient with augmented and inflamed breast [45]. However, the usage of 

ultrasound in oncology diagnostic is limited by its low sensitivity in detecting small and 

pre invasive breast cancers [53-55, 57-60] from normal tissues due to the overlapping 

ultrasonic characteristics of these tissues [33, 92-93]. It is also less sensitive to 

microcalcification, an important early indicator for certain breast cancer [104]. 

Furthermore, ultrasound is operator dependant. This means that, a single sonographic 

image may be interpreted differently by different operators and the result is relative to 

the operator skills and experience, variations in human perceptions of the images, 

differences in features used in diagnosis and lack of quantitative measures used for 

image analysis [55]. This fact has further complicates breast cancer diagnosis via 

sonography. 

 Due to the limited capability of ultrasonography, it is very crucial to develop an 

alternative approach that is capable to manipulate additional breast tissue properties for a 

better diagnostic result. One of the alternatives is by manipulating bioelectric properties 

of tissue as an addition to the existing acoustic information given by sonography.  

Therefore, this expansion of study on the development of novel imaging method for 

breast cancer detection will concentrate on innovating a new hybrid method that is 

capable to manipulate the acoustic and bioelectric properties of breast tissue. 
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1.2 PROBLEM STATEMENT  

 In the world of oncology diagnostic imaging, the role of ultrasonography is 

limited by its low sensitivity in detecting small and preinvasive breast cancer from 

normal tissue due to the similarity in acoustic characteristics between the tissues. This 

restriction prevents ultrasonography from taking a prominent role in breast screening. 

Hence, innovation to ultrasound imaging is very crucial so that this modality is capable 

to explore and manipulate additional properties of breast cancer for better discrimination 

result. 

  

1.3 OBJECTIVES 

1. To develop a new method for tissue imaging that employs the concept of 

acoustic and magnetism. 

2. To study and predict the system output via mathematical calculation 

3. To study the effectiveness of the newly developed system for tissue imaging 

through a series of phantom and animal experiments. 

4. To classify the experimental result by using Artificial Neural Network for breast 

cancer discrimination. 
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1.4  SCOPE OF WORK 

 This research is conducted to develop a hybrid imaging method that employs the 

theory of acoustic and magnetism for tissue imaging by using 9.8MHz ultrasound wave 

and 0.25T magnetic field. A series of experiment and quantification on the system 

output to phantom and real biological tissues are also carried out to evaluate the 

potential of the system. The outcome of the experiment is fed to artificial neural network 

for performance measurements. 
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CHAPTER 2 – LITERATURE STUDY 

 

 

 

2.1 Introduction 

 

 This chapter discussed literature review on various field related to the study 

particularly in the anatomy of normal and cancerous breast tissue as well as on breast 

cancer detection. Section 2.2 reviews on the anatomy of normal breast followed by a 

review on breast cancer in section 2.3. Section 2.4 and 2.5 discussed on bioelectric and 

acoustic properties of normal and cancerous breast tissue. Section 2.6 and 2.7 review the 

current ultrasound and magnetoacoustic imaging as modalities for breast cancer 

detection. Section 2.8 discussed the theory of Hybrid Magnetoacoustic method. Later, 

section 2.9 looks into the use of artificial neural network in clinical application and its 

performance measurement. Finally, section 2.10 concludes the review. 

 

 

2.2 Anatomy of a Normal Breast 

 

 

Figure 2.1: Anatomy of the breast [5]. 
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 Human breast is a cutaneous organ that produces life sustaining milk for the 

young. Vertically, it lies between the 2
nd

 and the 6
th

 ribs and horizontally, between the 

sternal edge and the mid axillary line [2]. The breast is attached to the dermis by fibrous 

band called coopers ligament on the pectoralis major muscle [18]. Arterial blood supply 

of the breast is derived from the axillary, intercostals and internal mammary arteries 

whilst venous drainage is into the axillary and internal mammary veins [2]. The breast 

also has lymph node, a small gland belongs to the lymphatic system that travels 

throughout the body as part of the immune system [1-5]. 

 The breast is divided into 15 to 20 glandular units or lobes, with each lobe has a 

ductal orifice at the apex of the nipple. The stroma within the lobe is specialized 

containing fine collagen fibers, abundant reticulin and numerous small vessels [2]. The 

lobes hold microscopic sac called the lobular unit that linked to each other by tiny tubes 

called ducts. Lobular unit is the most biologically active component of the breast [1-3]. 

Each breast is estimated to have 10
4
 to 10

5
 of lobular unit [1]. The epithelial lining of the 

lobular unit consists of superficial luminal A cells which involve in milk synthesis.  In 

breast feeding, ducts carry milk from the lobular unit towards the areola. At the areola, a 

few ducts joined together to form a larger duct that ends at nipple. The areolar region, 

including nipple consists of keratinizing stratified squamous epithelium with a dense 

basal melanin deposition which accounts for the regions’ dark pigmentation. The nipple 

has multiple lactiferous ducts that range from 2 to 4 mm in diameter.  

 The volume of the breast varies widely between individuals. Previous study 

shows that the volume is in the range of 21.1 to 1932 ml with an average of 405.1ml [3]. 

Breast volume also fluctuates by 0 to 36% following the menstrual cycle [4]. The 

volume is least during the day 6 to 15 and increasing from the day 16 to 28 by the 

increasing of parenchymal volume and rising of water content. However, this volume 

changes are smaller in woman who is taking contraceptive as compared to woman who 

is not following any family planning regime [4]. 

 Breast development and function depends on estrogen and progesterone hormone 

which are produced by the ovaries. Prior to puberty, the breast consists of a complex 

system of ductal structure. At puberty, the gland enlarges when the amount of fibrofatty 
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elements increase, ducts elongate and small alveolar forms. However, full maturity is 

only achieved during pregnancy [1]. Finally, postmenopausal breast involution in 

elderly occurred by regression of the glandular unit with an increase in fat deposition 

and relative predominance of fibroconnective tissue [2]. At the end stage, only small 

island of lobules remains with fibrous tissue. 

 

 

2.3 Breast Cancer 

 

 The incidence of breast cancer is increasing over the years with more than 1 

million new cases reported each year [15]. Breast cancer accounts for approximately 

25% of all female malignancies with a higher prevalence in develop countries [15]. In 

Malaysia, cancer incidence has escalated over the past 20 years and with the 

westernization of the Asian countries, it is expected that this trend will continue [16]. 

Changes in reproductive factors, lifestyle and environmental exposures have been 

proposed to explain the trend [16]. 

 Breast cancer is a disease of uncontrolled breast cells growth, in which the cells 

acquire genetic alteration that allows them to multiply and grow outside the context of 

normal tissue development [6]. The cell metabolism increases to meet the requirements 

of rapid cell proliferation, autonomous cell growth and cell survival [6]. The term breast 

cancer describes cancer that is confined in the breast and cancer that has spread out from 

the breast to another organ. Cancer that metastasizes or spread to other organs is the 

same disease and has the same name as the primary cancer [2].  

 The key aspect in diagnosis of breast cancer is to determine whether the cancer is 

in situ or invasive. In situ cancers confine themselves to the ducts or lobules and do not 

spread to the surrounding organ. Two main types of in situ breast cancer are the ductal 

carcinoma in situ (DCIS) and lobular carcinoma in situ (LCIS). DCIS means the 

abnormal cancer cells are found only at the lining of the ducts. However, it can be found 

in more than one place in the breast since the cancer travels through the ducts. DCIS has 
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a high cure rate especially if given early treatments. However, it can change to invasive 

carcinoma without a proper treatment. LCIS means that the abnormal cancer cells are 

found in the lining of milk lobules, and is a warning sign of increased risk of developing 

invasive cancers. Invasive cancer is cancer that has break through normal tissue barriers 

and invade to the surrounding organs via the bloodstream and the lymphatic system. The 

most common invasive cancers are invasive lobular carcinoma and invasive ductal 

carcinoma. There are also some rare cancers such as inflammatory breast cancer and 

Paget’s disease that differ from invasive ductal and lobular carcinoma, in that they do 

not form a distinct mass or lump in the breast.  

 The most common symptom of breast cancer is the presence of painless and 

slowly growth lump that may alter the contour or size of the breast [14, 19]. It is also 

characterized by skin changes, inverted nipple and bloodstained nipple discharge [14, 

19]. The lymphatic nodes under the armpit may be swollen if affected by cancer. In late 

stage, the growth may ulcerate through the skin and infected [14, 19]. Bone pain, 

tenderness over the liver, headaches, shortness of breath and chronic cough may be an 

indication of the cancer spreading to other organs in the body [14]. 

 The main risk factor for breast cancer can be usefully grouped into four major 

categories [7]: family history or genetics, hormonal, proliferative breast benign 

pathology and mammographic density. These four factors have now been thoroughly 

studied and accurate quantitative estimates are available for the factors [7]. In terms of 

genetics, the mutations of  BRCA1 and BRCA2 genes have been identified as genetic 

susceptibility of breast cancer [7] in which carriers of the genes have at least 40 to 85% 

chances of getting breast cancer [14]. In this case, gene testing can separate carriers from 

non carriers at a young age and intervention can be given to those who are positive as 

early preventive measures [7]. Besides that, several line of evidence points to estrogen 

levels as a hormonal prime factor for the development of breast cancer [7]. This includes 

laboratory studies, direct measurement to postmenopausal women [8] and risk reduction 

when women are taking anti estrogen [9]. However, details of mechanisms are still 

unclear. In addition to that, risk of cancer following benign breast disease has also been 

identified. Recent study shows that benign breast disease in the absence of proliferation 

does not carry any excess risk [7]. However, simple hyperplasia doubles the excess rate 
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and atypical hyperplasia increase the risk of getting breast cancer to 4 fold [7, 10]. In 

terms of mammographic density, earlier studies have clearly demonstrated that a 

radiographically opaque area in the mammography is an important measure of the risk of 

developing breast cancer [7, 11-12]. 

 Finally, female breast has a special place in human affairs beyond its biologic 

function. It was a prominent feature of motherhood, beautifulness, fertility and 

abundance since the early days. Disease of the breast particularly cancer is not only a 

threats to women health and well being but are also attacks on femininity, nurturance, 

motherhood and personal identity. Hence, efforts to improve breast cancer detection and 

treatment must continue not only to save lives but also as part of the social betterment.  

 

 

 

2.4 Bioelectric Property of Normal and Cancerous Breast Tissue 

 

 Bioelectric property of tissues in the human body differs significantly depending 

on their structures [19]. Human tissue consists of cellular structure surrounded by a 

resistive extracellular fluid that contains water and electrolytes. On the other hand, the 

cell membrane composed of lipid bilayer and ion channel that is capacitive and resistive. 

Hence, the serial representation of tissue bioelectric properties is described by: 

 

 

 

where Y =1/Z is admittance, G is the conductance, C is the capacitance and ω is the 

angular frequency. Admittance is also represented by admittivity which is expressed as 

 

 

 

Where  is tissue admittivity, σ is tissue conductivity,  is tissue permittivity and  is 

the dielectric constant of free space. Bioelectric properties of tissue also vary with the 
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frequency of the applied electric field following α, ϐ  and γ dispersion [19- 20]. The α 

dispersion occurs at low frequency (10Hz to 10 kHz) and is caused by the ionic 

environment that surrounds the cell. The ϐ  dispersion is a structure relaxation in the 

frequency of 10Hz to 10MHz. At higher frequency, the γ dispersion is found related to 

water molecules. The α and ϐ  dispersion regions are more interesting in medical 

application since most changes between normal and cancerous states occur in this range 

[19, 21].  

 Bioelectric measurement for human breast tissue has started since 1920’s with the 

measurement of excised normal and cancerous breast tissues. Compared to normal 

tissue, malignant tissue has higher conductivity [22-23] and permittivity [22-25] and 

lower impedivity [26-27]. These changes are due to the increase cellular water and 

electrolyte content as well as altered membrane permeability and blood perfusion [19, 

28, 36-37]. Study by [23] in the frequency range of 3MHz to 3GHz shown that 

conductivity, σ and permittivity, ε of malignant tissue are higher than normal tissue 

particularly at frequencies below 100MHz. The research reveals that, σ is from 1.5-

3mS/cm for normal tissue and from 7.5-12mS/cm for malignant tissue, whilst ε is about 

10 for normal tissue and 50-400 for malignant tissue. At the frequency of 20kHz to 

100MHz, comparative bioelectric study [22] between tumor and its peripheral tissue 

shows that cancerous tissue has higher conductivity, σ and permittivity, ε than the 

surrounding tissue. Data from a few tumor samples indicates that σ ranges from 0.3-0.4 

mS/cm for normal, from 2.0 to 8.0 from cental part of tumor, ε ranges from 8-800 for 

normal and 80 to above 10000 for central part of tumor. At the frequency of 0.488 kHz 

to 1MHz, the impedivity modulus for cancerous tissue is (243±77 to 245±70Ωcm), and 

is lower than its surrounding adipose fatty tissue (1747±283 to 2188±338 Ωcm) and 

connective tissue (859±306 to 1109±371 Ωcm). At frequency above 100kHz, cancerous 

tissue exhibit the most capacitive response of all group [25] while another study found 

that complex conductivity and characteristics frequency are largest for cancerous tissue, 

middle for transitory tissue and lowest for normal tissue [117]. 

 From these measurements, it can be observed that bioelectric parameters are 

expressed in various electric term. However, the common conclusion that can be drawn 
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is there are significant differences in bioelectric properties between normal and 

malignant tissue. 

 

 

 

2.5 Density of Normal and Cancerous Breast Tissue 

  

  The mammary gland is a complex tissue that consists of epithelial parenchyma 

embedded in an array of stromal cell [28]. It undergoes dynamic changes over the 

lifetime of a woman from the expanded development at puberty, to proliferation and 

apoptosis during the menstrual cycle and to full lobuloalveolar development for 

lactation. Breast carcinoma  is a disease of uncontrolled cell growth in which mutated 

cells acquire genetic alteration that allow them to proliferate, grow and pile up outside 

the context of normal tissue development, which finally result in increased local cell 

density [6]. In addition to that, it is well established that stroma associated with normal 

mammary gland development is totally different from that associated with carcinoma 

[28, 36]. Compared to normal breast tissue, the stroma accompanying breast carcinoma 

contains increased protein, immune cell infiltrates and enhanced capillary density [28, 

36, 37]. Extensive multi proteins accumulation in the stroma has also been associated 

with enhanced growth and invasiveness of the carcinoma [30]. Increased collagen 1 and 

fibrin deposition, elevated expression of alpha smooth muscle actin (αSMA), collagen 

IV, prolyl-4-hydroxilase, fibroblast activated protein (FAP), tenascin, desmin, calponin, 

caldesmon and others have collectively altered the structure, stiffness and density of the 

extracellular fluid [28, 36-40]. Enhanced capillary density or angiogenesis is the 

complex process, leading to the formation of new blood vessels from the preexisting 

vascular network and further increased the compactness of tissue [34]. The formation of 

angiogenesis is induced by the secretion of specific endothelial cell growth factors 

produced by the tumor or the stromal cells [34]. Studies show that angiogenesis plays an 

important role in facilitates further tumor progression [30, 41-43].  

 In oncology research works, a few methods were used in estimating densities of 

normal and cancerous breast tissues. This includes cellular content estimation by 
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monitoring the level of certain cell parameters that are elevated or reduced in proportion 

to tissue density, or via image estimation by monitoring imaging parameter that change 

following changes in tissue density. 

 In cellular content estimation, studies show that the elevation and reduction of 

p73 gene [29] and matrix metalloproteinases (MMPs) [35] level is associated with tissue 

density.  p73 is a member of the p53 family of transcriptions factors with 2 isoforms of α 

and ϐ  that is implicated in cell differentiations and development. Observation found that 

the level of p73α increases with increased cell density whilst p73ϐ  decreases with 

increased cell density. Over and under expression of this protein’s isoforms in breast 

cancer are used to confirm an altered cellular density in breast carcinoma. On the other 

hand, MMPs are a large family of metal-dependent matrix degrading endopeptidases 

implicated in numerous aspects of tumor progression [35, 44]. Recent studies revealed 

that the expression of MMPs is elevated in an aggressively growing and densely packed 

breast cancer cell line [35]. 

 In medical imaging, changes in breast density due to carcinoma are usually 

assessed by using mammography and ultrasound. Mammographic density refers to the 

relative abundance of low density adipose tissue to high density glandular and 

fibroblastic stromal tissue within the breast. Previous study shows that, the involvement 

of 60% or more of the breast with mammographically dense tissue confers 3 to 5 fold 

increased risk of breast cancer [28]. In ultrasonography, changes in tissue density are 

indicated by the changes in velocity. Ultrasound velocity increases when it travels 

through a dense material and decreases when it travels through a less dense material 

[32]. This study report is in agreement with earlier observation that shows ultrasound 

velocity travelling through breast carcinoma is higher than those of normal tissue [33]. 

 The presented literature supports the fact of density alteration in breast carcinoma. 

In general, the density of mammary fat pad is 928kg/m3 and 1020kg/m3 for normal 

tissue. However, due to the altered density of breast carcinoma, research in [31, 125-

126] estimates the density of breast carcinoma to be very close to muscle which is 

1041kg/m3 [31].  
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2.6  Ultrasonography in Breast Oncology Diagnostic 

  

 Breast ultrasonography means imaging the breast with ultrasound [18]. It is an 

interactive imaging process by using sound wave at the frequency of 20kHz to 200MHz 

[18]. In the world of medical diagnostic, breast ultrasonography has an established and 

significant role in diagnostic of breast abnormalities [45]. Ultrasound is superior from 

mammography for its non-ionizing radiation. This makes ultrasound an imaging of 

choice to manage symptomatic breast in younger women as well as in pregnant and 

lactating mother whom the theoretical radiation of mammography is pertinent [53]. 

Ultrasonography is also a reliable modality for solid and cystic breast anomaly 

differentiation [45-47, 55-57, 60]. It is also used in imaging augmented and inflamed 

breast. However, in the current practice, the proportion of patient in whom breast 

ultrasonography is considered necessary is only 40% [60]. This means that, 

ultrasonography is not indicated for the rest 60% of patients referred for breast imaging 

[60].  This practice explains major constraint of ultrasonography in breast imaging that 

limits its usage for diagnostic of breast symptoms and for screening asymptomatic 

patients [53-55, 57-60]. 

 The major problem of ultrasonography is its low sensitivity in detecting small and 

preinvasive breast cancers [53-55, 57-60] from normal tissues due to the overlapping 

ultrasonic characteristics in these tissues [92-93, 127]. Breast ultrasound diagnostic 

relies on several sonographic features that are based on margin, shape and echotecture. 

Breast cancers are often characterized by poorly defined margins, irregular borders, 

spiculation, marked hyperechogenicity, shadowing and duct extension [56].  

 A systematic review on 22 independent studies to investigate the sensitivity of 

ultrasound in breast cancer detection was conducted by Flobbe et al in [60]. In the 

review, patient population was divided into 4 groups namely: 1. Patient undergoes 

clinical examination and mammography. Hence, ultrasound interpretation is with the 

knowledge to prior mammography (5 studies), 2. Patient undergoes mammography and 

clinical examinations. Hence, interpretation is based on the previous clinical and 

imaging data (4 studies), 3. Patients are referred for pathology and mammography. 

Hence, ultrasound interpretation is with the knowledge to prior mammography result (6 
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studies) and finally, 4. Ultrasound is interpreted blindly without prior patient clinical 

data (7 studies). Average ultrasound sensitivity for each group of patient is: 82.6%, 

88.25%, 86.83% and 82.57 respectively. This systematic review has revealed the 

weakness of ultrasound in diagnostics of patients with breast abnormalities regardless 

the existing of prior patient clinical examination and mammography. The study 

concludes that little evidence support was found to confirm the well recognized value of 

ultrasonography in breast cancer detection. Other than the review, independent report by 

[110] also shows the low sensitivity of ultrasound in detection of breast cancer. 

 Another limitation of ultrasound is its inability to detect microcalcification, a 

calcium residue found in the breast tissue as an early indicator of DCIS [55]. In 

ultrasonography, the presence of microcalcification in tissue is often masked with breast 

tissue heterogeneity and grainy noise due to speckle phenomena [111-112]. The reasons 

make microcalcification detection with ultrasonography unreliable [55]. 

 In addition to that, study in [59] reported the sensitivity of  ultrasonography for 

breast cancer detection evaluated by 3 different radiologists with experienced from 8 to 

16 years. The result shows that the achieved sensitivity is 66.7%, 87.5% and 56.3% for 

the three radiologists. This study found that, breast ultrasound diagnosis is not only 

complicates by the low sensitivity of the ultrasound itself but also by the dependency of 

ultrasound result to operator. This means that, a single sonographic image may be 

interpreted differently by different operators and the result is relative to the operator 

skills and experience, variations in human perceptions of the images, differences in 

features used in diagnosis and lack of quantitative measures used for image analysis 

[55]. 

 This inter-reader variability has led to automated ultrasonographic image 

evaluation via Computer Aided Diagnosis (CAD System). CAD is a multi step process 

that involves identification of lesion by segmentation, extraction and recognition by 

using a complex and intelligent algorithm based on echo texture, margin and shape [55]. 

It offers potentially accurate judgment to generate valuable second opinion in assisting 

diagnosis [55]. In CAD, the area under the ROC curve is the performance metric to 

evaluate CAD with 1 represents perfect performance [55]. Studies have shown that 

sonographic CAD is able to give a good classification performance of 0.83-0.87 [105-
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106, 108], excellent performance of 0.92 [107] and near perfect performance 0f 0.95-

0.98 [109]. With the increasing acceptance of Mammo CAD and MRI CAD, 

Sonographic CAD has also widely accepted to assist in diagnostics. In addition to that, 

[61-62] also proves that sonographic CAD is helpful for diagnosis. 

 Although breast ultrasound diagnosis has improved over the time with the usage 

of CAD, its usage in breast cancer detection is still limited due to its low detection 

sensitivity to breast masses and microcalcification as well as inter-reader variability. 

Hence, additional tissue properties need to be further explored for better breast cancer 

detection method. 

 

 

 

2.7 Lorentz Force Based - Magnetoacoustic Imaging 

 

   Research in Lorentz Force based magnetoacoustic imaging had started since 

1998 when Wen et al [63-65] developed a 2D Hall Effect imaging (HEI). HEI combines 

the theory of acoustic and magnetism, to manipulate the resulting voltage that rises from 

the interaction between the two energies for bioelectric profiles measurement. In HEI, 

non-focused ultrasound wave and magnetic field are combined to produce Lorentz Force 

interaction in tissue to access tissue conductivity [63-65]. Biological tissue is a 

conductive element due to the presence of random charges that support cell metabolism 

[65]. Propagation of ultrasound wave inside the breast tissue will cause the charges to 

move at high velocity due to the back and forth motion of the wave [63-65]. Moving 

charges in the present of magnetic field will experience Lorentz Force. Lorentz Force 

separates the positive and negative charges, producing an externally detectable voltage 

[3-8] that can be collected using a couple of skin electrodes [63-68]. HEI was first tested 

to image a phantom made of polycarbonate that is immersed in saline solution. Later, it 

was tested to image biological tissue. A series of experimental studies on HEI shows 

that, the resulting voltage that is collected is linearly proportional to the magnetic field 

strength and the ultrasound-induced velocity of the ionic particle. 
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 Later, study in [66] used HEI experimental set up to measure current output from 

agar samples prepared from 10g/l NaCl saline and 2.5% of agar powder. This research 

indicates that HEI is a new modality with high potential to measure electric conductivity 

of biological media by using ultrasound as probe. In addition to that, study in [67] 

improves HEI’s set up when a focused ultrasound transducer is used to focus the sound 

wave at a focal point. This was to prevent high attenuation from occurred in tissue 

through beam localization. Beam localization minimizes Lorentz Force interaction to 

only the focus area to maximize the interaction effects and increase the resulting voltage 

value. Therefore, the ultrasound probe was attached to a 1mm step size motor so that 

scanning can be done by moving the focused transducer and 2D image can be generated. 

As a result, better voltage/current value was obtained for profile assessment of tissue. 

 Based on the review, previous magnetoacoustic imaging manipulates Lorentz 

Force interaction for only bioelectric profile assessment of tissue. The output of 

ultrasound wave that is initially used to stimulate tissue particle motion is ignored, 

though it contains valuable information with regards to tissue mechanical properties. 

Hence, this study employs the concept of magnetoacoustic imaging with acoustic and 

bioelectric outputs to improve the existing breast cancer detection method. 

 

 

 

2.8 Theory of Lorentz Force Based - Magnetoacoustic Imaging 

 

 Theoretically, magnetoacoustic imaging manipulates the interaction between 

ultrasound wave and magnetic field in current carrying media. Consider an ion in a 

biological tissue sample with charge q and conductivity σ. The longitudinal motion of an 

ultrasound wave in z direction will cause the ion to oscillate back and forth in the 

medium with velocity V0. In the presence of constant magnetic field B0 in y direction, 

the ion is subjected to the Lorentz Force [63-68]: 

 

 [63-68]
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From (1), the equivalent electric field is : 

 

  [63-68]
 

 

The field E0 and current density J0 oscillate at the ultrasonic frequency in a direction 

mutually perpendicular to the propagation path (direction of v0) and the magnetic field 

B0. This produces an electric current density given by: 

 

 , [63-68]
 

 

The net current I(t), is derived by integrating (3) over the ultrasound beam width, W 

along the propagation path: 

 

[63-68] 

 

Hence, if current I(t) is collected by electrodes into a detection circuits having 

impedance Rc, the detected voltage is: 

 

[63-68]
 

 

Based on the equations, voltage that is proportional to the conductivity weighted density 

of the tissue can be accessed for evaluation from the x direction. Concurrently, the 

ultrasound signal that is used to stimulate the ionic motion can be collected for acoustic 

evaluation from the z direction. 
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2.9 Artificial Neural Network in Biomedical and Clinical Application 

  

 Artificial intelligence has been used very extensively in modeling biomedical 

application. It has been proposed as reasoning tool to support clinical decision making 

since the earliest day of computing. An artificial neural network (ANN) is a nonlinear 

and complex computational mathematical model for information processing with 

architectures inspired by neuronal organizational biology [69-71]. The underlying reason 

for using an artificial neural network in preference to other likely methods of solution is 

its ability to provide a rapid solution. Depending on the type of problem being 

considered, ANN is a proven method which is a capable of providing fast assessment 

and accurate result [69-72]. This is because; ANN works in a simulated parallel manner 

and is not limited by the serial requirements of the normal program such as in expert 

system and conventional programming [69-72].  

 The most valuable property of ANN is its ability to learn and to generalize [72]. 

Generalization refers to the capability of neural network to produce reasonable outputs 

for input which is not encountered during training [69, 73]. These attributes mark neural 

network out from other computational methods [72]. Neural network consists of a 

number of simple and highly connected processors. Like the brain, ANN can recognize 

pattern, manage data and most significantly, learn [69-70]. Previous study also showed 

that, ANN with at least one hidden layer of computational unit is capable of 

approximating any finite function to any degree of accuracy as a universal approximator 

[74]. 

  In medicine, ANN is widely used for modelling, data analysis and diagnostic 

classifications [69-71, 74-76]. The most common ANN model used in clinical medicine 

is the multilayer perceptron (MLP) [75]. The most widely used connection pattern is 

three layer back propagation neural network which have been proved to be useful in 

modelling input –output relationship [69-70, 77] while the most commonly used transfer 

functions are linear, log sigmoid and tan sigmoid [78].  
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  The most commonly used indicator of ANN performance is Mean Squared Error 

(MSE). MSE is the average of the squares of the difference between each output and the 

desired output. Research performed in [69-70, 73, 75-76, 78-79] used MSE as the 

measurement of ANN performance. In addition to that, researches conducted in [73, 79, 

80-82] were using the accuracy of the tested data as one of the performance indicator of 

the ANN. By using this method, network is trained using a part of the data and the 

remainder is assigned as the testing and validation data. 

 

 

2.10  Conclusion 

 The limitation of breast ultrasound in cancer diagnostic is its low sensitivity in 

detecting small and preinvasive cancer from normal tissue, due to the overlapping 

acoustic characteristic between those tissues. This restriction prevents ultrasound from 

taking a prominent role in managing symptomatic patient as well as in breast screening. 

 However, studies have shown that normal and cancerous breast tissues differ to 

each other in density and conductivity. The changes in density are due to uncontrolled 

cell growth, excessive accumulation of protein in stroma and enhancement of capillary 

density. On the other hand, conductivity changes are due to increase cellular water and 

electrolyte content as well as altered membrane permeability and blood perfusion to 

support metabolism requirements. Whilst ultrasound imaging is very sensitive to 

density, further innovation needs to be done to the modality so that it is capable to 

explore additional properties of breast tissue for cancer detection. 

 Hence, a novel hybrid method is developed in this study to evaluate the 

effectiveness of magnetoacoustic imaging in breast cancer detection. 

 

 

 



36 
 

CHAPTER 3 – METHODOLOGY 

 

 

 

3.1 Introduction 

 

 This chapter describes the methodology that was employed in this study. The 

methodology comprises of 6 stages. The first stage began with literature review on the 

anatomy and physiology of normal and cancerous breast tissue as well as breast cancer 

detection method. The second stage involved a mathematical calculation on the 

fundamental physics of HMM to predict the system’s output. The fundamental 

calculation was followed by a series of experiments, to observe the HMM outputs to 

phantom and biological tissue for breast cancer evaluation (stage three). The experiment 

comprises of ultrasound attenuation measurement and magnetoacoustic voltage 

measurement. The experimental database was then statistically quantified to 

discriminate the attenuation and magnetoacoustic voltage value for normal and 

cancerous tissue group (stage four). After quantification, the database went through data 

cleaning and normalization process, to be used in ANN development process (stage 

five). The final stage was a validation study to the developed artificial neural network. 

The stages were summarized in the flow chart below: 
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Figure 3.1: Flow chart for the development of HMM for breast cancer detection 

 

 

 

 

 

 

 

 

 

 

Literature Review on breast cancer and the existing diagnosis method 

Validation of ANN 

Development of Artificial Neural Network for breast cancer classification 

Mathematical calculation to predict HMM’s magnetoacoustic voltage 

output 

Experimental investigation on Hybrid Magnetoacoustic Method (HMM) 

for breast cancer detection 

Analysis and quantification of experimental result by using statistical 

analysis 

Data massaging 
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3.2 Mathematical Calculation for HMM Voltage Output Prediction. 

 

 The objective of this mathematical calculation was to acquire an accurate 

prediction value of HMM voltage output. The magnetoacoustic voltage output comprises 

of 2 peaks with the first peak has a positive value and the other peak has a negative 

value. The 2 peaks represent the boundaries of the scanned object. The voltage 

calculation involved 5 different steps namely: 1) Modelling of experimental condition, 

2) Determination of acoustic power of the ultrasound circuit, 3) Determination of 

ultrasound intensity, 4) Determination of ultrasound peak pressure and particle motion 

velocity and finally 5) Determination of Lorentz Force and the resulting 

magnetoacoustic voltage value. 

 

 

3.2.1 Modelling of Experimental Condition 

 

 Before the calculation was started, modelling of experimental condition was 

done following the real experimental planning [125-126]. In general, the HMM system 

consists of a cylindrical permanent magnet, a unit of ultrasound pulser receiver, 2 units 

of 9.8MHz ultrasound transducer to transmit and receive the ultrasound wave and a 

couple of skin electrodes for magnetoacoustic voltage output collection. 

 

3.2.1.1  Magnetic Field. 

 

 A cylindrical permanent magnet was used to produce a static magnetic field with 

intensity of 0.25T at the center of the magnet bore. The magnet bore has a diameter of 

5cm. A measurement chamber was placed at the center of the magnet bore, and the 

magnitude of the magnetic field intensity was assumed to be homogenous throughout 

the measurement chamber [125-126]. The magnetic field direction was set in the 

positive y direction, perpendicular to the ultrasound wave. 
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3.2.1.2  Ultrasound System 

 

 The ultrasound pulser receiver unit delivered 9.8MHz negative pulses with 

amplitude of 400V to a couple of single element, nonfocused ceramic transducers. The 

element diameter, D of the transducer is 5mm. The impedance value of the ceramic 

transducer is 190 Ω at 9.8MHz for a thickness of 150µm to operate at the frequency 

range of 6.28-14.3 MHz [88]. The ultrasound transducers were permanently attached to 

the measurement chamber that placed the tissue model. The ultrasound beam direction 

was set in the z direction. 

 

3.2.1.3  Ultrasound Propagation Path 

 

 The ultrasound signal was emitted from the matching layer of the ultrasound 

transducer in the z direction (direction of the chamber depth). The sound wave will 

propagate through a 4mm depth of oil layer followed by a 2mm thickness breast tissue 

samples before sensed back by the receiver transducer. 

 

 

 

3.2.2 Determination of Acoustic Power of the Ultrasound Circuit 

 

 The ultrasound pulser and receiver unit delivered 400V of 9.8MHz alternating 

negative voltage pulses to the ultrasound transducer at a Pulse Repetition Frequency 

(PRF) of 5kHz. In the ultrasound transducer, the voltage pulses produced an electro-

mechanical resonant at the piezoelectric element, so that ultrasound waves at 9.8MHz 

will be emitted. The strength of the resulting ultrasound wave is proportional to the 

given electric power as the rate of transport of ultrasound energy [86-88]. Hence, the 

acoustic power of the ultrasound wave was calculated by determining 1) The delivered 

average voltage, 2) The delivered electric power and finally 3) The delivered acoustic 

power [86-88].  
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 Average voltage is the mathematical average of all instantaneous wave voltage 

pulses that occur at each voltage alternation [83]. The average voltage for the wave was 

calculated following the formula:  

 

  (6), [83-84] 

 

In which,  

  (7), [83-84] 

 

With τ=duration of an active function and T is the period of the function. 

Mathematically,  and   , in which f is the signal frequency and PRF= Pulse 

Repetition Frequency. 

 

 When the average voltage was known, the total electric power of the ultrasound 

system was calculated following the equation: 

 

 (8), [85] 

 

In which, Zt is the impedance of the piezoelectric ceramic element at 9.8MHz. 

 

Finally, the acoustic power can be calculated by   

 

  (9), [18, 86-88] 

 

Where Kc , is the electroacoustic coupling constant of the ceramic element. 

 

The acoustic power is a measure of ultrasound energy per unit of time. It is measured in 

Watts and regarded as ultrasound beam intensity times the beam area [18, 86-87]. 
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3.2.3 Determination of Ultrasound Beam Intensity 

 

 Medical ultrasound is produced in the form of ultrasound beam that focuses to 

certain area and the beam’s strength is described in term of beam intensity, defined by 

power per unit area (W/m
2
) [86- 89]. The beam intensity, Ic at the time the ultrasound 

wave leaves the matching layer of the transducer was determined from the equation: 

 

   (10), [18, 86-89] 

 

In which,  and   

(11),  [90]. In which, D = element diameter, SF = normalized focal length with its value 

is 1 for a flat transducer [90]. In this study, the element diameter D, for the transducer is 

5e
-3 

m. 

 Soon after the ultrasound wave leaves the transducer, it propagated through a 

4mm depth of oil and experienced energy loss via attenuation. Previous report [117] on 

average attenuation of edible oil at 10MHz is 59Np/m in which, equals to 5.12dB/cm. 

Hence, for a 4mm depth of oil, it was approximated to be very close to 3dB. 

 Due to the -3dB loss, the remaining ultrasound intensity at the time it hits the 

tissue surface was 50% of its original intensity. Hence, the attenuated intensity value 

was: 

  [18] 

  

 

3.2.4 Determination of Peak Ultrasound Pressure and Particle Motion Velocity. 

 

 When the ultrasound beam with intensity of If passes a point in the tissue sample, 

the particles in the tissue were alternately compressed together and pulled apart leading 
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to oscillation in the local pressure.  The peak pressure P0,   during the passage of the 

pulse was calculated following the equation: 

 

   (12),  [68, 86-87, 90],  

 

Where z, is the normal and cancerous tissue acoustic impedance of 1.54e
6
 Rayls [86]. 

 

 However, this initial pressure was the total pressure that creates a longitudinal 

and shear wave in the breast tissue. Previous study reported that as much as 36% of 

ultrasound pressure is converted to the form of shear wave especially in highly elastic 

material such as breast cancer tissue, and the remaining is in the form of longitudinal 

wave [124]. Since the value of Lorentz Force is only influenced by the longitudinal 

wave in z direction, the final peak pressure was calculated by considering only the 

remaining 64% of the initial peak pressure. Hence, the final pressure, Pf was 

calculated as follows: 

 

 [124] 

 

 

From the final peak pressure, the velocity of particle motion was calculated following: 

 

  (13), [68] 

 

In which, Pf = final ultrasound pressure calculated previously, ρ = breast tissue density, 

c0 = speed of sound in the medium. 

 

 

 

3.2.5 Determination of Lorentz Force and magnetoacoustic voltage value 
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 Finally, the Lorentz Force and the magnetoacoustic voltage value were 

calculated following equation [63-68]:  

 

  (1), [63-68] 

 (2),  [63-68] 

 (3), [63-68] 

  (4),  [63-68] 

 

 The calculation above estimates the value of the first peak of magnetoacoustic 

voltage signal that occurs at the upper boundary of tissue. The amplitude of the second 

peak was calculated by further analyzing the attenuation of ultrasound intensity after 

propagating through the 2mm tissue and finally hit its lower boundary. From there, the 

peak pressure of ultrasound was recalculated to find the second peak value. 

 Then, the value of the first positive and the second negative peak was averaged 

to find the final magnetoacoustic voltage value. Averaging was done to correlate the 

calculation result with the experimental result since the lock in amplifier that was used 

in the experimental investigation gives an average output of signal minimum and 

maximum. 
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3.3 Experimental Investigation on Hybrid Magnetoacoustic Method (HMM) for 

Breast Cancer Detection 

 

 The experimental investigation comprises of 4 steps including 1) experimental 

set up, 2) preparation of samples, 3) ultrasound measurement and 4) magnetoacoustic 

voltage measurement. 

 

 

3.3.1 Experimental Set Up 

 

 The entire experimental study was conducted in an anechoic chamber with 

shielding effectiveness of 18KHz to 40GHz, located at the Center of Electromagnetic 

Compatibility, Universiti Tun Hussien Onn Malaysia. Electromagnetic shielded 

environment was preferred to prevent external electromagnetic interference from 

contaminating the recorded magnetoacoustic voltage and interrupting the sensitive lock-

in amplifier readings. Interior setting of the anechoic chamber at the Center of 

Electromagnetic Compatibility, UTHM was shown in figure 3.2. 

 The HMM system consists of a 5077PR Manually Controlled Ultrasound Pulser 

Receiver unit, Olympus-NDT, Massachussets, USA.  The unit delivered 400V negative 

wave pulses at the frequency of 10MHz and PRF of 5KHz, to 2 units of 0.125 inch 

standard contact, single element ultrasound transducers having center frequency of 

9.8MHz. The transducers were used to transmit and receive ultrasound wave in 

transmission mode setting from the z direction. The pulser receiver unit was also 

attached to a digital oscilloscope, model TDS 3014B, Tektronix, Oregon, USA for signal 

display and storage purposes.  

 A custom made, 15cm height cylindrical permanent magnet was used to produce 

static magnetic field, with intensity of 0.25T at the center of its bore. Diameter of the 

magnet bore is 5cm. The direction of magnetic field was set from the y axis. 

 Magnetoacoustic voltage measurements were made from the x direction with 

respect to the measurement chamber. It was conducted by using 2 unit of custom made, 

ultrasensitive carbon fiber electrodes. The sensitivity of the Carbon Fibre electrodes is 
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0.1µV. Carbon fiber electrodes have also been used for electrophysiological studies and 

voltammetric analysis due to its significantly less noise [118-120]. Furthermore, carbon 

fiber has a very weak paramagnetic property compared to other conventional electrodes. 

Due to the property, carbon fiber has been used in combination with fMRI to study the 

brain stimulation [120-122]. The carbon fiber electrodes were connected to a high 

frequency Lock-In amplifier, model SR844, Stanford Research System, California, 

USA. The full scale sensitivity of the amplifier is 100nVrms with 80dB dynamic reserve 

[123]. Figure 3.3 and 3.4 show the measurement chamber and its positioning inside the 

permanent magnet bore respectively. 

 

 

Figure 3.2 Anechoic chamber at the Center of Electromagnetic Compatibility, 

UTHM. 
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Figure 3.3 Measurement chamber 

 

 

Figure 3.4: Measurement chamber position inside the permanent magnet bore 

 

 

3.3.2 Preparation of Samples 

 

 Two types of samples were used in this study. The first sample was a set of tissue 

mimicking gel with properties that are very close to normal breast tissue. Another 

sample was a set of animal breast tissues that was harvested from a group of tumor 

bearing laboratory mice and its control strain. The tissue mimicking gel was used in the 

early part of this study to understand the basic response of HMM system to linear 
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samples before it was tested to complex samples like real tissues. The same 

experimental planning was also observed in previous studies [63-65, 94-95], in which 

phantoms were tested to their system before it was tested to real biological tissue.  

 

3.3.2.1  Preparation of Tissue mimicking gel  

 

The tissue mimicking gel was prepared from a mixture of gel powder, sodium 

chloride (Nacl) and pure water at the right proportion to achieve the desired density and 

conductivity. During the preparation, 200 ml of pure water was added to 40 ml of agar 

gel powder. The solution was stirred and 80 ml of NaCl was added to the solution. After 

that, it was poured into a preparation mold (plastic container in cube shape) for 30 

minutes. The density and conductivity of the breast tissue mimicking gel was 1114 

Kg/m3 and 0.27S/m respectively.15 samples of breast tissue mimicking gel were used in 

this study. During the experiment, the samples were cut down to an approximately 1cm 

x 1cm size with 2mm thickness. Thickness standardization was made by using a U-

shaped mold with 2mm opening. 

 

 

3.3.2.2  Preparation of Real Animal Tissue 

 

 The used of animal in this study was approved by the National University of 

Malaysia Animal Ethics Committee. Transgenic mice strains FVB/N-Tg MMTV PyVT 

634 Mul and its control strain FVB/N were obtained from the Jackson Laboratory, USA.  

For the transgenic mice set, hemizygote male mice were crossed to female noncarrier to 

produce 50% offspring carrying the PyVT transgene.  
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Figure 3.5: Mice breast cancer model that was used in this study. (a) Transgenic mice 

strain FVB/N Tg-MMTV PyVT that was genetically confirmed to carry invasive breast 

adenocarcinoma. (b) Surgical process was done to harvest the breast tissues. (c) 

Cancerous breast tissues. (d) Normal breast tissues. 

 

 

 Transgene expression of the mice strain is characterized by the development of 

mammary adenocarcinoma in both male and female carriers with 100% penetrance at 40 

days of age [114-115]. All female carriers develop palpable mammary tumors as early as 

5 weeks of age. Male carriers also develop these tumors with later age of onset [114, 

116]. Median age of tumor latency is 66 days in female and 133.5 days in male [114]. 

Adenocarcinoma that arises in virgin and breeder females as well as males was observed 

to be multifocal, highly fibrotic and involves the entire mammary fat pad [96, 114].  

Mice carrying the PyVT transgene also show loss of lactational ability since the first 

pregnancy [114].  Pulmonary metastases are also observed in 94% of tumor-bearing 
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female mice and 80% of tumor-bearing male mice [114-116]. The Mice female 

offsprings were palpated every 3 days from 12 weeks of age to identify tumors.  

 Individual mouse was restrained by using a plastic restrainer when the tumor 

diameter reached 2cm for the transgenic mice or when it reached 18 weeks of age for 

normal mice. Anesthesia was performed by using the Ketamin-Xylazil-Zoletil cocktail 

dilution. 0.2ml of the anesthetic drug was administered intravenously from the mouse 

tail and an additional of 2ml of the drug was delivered intraperitoneally for about 2 

hours of sleeping time. Fur around the breast area was shaved. The mammary tissue was 

harvested from the mice while they were sleeping. Mice were then killed by using drug 

overdose method.  Excised breast specimens were cut down to an approximately 1cm x 

1cm square shape with thickness of 2mm immediately after the surgery to maintain the 

tissue physiological activities. Tissue was carefully trimmed down to the required 

thickness and standardization was made by using a custom made U-shaped mold with 

2mm opening. The overall process of trimming down after excision took an average 

time of 1 minute. A total of 24 normal and 25 cancerous breast tissue specimens were 

used in this study. 

 

 

3.3.3 Ultrasound Measurement 

 

 In ultrasound measurement, specimens were immersed in oil that was located 

between the ultrasound transmitter and receiver [127]. Measurement was done in 

transmission mode, in which 2 ultrasound transducers were used as transmitter and 

receiver. The transmission mode approach gives some advantages including less 

complicated data and less noise [93, 127]. The distance between the ultrasound 

transmitter and receiver was set constant to 6mm. Ultrasound analysis was started and 

performed at a constant temperature of 21°C by using the insertion loss method 

described elsewhere previously [92-93, 96-100, 127]. Sonification was conducted from 

the z direction. Vegetable oil was used as medium for ultrasound propagation to prevent 

any leakage current from contaminating the measurement chamber and interfering the 

HMM magnetoacoustic voltage output [67]. A total of 15 gel samples were used in the 
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early part of this study and measurements were conducted once for every gel sample. In 

addition to that, 24 normal and 25 cancerous mice breast tissue samples were used. The 

biological samples were divided into 2 groups namely: the normal group and the 

cancerous group. Measurement was repeated for 5 times for every sample at any random 

position on the sample surface. 

 

 

3.3.4 Magnetoacoustic voltage Measurements 

  

 The magnetoacoustic voltage measurement was made by touching the tissue 

surface from the x direction using the skin electrodes. Before the measurement was 

started, the baseline reading of the Lock-In amplifier was recorded. Baseline reading 1 

was recorded when the ultrasound pulser receiver was turned off and the electrodes were 

placed outside the permanent magnet. Baseline reading 2 was recorded with the 

ultrasound pulser receiver was turned on and the electrodes were placed outside the 

permanent magnet. Baseline reading 3 was recorded when the ultrasound pulser receiver 

was turned on and the electrodes were placed inside the permanent magnet. Finally 

baseline reading 4 was recorded when the ultrasound pulser receiver was turned on and 

the electrodes were immersed in the oil inside the measurement chamber in the present 

of magnetic field. 

 The time constant of the lock-In amplifier was set to 3ms. Hence, the recorded 

reading of the amplifier is equal to the average Vrms of the first and second peak 

signals. 

 A total of 15 gel samples were used in the early part of this study and 

measurement was repeated twice for each gel. In addition to that, 24 normal and 25 

cancerous breast tissue samples were used and they were divided into 2 groups namely: 

the normal group and the cancerous tissue group. Measurement was repeated for 5 times 

for every biological tissue sample at any random position on the breast tissue surface at 

one measurement side (side 1). After the 5
th

 measurement, the tissue orientation was 

changed and measurement was repeated again for 5 times (side 2).  
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3.4 Experimental Data Analysis  

 

 The experimental data analysis stage comprises of analysis of HMM ultrasound 

output and HMM magnetoacoustic voltage output. In general, the HMM ultrasound 

output requires further processing in Matlab to find the attenuation scale of the 

ultrasound wave in every sample via spectral analysis. On the other hand, the HMM 

magnetoacoustic voltage output does not require further processing and the measured 

data was read and recorded directly from the Lock In microamplifier. Then, the resulting 

attenuation scale and the magnetoacoustic voltage were statistically analyzed to find the 

mean and standard deviation for every group. 

 

 

3.4.1 Ultrasound Data Analysis 

 

 The objective of processing the HMM ultrasound output was to calculate the 

power spectral density of the signal. It involved determination of frequency content of a 

waveform via frequency decomposition. The used of power spectral density as an 

estimates of ultrasound attenuation was reported in [92, 96-100, 127]. 

 During the data collection stage, the HMM system recorded 10000 lengths of 

ultrasound signal samples by using a frequency sampling of 1 GHz in time domain. 

However, those 10 thousand samples were too long and only the required signals were 

extracted [127]. All signals were first filtered by using the Low Pass Butterworth filter to 

remove the unwanted signal over 15 MHz. The signals were then converted to frequency 

domain for analysis by using the FFT functions.  

 Power Spectral Density of the ultrasound signal was plotted in Matlab. The 

attenuation scale was calculated by subtracting the log mean power spectrum of 

ultrasound signal propagating through the oil without tissue by the log mean power 

spectrum of ultrasound signal propagating through the oil with tissue following the 

equation:  

 

Attenuation (dB) = log P0-log Ps (14)  [127] 



52 
 

Where Ps is the mean squared spectrum of the ultrasound signal propagating in the 

medium with tissue/gel sample and P0 is the mean squared spectrum of ultrasound signal 

propagating through medium without sample. 

 Later, the attenuation scale for the gel, normal tissue group and cancerous tissue 

group were exported to Microsoft Excel for statistical analysis. The statistical analysis 

involved the determination of mean and standard deviation for every group. 

 

 

3.4.2 Magnetoacoustic Voltage Analysis 

  

 The recorded magnetoacoustic voltage data was deducted by baseline reading 4 

to eliminate any voltage value that is caused by external noise. After deduction, 

statistical analysis involving the calculation of mean and standard deviation was 

conducted according to the sample group: 1) gel group, 2) normal tissue group (side 1 

and side 2) and 3) cancerous tissue group (side 1 and side 2) in Microsoft excel. 

 

 

 

3.5 Data Massaging 

 

 Data massaging involves restructuring the range of neural network input and 

target values between zero to one. Massaging is done due to the fact that neural network 

works best when all its input and output vary within the range of 0-1 [69-70] by using 

the following equation: 

 

 (15), [70]. 
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3.6 Development of MFNN 

 

 The diagnosis of breast cancer in this study was performed by employing a 

Multilayer Feed Forward Neural Network (MFNN) with 2 inputs. It was trained by 

using the steepest descent with momentum back propagation algorithm in Matlab 

environment. The back propagation algorithm is the most commonly used algorithm in 

medical computational application as were experimented by [69-70, 75, 82].  

 The measurement of ANN performance was observed by using the Mean 

Squared Error (MSE) and total prediction accuracy of the network to the tested data. 

Training is best when the ANN is capable to achieve lowest MSE value. Researches 

perform by [69-70, 73, 75, 78] used MSE as the measurement of ANN performance. 

 In addition to that, each ANN configuration was tested by using the testing group 

data to obtain the overall prediction accuracy as were experimented by [69-70, 80-82]. 

By using this method, network was trained using a part of the data and the remainder 

was assigned as testing and validation data.  

 The designation of ANN in this study involves a few steps as follows: 

 

 

3.6.1 Training of ANN 

 The training of ANN was performed in Matlab Environment. In the Neural 

Network Toolbox, the network was trained by using the traingdm algorithm with logsig 

and purelin transfer functions. The training process starts when the data is presented to 

the network by an external supervisor. The algorithm and transfer function that were 

employed were as follows: 

3.6.1.1  Training algorithm: Traingdm - is a training process that employs the 

steepest gradient descent with momentum algorithm to allow faster convergence. 

3.6.1.2  Non linear Transfer functions: Logsig - is the sigmoid function, whose 

graph is s-shaped. It is the most common form of activation function that exhibits a 

graceful balance between linear and nonlinear behaviour. The logsig function takes the 

input value between plus and minus infinity and squashes the output into the range of 0 

to 1 as the input goes from negative to positive infinity [69-70, 113]. 
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3.6.1.2  Linear transfer function: Purelin - is a transfer function at the end of the 

sigmoid neurons. Sigmoid neurons squash their output in the range of 0 to 1. Hence, 

purelin neurons are used to allow the network to take any output values [113]. 

 

  

3.6.2 Determination of Optimal Hidden Layer Size, Learning Rate, Momentum 

Constant and Iteration Rate of ANN. 

 

 The determination of optimal network architecture of the developed ANN was 

conducted systematically by varying the ANN training parameters. The training 

parameters include number of neuron in the hidden layer, learning rate, momentum 

constant and iteration rate. 

 During the determination process, as one parameter was being varied to find its 

optimum value, the other parameters were kept constant at a particular predefined value. 

The value of each parameter under study was considered optimum when the network is 

capable to produce low MSE value and high prediction accuracy to the testing data. 

 The determination of optimal value of each parameter was done in the sequence 

as follows: 

 

3.6.2.1  Determination of optimal hidden layer size – Number of hidden neuron 

was varied and learning rate, momentum constant and iteration rate were kept at a 

predefined value of 0.1, 0.7 and 2000 respectively. 

 

3.6.2.2  Determination of Optimal learning rate – Learning rate was varied, 

momentum constant and iteration rate were kept constant at a predefined value of 0.7 

and 2000, and number of hidden neuron was at optimal value as obtained in the previous 

determination process. 

 

3.6.2.3  Determination of optimal momentum constant – Momentum constant was 

varied; iteration rate was at 2000, learning rate and hidden layers were at their optimal 

value. 
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3.6.2.4  Determination of optimal iteration rate – Iteration rate was varied and the 

other parameters were kept constant at their optimal values 
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CHAPTER 4 – RESULT 

 

 

 This chapter compiles the final calculation and experimental result of this study. 

Section 4.1 shows a step by step calculation to find the value of HMM magnetoacoustic 

voltage. The experimental observation and result were presented in section 4.2. Section 

4.3 compares the experimental result with the previous analytical calculation result. 

Finally, section 4.4 presents the development process of the ANN that was used for 

breast cancer classification.  

 

 

4.1 Prediction of the HMM Voltage Output 

  

 The magnetoacoustic voltage value was calculated following the modelling and 

calculation condition specified in section 2.2. The calculation involved determination of 

the first and second peak of the magnetoacoustic voltage signal via the determination of 

acoustic power, ultrasound intensity and ultrasound peak pressure, particle velocity in 

tissue and finally strength of the Lorentz Force. 

 

4.1.1 Calculation of acoustic power of the ultrasound circuit 

  

 In order for magnetoacoustic voltage output range to be predicted, the acoustic 

power of the stimulating sound wave was first calculated. For a 9.8 MHz ultrasound 

signal with amplitude of 400V and PRF of 5kHz, the corresponding average voltage of 

the signal was: 

 

  (6),

 [83-84]. 

 

In which,  
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  (7), [83-84] 

With τ=duration of an active voltage pulse from the pulser receiver unit and T is the 

period of the pulse. For a 9.8MHz signal,  

 

 

 

  

 

Therefore, the total electrical power given to the ceramic transducer was:  

 

    (8), [85]. 

 

and  is the ceramic element impedance value of 190Ω at the frequency of 9.8MHz 

[88]. 

 

 Subsequently, the delivered acoustic power to the ceramic element was 

determined by multiplying the electric power, Pelectric with the electroacoustic coupling 

constant, Kc of the ceramic element. The value of Kc is 0.8 [86-87, 18].  

 

 W  (9), [18, 86-88]. 

 

 

 

4.1.2 Calculation of Ultrasound intensity 

 

 The ultrasound intensity was calculated by dividing the acoustic power of the 

ultrasound pulse with its beam area [86-89]. For a flat transducer, beam diameter was 

first calculated to find the beam area. Beam diameter was calculated following the 

equation: 
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  (11), [90]. 

 

In which, D0 = element diameter of the ceramic transducer of 5e
-3

 m and SF = normalized 

focal length with its value is 1 for a flat transducer [90].  

Therefore, 

  

 

This means that, its corresponding beam radius was: 6.42e
-4

 m. 

Then, the beam area was calculated following a general equation for a round-shape area:  

 

Finally, the acoustic intensity was obtained by dividing the acoustic power and beam 

area: 

  (10), [18, 86-89] 

 

 

From the calculation, the total acoustic intensity of the beam was 135.29W/m
2
 and this 

value is acceptable for a single element transducer since the maximum value of 

temporally averaged intensity limited by FDA for diagnostic, single and multi element 

transducer is 0.7W/cm
2
 or 7000W/m

2
. 

 The ultrasound beam with initial intensity of 135.29W/m
2
 departs from the 

transducer’s matching layer and propagates through a 4mm depth of oil. The 

propagation of sound wave in a highly attenuating media such as oil had causes its initial 

intensity to be attenuated. Previous study [117] reported that average attenuation value 

of edible oils at 10MHz is 59Np/m in which, equals to 5.12dB/cm. Hence, for a 4mm 

depth of oil, the attenuation is 2dB. However, this average value does not include the 
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attenuation of palm oil that is used in this study. Due to the property of highly 

attenuating palm oil, the attenuation value was closely approximated to -3dB. 

 Hence, the remaining ultrasound intensity at the time it hits the tissue surface 

was only 50% of its original intensity (-3dB loss =50% loss). So, the attenuated intensity 

value was: 

 [18] 

 

 

4.1.3 Calculation of Peak ultrasound pressure and particle motion speed 

 

 When the ultrasound beam with intensity of If1 passes a point in the tissue 

sample, the particles in the tissue were alternately compressed together and pulled apart 

leading to oscillation in the local pressure.  The peak pressure P01,   during the passage of 

the pulse was calculated following the equation: 

 

    (12), [68, 86-87, 90] 

 

 

   

 

 However, this initial pressure was the total pressure that creates a longitudinal 

and shear wave in the breast tissue. Previous study reported that as much as 36% of 

ultrasound pressure is converted to the form of shear wave especially in highly elastic 

material such as breast cancer tissue, and the remaining is in the form of longitudinal 

wave [124]. Since the value of Lorentz Force is only influenced by the longitudinal 

wave in z direction, the final peak pressure was calculated by considering only the 

remaining 64% of the initial peak pressure. Therefore, the final peak pressure at the 
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upper tissue boundary (First boundary) to generate the first magnetoacoustic voltage 

peak was: 

 

   

 

Finally, the peak particle velocity V0, which was caused by the pressure Pf1 was 

calculated: 

 

   (13), [68] 

 

 

 

Therefore, the longitudinal particle motions of an ultrasonic wave have caused the ion to 

oscillate back and forth in the medium with velocity V01= 4.416e
-3

 m/s in z direction. 

 

  

4.1.4   Determination of Lorentz Force and Magnetoacoustic voltage value  

 

 Earlier calculation shows that the ionic particle in the breast tissue moved with 

velocity of 4.416e
-3

 m/s. In the presence of a static magnetic field, B0=0.25 Tesla in y 

direction the moving ion was subjected to the Lorentz Force.  

 

 (1) [63-68] 

 

The Lorentz Force separates positive and negative ions in the breast tissue creating two 

separate electric current densities J0 of positive and negative ions. The first current 

density contained only positive ions and the second current density contained only 

negative ions or vice versa depending on the electromagnetic right hand rule law. Its 

magnitude was calculated as follows: 
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 (2), [63-68] 

 (3), [63-68] 

 

Whereby the conductivity σ value of cancerous tissue is 0.8 Sm
-1 

[22], 

 

 

 

 

Hence, the resulting electric current in the breast tissue can be further calculated by 

integrating the current density, Jx over the ultrasound beam surface in cylindrical 

coordinate: 

 

  (4), [63-68] 

 

In cylindrical coordinate, 

 

  

 

 

 

For   , 

 

 

 

For a constant azimuthal plane cylinder, the surface, . Hence,  
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In which,  . Therefore cos 2П = 1 and sin 2П = 0. This simplifies I1 to: 

 

 

 

For a carbon fiber electrode with impedance R =10kΩ, the resulting magnetoacoustic 

voltage was: 

 

 

 

 V  (First peak) 

 

The calculation above shows the magnitude of the first peak that occurs at the first 

boundary of tissue. 

 Calculation of the second peak involved further estimation on the attenuation of 

ultrasound energy as the wave propagates further through the 2mm tissue and finally hits 

its lower boundary. At the first tissue boundary, the ultrasound wave intensity was 

67.64W/m
2
. The tissue was assumed to further attenuate sound intensity at -3dB. The 

assumption was made since no literature review was found on the mice breast tissue 

attenuation. Therefore, at the end of the tissue boundary, the remaining intensity was 

only 50% (-3dB loss = 50% loss) of its initial intensity. Hence, the sound intensity at the 

second tissue boundary was: 
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The intensity produces local peak pressure at: 

 

    (12),  [68, 86-87, 90] 

 

 

  

 

From that, the longitudinal ultrasound pressure was calculated as 64% of the peak 

pressure: 

 

  

 

The final pressure induces a particle velocity of: 

 

  (13),  [68] 

 

 

From there, the resulting negative current density for the second peak was calculated as: 

 

 (3),  [63-68] 

 

 

 

 

 

Finally, the magnitude of the second peak voltage was: 

 

 V (Second peak) 
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Finally, the output of HMM was calculated by averaging the value of the first and 

second peaks: 

 

 V 
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4.2 Experimental Result 

 

 

 The experimental result comprises of 3 subsections. The first subsection (4.2.1) 

compiles the result of HMM ultrasound measurement. Then, subsection 4.2.2 presents 

the result of HMM magnetoacoustic voltage measurement. Finally, subsection 4.2.3 

compares the experimental result with the analytical calculation result presented earlier 

in section 4.1. 

 

 

4.2.1 HMM Ultrasound Output and Determination of Attenuation Scale. 

 

 Figure 4.1 below shows the output pulse of the ultrasound pulser receiver unit. 

The 5077PR ultrasound pulser receiver generates a series of negative pulses for 

transducer excitation. In HMM, the pulser receiver sent a 400V, negative pulse at the 

duration of 0.1microsec to excite a ceramic transducer. The pulse generated an 

electromechanical resonant at the transducer ceramic element to produce an A-mode 

ultrasound wave at its center frequency of 9.8MHz. A-mode ultrasound is a one 

dimensional ultrasound signal that constitutes a graph of voltage that represents the 

sound wave amplitude on the y-axis, as a function of time on the x-axis. The 

corresponding output of the transducer is shown by figure 4.2. In the figure, an 

ultrasound wave at the center frequency of 9.8MHz was generated, as the highest energy 

of the ultrasound frequency component was found at 9.8MHz. The ultrasound wave was 

used to scan a set of samples and the output was further analyzed to determine the 

attenuation scale of ultrasound at 9.8MHz in Matlab environment. 
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Figure 4.1: Output of the ultrasound pulser receiver unit 

 

 

 

Figure 4.2: HMM transducer output 

 

(FREQUENCY SPECTRUM) 
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 The total number of ultrasound signals that were recorded in this experiment is 

presented by table 4.1 

 

No Ultrasound signal Quantity 

1 Ultrasound signal propagating through the oil 

medium only 

21 

2 Ultrasound signal propagating through the oil 

medium with gel 

15 

3 Ultrasound signal propagating through the oil 

medium with normal breast tissue 

106 

4 Ultrasound signal propagating through the oil 

medium with cancerous breast tissue. 

106 

Table 4.1: Details of ultrasound signals recorded by HMM 

  

 Figure 4.3 shows an example of the original, one dimensional ultrasound signal 

output that was recorded by HMM after propagating through the oil medium without 

material under test. The recorded signal contains 10000 lengths of discrete data with 

sampling frequency of 1 Gigahertz. The first peak in figure 4.3 represents the first 

ultrasound wave that was sensed by the receiver transducer after propagating through the 

oil medium.  On the other hand, the second peak represents a part of the first wave that 

was attenuated due to reflection. In this case, as the first sound wave hits the receiver 

transducer, part of it wave transmitted further and sensed by the receiver and another 

part was reflected back towards the transmitter. At the transmitter, the wave bounced 

back to the receiver and sensed. Hence, the time distance between the first and second 

peak indicates the time required for the wave to complete the distance between the 

transmitter and receiver for 2 times.  
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Figure 4.3: Original ultrasound signal recorded by HMM 

 

 Figure 4.4 shows the ultrasound signal that was extracted from the 10000 lengths 

of original data shown in figure 4.3. From the original signal, only the first peak was 

selected and extracted since it contains sufficient information with regards to the 

attenuation of ultrasound as it travels from transmitter to receiver through the oil 

medium. Total length of the extracted data was 601.  

 

 

Figure 4.4: Ultrasound wave extracted by HMM after propagating through the tissue. 
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 The extracted signal in figure 4.4 was used in the determination of ultrasound 

attenuation scale in this study. Attenuation is the weakening of sound wave that is 

characterized by the reduction in amplitude and intensity as the wave propagates through 

tissue [86-90, 18, 127]. It encompasses the absorption (conversion of ultrasound to heat) 

as it travels and the reflection and scattering as it encounters tissue interface and 

heterogeneous tissues [86-90, 18]. Attenuation of ultrasound is dependant to its 

frequency [92-93, 96-100, 127]. Higher frequency ultrasound experience more 

attenuation as compared to lower frequency ultrasound [92-93, 96-100, 127]. In this 

study, the attenuation of ultrasound propagating through a material in a medium was 

calculated by using the insertion loss method [92-93, 96-100, 127]. In the Insertion Loss 

method, attenuation of material under test was determined by subtracting the energy of 

ultrasound travelling through the medium with the energy of ultrasound travelling 

through the medium with material under test. 

 Later, the extracted signal in figure 4.4 was filtered by using the butterworth 

filter in Matlab Signal Processing Toolbox. The filtered signal was shown in Figure 4.5. 

Filtering involved the elimination of unwanted frequency higher than 15MHz. It also 

provides a smoothing effect to the signal after the elimination of high frequency signals. 

The Butterworth filter was chosen due to its flat passband property which is very 

desirable to prevent signal truncation. However, butterworth filter also has a gradual 

stopband that might pass a very small amount of unwanted frequency after the bandstop 

frequency. 
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Figure 4.5: Filtered Ultrasound Signal 

 

 After filtering, the signal was converted to frequency domain by using the Fast 

Fourier Transform algorithm. The Fourier theorem states that any waveform in the time 

domain can be represented by the weighted sum of sines and cosines that represent the 

frequency components of the signal. FFT was chosen for its high accuracy and fast 

computing time. Figure 4.6 and 4.7 show the Fast Fourier Transform (FFT) of the 

original and the filtered signal respectively. From the figures, it can be seen that, the 

unwanted frequency components which is higher than 15MHz was removed after 

filtering process leaving only a very small amount that is very close to zero due to the 

gradual stopdband property of the butterworth filter.  
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Figure 4.6: Fast Fourier Transform of the Original signal 

 

 

Figure 4.7: Fast Fourier Transform of the Filtered Signal 

 

Later, the signal power was determined by calculating the signal’s mean squared 

spectrum. Figure 4.8 illustrates the power or the mean squared spectrum of the 

ultrasound signal. Subsequently, the power spectral density (PSD) was calculated by 

converting the mean squared spectrum to its corresponding log value shown in Figure 
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4.9. The PSD plot shows that the highest frequency component of the ultrasound signal 

is at 7.8MHz though the peak energy of the input was 9.8MHz as shown by figure 4.2. 

This observation indicates that, most of the energy of the higher frequency components 

of the ultrasound wave was attenuated and hence, leaving only the energy of the lower 

frequency components. Finally, the attenuation scale of ultrasound at 9.8MHz was 

determined from the slope of PSD plot. 

 

 

Figure 4.8: Mean squared spectrum of the ultrasound signal 

 

 

Figure 4.9: PSD of the oil signal 
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An Example of the PSD plot for each group is presented by Figure 4.10. 

 

 

   (a)     (b)  

 

(c) 

Figure 4.10: PSD of (a) oil, (b) normal tissue and (c) cancerous tissue. 

 

 The processes described above were repeated for all ultrasound signals according 

to their group as presented by Table 4.1. Then, the corresponding Mean and standard 

deviation of attenuation for each group were calculated in Microsoft Excel. The final 

attenuation value was calculated by subtracting the mean of power spectral density of 

the oil medium at 9.8MHz by the mean of power spectral density of the oil medium with 

material under test (gel, normal tissue and cancerous tissue) at 9.8MHz.  

 Table 4.2 shows the final result of ultrasound attenuation scale for each group. 
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Attenuation Scale Result 

Output @ 9.8MHz 

Attenuation of tissue mimicking gel 0.392±0.405 dBmm
-1

 

Attenuation of Normal Breast Tissue 2.329±1.103 dBmm
-1

 

Attenuation of Cancerous Breast Tissue 1.76±1.08 dBmm
-1

 

 

Table 4.2 : Attenuation scale of Hybrid Magnetoacoustic Method 

 

 From the result, it is observed that the tissue mimicking gel attenuated 

0.392±0.405 dBmm
-1 

of ultrasound energy which was very small compared to the 

attenuation of real biological tissue group. The tissue mimicking gel is an ideal 

representation of tissue with linear behavior. In this study, the gel was designed to have 

the same density with normal tissue but differs in its internal structure. The gel structure 

is homogenous while the real breast tissue is heterogenous. The homogenous gel 

structure prevents energy losses due to scattering inside the gel. Hence more ultrasound 

energy is likely to be preserved. 

 For the real biological tissue, normal tissue group attenuated the highest amount 

of ultrasound energy followed by the cancerous tissue group. The reason may due to the 

structural difference between these tissues. In general, normal breast tissue composed of 

loose tissue structure [92-93]. Loose structure tends to resist sound propagation and 

causes energy losses by absorption, in which the sound energy is converted to heat [18]. 

In addition to that, breast cells are heterogeneous and not uniform to each other. This 

heterogeneity encourages further energy losses due to scattering [18]. On the other hand, 

cancerous tissue group has a more compact tissue structure because more cells are piled 

up close to each other [6]. This structure eases ultrasound propagation and reduces 

energy losses by absorption. However, it still encountered energy losses from scattering 

process due to its heterogeneity [18]. In cancerous tissue, heterogeneity is not only 

contributed by the cellular difference, but also tissue structural difference in the tumor 

region. The tumor center usually comprises of necrotic tissue area that is more 

homogenous. However, the structure becomes more heterogenous towards the boundary 

area of tumor that is far from tumor center. This complex heterogeneity has caused the 
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standard deviation of the calculated attenuation scale to be higher than the homogenous 

structure such as in the tissue mimicking gel. 

 The obtained result also shows that the attenuation scale of normal and cancerous 

tissue is overlapping to each other. This fact had proved the complexity of breast cancer 

detection by using acoustic properties alone. The results were also in agreement with a 

previous study that reported on the attenuation of breast cancer in human breast tissue 

[93]. 

   

 

4.2.2 HMM Magnetoacoustic Voltage Output. 

 

 The magnetoacoustic voltage output measurements involved detection of as low 

as 0.1microvolt signal at the frequency of 9.8MHz by using the carbon fiber electrodes 

and lock-in amplifier. Before the magnetoacoustic voltage measurement was conducted, 

4 baseline readings were recorded from the lock-in amplifier under different 

measurement condition. Baseline reading 1 was recorded with the ultrasound pulser 

receiver was turned off and the electrodes were placed outside the permanent magnet. 

Baseline reading 2 was recorded with the ultrasound pulser receiver was turned on and 

the electrodes were placed outside the permanent magnet. Baseline reading 3 was 

recorded when the ultrasound pulser receiver was turned on and the electrodes were 

placed inside the permanent magnet bore. Finally, baseline reading 4 was recorded when 

the ultrasound pulser receiver was turned on and the electrodes were immersed in the oil 

inside the measurement chamber, in the present of magnetic field. The recorded baseline 

readings were presented by Table 4.3 

 

No Data Value (µV) 

1 Baseline reading 1 2.5 - constant 

2 Baseline reading 2 2.5 - constant 

3 Baseline reading 3 2.6 - constant 

4 Baseline reading 4 2.6 - constant 

Table 4.3: Baseline reading of magnetoacoustic voltage measurements 
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 In general, baseline reading 1 indicates the internal noise of the Lock-in amplifier 

and the existing noise that presents in the anechoic chamber. Baseline reading 2 

indicates additional noise that may be contributed by the pulser receiver unit or leakage 

current from the ultrasound transducer. However, it was observed that no additional 

noise was recorded in baseline reading 2 as reported in [67] with the used of 

nonconducting oil as medium. Baseline reading 3 indicates the interference that is 

caused by the magnetic field to the carbon fiber electrodes. Finally, baseline reading 4 

indicates the interference that was caused by the magnetic field and ultrasound leakage 

current that exists in the oil. However, consistent reading indicates the existing of no 

leakage current. To ensure that the recorded magnetoacoustic voltage data is not 

contaminated by any external noise, every data value was deducted by the value of 

baseline reading 4. The total number of magnetoacoustic voltage signals that were 

recorded in this experiment is presented by table 4.4 

 

No Type of magnetoacoustic voltage signal Quantity 

1 Magnetoacoustic voltage of tissue mimicking 

gel 

31 

2 Magnetoacoustic voltage of Normal Breast 

Tissue (1&2) 

212 

3 Magnetoacoustic voltage of Cancerous Breast 

Tissue (1&2) 

212 

Table 4.4: Total number of magnetoacoustic voltage signal recorded by HMM. 

 

 After subtraction with the baseline value, the final magnetoacoustic voltage 

reading for each group was statistically analyzed to find its mean and standard deviation. 

The result was presented in Table 4.5. 
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Result 

 

Output @ 9.8MHz 

Magnetoacoustic voltage of tissue mimicking gel 0.56±0.21 µV 

Magnetoacoustic voltage of Normal Breast Tissue (1&2) 0.42±0.16 µV 

Magnetoacoustic voltage of Cancerous Breast Tissue (1&2) 0.8±0.21 µV 

Table 4.5: Magnetoacoustic voltage result at 9.8MHz  

   

 From the table, it is observed that cancerous tissue group produces the highest 

magnetoaocustic voltage range, followed by the gel group and finally the normal tissue 

group. This is due to a few reasons that include ultrasound attenuation level in tissue and 

the conductivity of tissue. From the ultrasound measurement result, it was noted that 

normal tissue group attenuated the highest ultrasound energy. In the case of large 

amount of attenuation, the sound energy that is left to move the particles in tissue is 

decreasing. Hence, the resulting particle velocity will be reduced and consequently, the 

value of magnetoaocustic voltage is also lower. In addition to that, the conductivity of 

cancerous tissue group is also higher than the normal and the gel group. Therefore, high 

conductivity factor contributes further to increase the value of magnetoacoustic voltage 

of cancerous tissue. This result proves that the resulting magnetoacoustic voltage is not 

absolutely related to the tissue conductivity, but also weighted by the tissue density and 

uniformity that influenced the ultrasound attenuation level.  

 In addition to that, the magnetoacoustic voltage of gel is also higher than the 

normal tissue though the gel was prepared to have the same conductivity with those of 

normal tissue. This is also due to the high energy losses encountered by normal tissue 

via attenuation that reduced the final voltage value though they have similar 

conductivity. 

 In addition to that, as the recorded magnetoacoustic voltage value is proportional 

to V0 and B0 by 0 0v B sinθ , the tissue surface at which the skin electrode placement is 

made must be set to be in 90 degrees to the magnetic field direction and the sound wave 

propagation. Otherwise, the magnetoacoutic voltage reading will be lower due to the 

angular factor θ.  
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 The range of magnetoacoustic voltage presented in this study was also compared 

to previous research report that used the same experimental setting for bioelectric 

measurements only [63-65]. The research reported on the first peak voltage amplitude 

that was obtained by using 2.4Tesla and 4Tesla static magnetic field to a polycarbonate 

sample at 1MHz. Linear extrapolation presented by figure 4.11 shows that the resulting 

voltage is in the range of 6.58e
-7

 at the magnetic field intensity of 0.25T,  which is in 

similar order with the current study result presented in table 4.5. However, the estimated 

average voltage for the study is in the order of 10
-8

. This difference may be caused by 

the used of different sample material with different conductivity value and different 

range of stimulating ultrasound frequency that influences attenuation level. In addition 

to that, this research used an amplifier with maximum gain of 60dB only. 

 

 

Figure 4.11: Extrapolation of magnetoacoustic voltage from previous research report. 

 

 

 

 

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

3.50E-06

0 1 2 3 4 5

Magnetoacoustic Voltage Value

Magnetic Field Intensity
(Tesla)

(V)



79 
 

4.3 Comparison of result from the analytical calculation. 

 

 The result of analytical calculation shows that the estimated output of HMM 

voltage is 1.64e
-6

V. However, the mean magnetoacoustic voltage value from the 

experiment is slightly lower than the calculated value due to a few reasons: 

 

4.3.1 Differences in attenuation value  

 The amount of ultrasound attenuation of oil that was used in the calculation is -

3dB. The -3dB value was taken from literature on the average attenuation value of the 

edible oil. However the real mean attenuation value of palm oil that was used as medium 

in this study was -7.17dB. Hence, this additional loss contributes further to reduce the 

experimental voltage value. 

4.3.2 Variation in local pressure distribution that is caused by the longitudinal and 

shear wave. The 36% value was obtained from literature and its actual proportion in the 

breast tissue was not investigated. 

4.3.3 Variation in the actual conductivity value of the mice breast tissue. The breast 

tissue is heterogenous and conductivity differences according to tissue type may occur. 
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4.4 Development of Artificial Neural Network (ANN) for Breast Cancer 

Classifications 

 

 The development of ANN comprises of a few stages that include the training 

stage, testing stage and validation stage. The training stage was further divided into a 

few steps that involved determination of optimal neuron, learning rate, momentum 

constant and iteration rate. The optimum ANN was then tested and validated by using 

the testing data and the validation data. 

 Before the training stage was started, the experimental database was first divided 

into the training, testing and validation database described by table 4.6 

 

 

ANN Database 

Ultrasound data Magnetoacoustic voltage data 

Normal Cancerous Normal Cancerous 

Training 68 69 68 69 

Testing 28 27 28 27 

Validation 10 10 10 10 

Total 106 106 106 106 

Table 4.6: Division of ANN database 

 

 The databases were prepared in Microsoft excel files and were exported to 

Matlab during the training, testing and validation process. The input database consists of 

3 columns of ultrasound attenuation scale, magnetoacoustic voltage side 1 and 

magnetoacoustic voltage side 2. On the other hand, the output database comprises of 

only 1 column of training target. 

 A step by step process on the determination of optimal ANN for breast cancer 

classification was as follows:  
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4.4.1 Number of neuron in the hidden layer 

 

 In a multilayer feed forward neural network, the function of a hidden layer 

neuron is to arbitrate between the input and the output of the ANN. As the first input 

vector is fed into the source node in the input layer, it will be forwarded to neuron in the 

hidden layer. The output of a hidden layer neuron will be the input of the next hidden 

layer until the signal reached output layer and terminates the ANN computing. In this 

study, the number of neuron in the hidden layer was varied from 1 to 12 while the other 

parameters including learning rate, iteration rate and momentum constant were fixed to a 

predetermined value of 0.3, 20000 and 0.2 respectively. From figure 4.12, it can be 

observed that network with 12 hidden neuron produces lowest MSE value at 0.098. 

However, its prediction accuracy is only 89.09%. The highest prediction accuracy of 

90.94% is given by 2 hidden neurons with MSE of 0.111. An increase of 0.013 in MSE 

has given 2% increments in prediction accuracy. Hence, hidden layer size of 2 was 

chosen for optimum number of neuron in the hidden layer for the ANN with slight 

compensation in higher MSE value. 

 

 

Figure 4.12: Number of neuron in the hidden layer vs Mean Squared Error (MSE) and 

the total accuracy (%) 
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4.4.2 Learning rate 

 

 The ANN learning rate was varied from 0.1 to 0.9. Training epochs and 

momentum constant were kept at their predetermined value of 20000 and 0.2 

respectively. The number of neuron in the hidden layer was set to its optimum value of 2 

neurons. Figure 4.13 shows that the lowest MSE value was achieved with learning rate 

of 0.1 to 0.8. In addition to that, learning rate of 0.3 to 0.8 gives the highest prediction 

accuracy of 90.94%. In this case, 6 optimum values of learning rate were obtained with 

the same MSE value and prediction accuracy. Hence, the best learning rate was chosen 

by testing the robustness of the ANN to validation data. The validation result shows that 

learning rate of 0.3 gives 90% accuracy compared to learning rate of 0.4 to 0.8 that gives 

85% validation accuracy. Hence, learning rate of 0.3 was chosen as the best learning rate 

values. 

  

 

Figure 4.13: Learning rate vs Mean Squared Error (MSE) and the total accuracy (%) 
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4.4.3 Iteration rate. 

 

 The iteration rate was varied from 5000 to 50000 with a constant increment of 

5000. Other parameters were set at their optimum value except momentum constant, 

which was at its predetermined value of 0.2. Figure 4.14 shows that iteration rate which 

is too short produces ANN with high MSE and low prediction accuracy. This indicates 

that the iteration rate is insufficient to allow the network to converge. It also shows that 

iteration rate of 20000, 40000 and 50000 give the lowest MSE value of 0.111 and the 

highest prediction accuracy of 90.94%. Hence, iteration rate of 20000 is chosen since 

this architecture produces lowest MSE and highest prediction accuracy at the shortest 

time interval. In addition to that, this architecture was tested to validation data and it 

gives the highest validation prediction accuracy of 90%. 

 

 

Figure 4.14: Iteration rate vs Mean Squared Error (MSE) and the total performance 

accuracy (%) 
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4.4.4 Momentum constant 

 

 The final step for the determination of optimum ANN was to find the best 

momentum constant for the network. The momentum constant was varied from 0.1 to 

0.9 while other parameters were kept at their optimum values. Figure 4.15 indicates that 

momentum constant of 0.2, 0.3 and 0.5 produces network with lowest MSE value. 

Among that, momentum constant of value 0.3 and 0.5 gives the highest prediction 

accuracy on testing data. Hence, validation data was used to test the robustness of the 

system and the result indicates that momentum constant of 0.3 gives highest validation 

prediction accuracy of 90%. 

 

 

Figure 4.15: Momentum constant vs Mean Squared Error (MSE) and total performance 

accuracy (%). 
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 The final classification performance of the optimum ANN for testing and 

validation data is shown in table 4.7. The result indicates that the ANN is capable to 

achieve 90.94% and 90% classification result for testing and validation data. This result 

shows the advantages of HMM output in providing additional bioelectric parameter of 

tissue instead of only its acoustic properties for breast cancer diagnosis consideration. 

The system’s high percentage of accuracy shows that the output of HMM is very useful 

in assisting diagnosis. This additional capability is hoped to improve the existing breast 

oncology diagnosis. However, there result of one dimensional HMM can be further 

improved by using 2D HMM where classification is made image based rather than 

signal based. 

 

Data Testing Data Validation Data 

Normal Malignant Normal Malignant 

Actual Data 28 27 10 10 

ANN Result 25 25 8 10 

% Accuracy 89.29 92.59 80 100 

% Total 

Accuracy 

90.94 90 

Table 4.7: Classification Result of the Neural Network 
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CHAPTER 5 - CONCLUSION AND FUTURE WORK 

 

5.1  Conclusion 

 At the end of this study, a novel tissue imaging method that is based on short pulse 

magnetoacoustic wave has been successfully developed. The system comprises of an 

ultrasound pulser receiver unit, ultrasound transducer, permanent magnet, lock in 

amplifier and skin electrodes. It produces 2 outputs namely: magnetoacoustic voltage 

output and ultrasound attenuation scale.  

 A series of experimental study to tissue mimicking phantom as well as to real mice 

breast tissue shows that, HMM is capable to access the acoustic and electric properties 

of tissue down to the range of microvolt. The output of HMM was further automate to 

develop a breast cancer diagnosis system by employing the artificial neural network. The 

ANN was defined by architecture 3-2-1, with learning rate of 0.3, iteration rate of 20000 

and momentum constant of 0.3. The final ANN accuracy to testing and validation data 

was 90.94 and 90% respectively. The system’s high percentage of accuracy shows that it 

is very useful in assisting diagnosis. 

 

5.2 Future Work 

 

5.2.1 Future work can be concentrated to develop a tomographic imaging system from 

the existing one dimensional imaging system. Development of tomographic system can 

be realized by using multiple ultrasound transducers and skin electrodes. However, the 

usage of multiple transducers and electrodes require input and output synchronization by 

high performance computer. The advantage of tomographic system is the capability to 

produce a 2D or 3D image instead of only 1D output. 
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5.3.2  The existing magnetoacoustic voltage can only be used to produce the boundary 

image of a sample. This is because; magnetoacoustic voltage peaks are generated at 

sample boundaries where abrupt changes in conductivity and density occur. The internal 

image of a sample can be mapped by integrating the HMM current output that can be 

measured and collected by using a current amplifier. Hence, future work can be focused 

in integrating the current output of HMM. 

 

5.3.3 Future works can also involve in optimizing the ANN performance. The present 

accuracy of ANN to testing and validation data is 90.94% and 90% respectively. By 

employing optimization method such as pruning, it is desirable that the performance of 

the ANN to achieve 95-98%. 

 

5.3.4 The current imaging method and its automation system are intended for breast 

cancer diagnosis. Future work can be concentrated on the study and development of 

breast cancer prognosis system that can be realized by considering breast cancer risk on 

asymptomatic patient. 
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      APPENDIX A 

Matlab Coding for attenuation Calculation 

 

clc; 
clear all; 
close all; 

  

   
%open and declare data in pressure file 
display('choose file croping to open:'); 
%sprintf('%s', 'choose file croping to open:') 
filename = input('Record name: ', 's'); 
fid2 = fopen(filename, 'r'); 
data2 = textscan(fid2, '%f %f'); 
t=data2{1}; 
p=data2{2}; 
%figure;plot(t,p); 
%pause 

  
fs=1e9; 
%open and declare data in pressure file 
p=data2{2}; 
m = length(p);          % Window length 
n1 = pow2(nextpow2(m));  % Transform length 
n=10000; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% 
%%%%%%%%%%%%%%%%%%%% before filter 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
f = (0:n-1)*(fs/n);     % Frequency range 
y = fft(p,n);           % DFT 

  
%figure;plot(f,abs(y));xlabel('Frequency (Hz)'); 

ylabel('|y|');title('{\bf Periodogram-before filter}'),axis([-20e5 20e6 

0 8]); 
%pause; 
%%%%%%%%%%%%%%%FFTSHIFT%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
f0 = (-n/2:n/2-1)*(fs/n);  % 0-centered frequency range 
y0 = fftshift(y);          % Rearrange y values 
y1=abs(y0); 

  
%figure;plot(f0,y1);xlabel('Frequency (Hz)'); ylabel('|y|');title('{\bf 

centered Periodogram-before filter}') 
%axis([-20e5 20e6 0 100]); 
%pause; 

  

  
%%%%%%%%%%% filter signal %%%%%%%%%%%%%%%%%%%%% 
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s=filter(filterdua,p); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% create fft using p2 %%%%%%%%%%%%%%%% 

  
g = fft(s,n);           % DFT 
g0 = fftshift(g);          % Rearrange y values 
power1 = g0.*conj(g0)/n;   % or power =(abs(g0).^2)/n; Power of the DFT 

  

  
%figure;plot(f0,abs(g0));xlabel('Frequency (Hz)'); 

ylabel('|y|');title('{\bf FFT after filter}'); 
%axis([-20e5 20e6 0 100]);%pause; 
%figure;plot(f0,power1);xlabel('Frequency 

(Hz)');ylabel('Power');title('{\bf Signal Power after filter}'); 
%axis([0 20e6 0 0.6]) 

  
%pause; 

  

  
ydb1=pow2db(power1); 
figure; 
plot(f0,ydb1);axis([0 20e6 -70 10]);grid on; 
xlabel('Frequency (Hz)');ylabel('Power(dB)');title('{\bf Power spectral 

density-after filter}') 

  
%pause; 
%%%%%%%%%%After filter-signal in time domain%%%%%%%%%% 

  
t1= min(t):1/fs:max(t); 
Y=ifft(g); 

  
Y=real(Y); 
k0=size(t1); 
k=size(t1,2); 
%k=k-1 
%figure;plot(t1,Y(1:k)),xlabel('Time(t)');ylabel('y');title('After 

filter (time domain)'); 

  

  

 

Filter coding 

function Hd = filter2 
%FILTER2 Returns a discrete-time filter object. 

  
% 
% M-File generated by MATLAB(R) 7.6 and the Signal Processing Toolbox 

6.9. 
% 
% Generated on: 16-Jan-2011 20:11:50 
% 
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% Butterworth Lowpass filter designed using FDESIGN.LOWPASS. 

  
% All frequency values are in MHz. 
Fs = 1e9;  % Sampling Frequency 

  
N  = 10;        % Order 
Fc = 15000000;  % Cutoff Frequency 

  
% Construct an FDESIGN object and call its BUTTER method. 
h  = fdesign.lowpass('N,Fc', N, Fc, Fs); 
Hd = design(h, 'butter'); 

  
% [EOF] 

 

 

 

 

 

 

 

 

 

 


