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ABSTRACT 

 

 

 

 

Many methods have been developed and studied to detect damage through the 

change of dynamic response of a structure. Due to its capability to recognize pattern 

and to correlate non-linear and non-unique problem, Artificial Neural Networks 

(ANN) have received increasing attention for use in detecting damage in structures 

based on vibration modal parameters. Most successful works reported in the 

application of ANN for damage detection are limited to numerical examples and 

small controlled experimental examples only. This is because of the two main 

constraints for its practical application in detecting damage in real structures. They 

are: 1) the inevitable existence of uncertainties in vibration measurement data and 

finite element modeling of the structure, which may lead to erroneous prediction of 

structural conditions; and 2) enormous computational effort required to reliably train 

an ANN model when it involves structures with many degrees of freedom. 

Therefore, most applications of ANN in damage detection are limited to structure 

systems with a small number of degrees of freedom and quite significant damage 

levels. 

 

In this thesis, a probabilistic ANN model is proposed to include into consideration 

the uncertainties in finite element model and measured data. Rossenblueth’s point 

estimate method is used to reduce the calculations in training and testing the 

probabilistic ANN model. The accuracy of the probabilistic model is verified by 

Monte Carlo simulations. Using the probabilistic ANN model, the statistics of the 

stiffness parameters can be predicted which are used to calculate the probability of 

damage existence (PDE) in each structural member. The reliability and efficiency of 

this method is demonstrated using both numerical and experimental examples. In 

addition, a parametric study is carried out to investigate the sensitivity of the 

proposed method to different damage levels and to different uncertainty levels.  
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As an ANN model requires enormous computational effort in training the ANN 

model when the number of degrees of freedom is relatively large, a substructuring 

approach employing multi-stage ANN is proposed to tackle the problem. Through 

this method, a structure is divided to several substructures and each substructure is 

assessed seperately with independently trained ANN model for the substructure. 

Once the damaged substructures are identified, second-stage ANN models are trained 

for these substructures to identify the damage locations and severities of the 

structural element in the substructures. Both the numerical and experimental 

examples are used to demonstrate the probabilistic multi-stage ANN methods. It is 

found that this substructuring ANN approach greatly reduces the computational 

effort while increasing the damage detectability because fine element mesh can be 

used. It is also found that the probabilistic model gives better damage identification 

than the deterministic approach. A sensitivity analysis is also conducted to 

investigate the effect of substructure size, support condition and different uncertainty 

levels on the damage detectability of the proposed method. The results demonstrated 

that the detectibility level of the proposed method is independent of the structure 

type, but dependent on the boundary condition, substructure size and uncertainty 

level.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Aging civil structures including bridges and buildings around the world are still in 

service nowadays. Without careful monitoring and maintenance, these structures may 

suffer severe damage or even collapse that may result in loss of human life and large 

economic impact. Based on a study by Stidger (2006), in the United States, 24.5% of 

bridges are classified as substandard and need rehabilitation. In Japan, the number of 

aged bridges is expected to constitute half of all road bridges in year 2020 (Fujino 

and Abe 2001). In Europe most of the bridges were built in 1960s, which now reach 

their critical age and need rehabilitation. Engineers Australia also reported that the 

overall quality of the national highway system is rated between averages to poor 

condition (Engineers Australia 2005). There are many factors that can lead to 

structure failure such as the usual weakening of material properties, the load 

increments and unexpected event like extreme weather, earthquakes and vehicle 

impact. In civil structures, damage can be denoted as cracking in the structure, 

corrosion, deterioration of material properties or loss of prestressing. Many of these 

defects are not visual and are not easy to identify in most cases. 

 

There have been several disastrous incidents involving structural failures due to loss 

of structural integrity such as the collapse of Mianus River Bridge in Connecticut in 

1983 due to suspected corrosion of steel support members and fatigue loading, the 

loss of entire fuselage section of Aloha Airlines Boeing 737 in 1988 due to fatigue 

cracking. More recent incidents include the collapse of Kaoshiung-Pingtung bridge 

in Taiwan in year 2000 injuring 20 people, the fell of a steel girder from an overpass 

on Interstate 70 west of Denver in year 2004, crushing one car and killing three 

people; and most recently in year 2007 in Minneapolis, an eight-lane highway bridge 

collapsed into the Mississippi River. The incidents above indicate that structural 

damage has become a crucial problem worldwide; therefore, more reliable and 

effective damage identification methods are required. 
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Current damage detection methods are categorized as: (1) local damage detection 

method and (2) global damage identification method. Non-destructive testing (NDT) 

methods have been used in local damage detection method, ranging from visual 

inspection to more advanced methods such as X-rays, acoustic emission, ultrasonic 

emission, eddy current and other wave propagation methods. However, the efficiency 

of these approaches highly depends upon accessibility of the structural location and 

individual expertise. Moreover, these methods require the area of the damage to be 

known in advance and are very time consuming because they are only sensitive to a 

small area as compared to the dimension of a civil structure. Therefore practitioner 

and researchers demand for a global damage detection method that can determine the 

damage existence, location and damage severity without relying on prior information 

on the vicinity of the damage. 

 

The majority of work to date in global damage identification methods has been 

focused on the use of vibration properties to determine the damage existence, 

location and severities. The theoretical basis for vibration based damage detection is 

that the occurrence of damages or loss of integrity in a structural system causes 

changes in the global vibration properties of the structure (e.g. natural frequencies, 

mode shapes, damping, etc). Consequently, examination of structural response 

characteristics provides useful information regarding the damage existence, location 

and severity without prior knowledge of the damage states. 

 

Vibration-based damage detection can be classified into model-based and non-model 

based methods (James et al. 1997). Model-based damage detection methods locate 

and quantify damage by correlating an analytical model with test data of the 

damaged structure. Hence, it can provide quantitative information of damage as well 

as damage location. These methods require finite element model and intensive 

computation. Non-model based methods are very simple and straightforward, the 

damaged structures are assessed by comparing the measurements of the damaged 

structures and undamaged structures. However, the non-model based methods cannot 

provide quantitative information of the structures, only location of the damage can be 

determined. 
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While there are many approaches that have been investigated and are still being 

developed to identify damage from vibration properties, the approaches that do not 

require detailed knowledge of the vulnerable parts or the failure modes of the 

structure have an advantage to handle unexpected failure patterns. Moreover, the less 

time consuming methods that provide less hurdles in design and implementation also 

gain attentions. The Artificial Neural Network (ANN) method is one technique that 

has been intensively studied. 

 

Artificial Neural Networks (ANN) is a computational model inspired by the structure 

and the information process capabilities of human brain. It is an assembly of large 

number of highly interconnected simple processing unit (neurons). The ANN stores 

knowledge in the form of connection strengths. These strengths are represented by 

numerical values called weights which can be determined through a series of training 

process.  

 

ANN has been introduced to structural engineering since late 1980s. The 

development of simple error backpropagation algorithm by Rumelhart (1986) has 

boosted the research activities on its application in many areas including in structural 

engineering. Since then, many papers have been published on its application to 

structural engineering concentrating in structural analysis, design automation, 

structural control and finite element mesh generation (Adeli 2001). In damage 

detection, the ANN can be applied to identify the location and damage extent from 

the measured dynamic responses. The early works in application of ANN in damage 

detection began in 1990s and many studies concluded that the ANN model is a 

promising tool for detecting damage in structures based on dynamic properties. 

However, the majority of research in this area is limited to computer simulations and 

small-scale laboratory tests. The practical application of these technologies to civil 

engineering structures is still under research due to several reasons discussed below. 

i) Civil structures have complicated geometry and consist of variety of 

materials such as concrete, steel; rubber and asphalt, the inaccuracy in 

estimation of strength and stiffness of materials and structure contribute 

to uncertainties in modeling. Hence, producing an accurate finite element 

model is very difficult. This may results in the vibration parameters 
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generated from such a finite element model not exactly representing the 

relationship between the modal parameters and the damage parameters of 

the real structure. In other word, the ANN model may not be reliably 

trained owing to finite element error. On the other hand, the existence of 

measurement error in the measured data that is normally used as testing 

data in an ANN model to detect damage is also unavoidable. Since the 

reliability of an ANN prediction relies on the accuracy of the both 

components, the existence of these uncertainties may result in false and 

inaccurate ANN predictions. 

ii) The effect of uncontrolled factors such as temperature, traffic loading and 

humidity may induce significant amount of uncertainties in the captured 

data and material properties, thus, will affect the reliability of damage 

identification. For example an experimental study by Xia et al. (2006) 

demonstrated that the changes of temperature and humidity cause changes 

in natural frequencies of the structure. They also concluded that 

temperature increase results in a reduction in the modulus of elasticity of 

concrete significantly. Therefore, for reliable damage detection, the effect 

of uncertainties should be considered for damage identification. 

iii) ANN usually requires enormous computational effort especially when 

structures with many degrees of freedom are involved. Due to this reason, 

most applications of ANN for damage detection are limited to small 

structures with limited number of degrees of freedom. 

iv) The application of forced vibration test which is normally used for 

damage identification is difficult for structures in service since it causes 

service interruption. Application of ambient techniques are more suitable, 

however this method usually is unable to reliably give higher modes, 

which is more sensitive to small damage. Therefore, most of the damage 

detection process in civil engineering would suffer from lack of data since 

only a small number of measurement points and a few fundamental 

modes are available. 
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The aforementioned problems that would arise for damage detection for civil 

structures provide the motivation of this study, which is intended to find solutions for 

some of those problems. 

 

 

1.2 Research objectives 

The objectives of this study are: 

i) To develop and demonstrate the applicability of damage detection using 

ANN. 

ii) To develop an ANN based probabilistic approach for damage detection 

with consideration of the finite element modeling error and measurement 

noise and to analyse the effect of these uncertainties on damage 

identification result. 

iii) To develop and demonstrate a substructure technique based ANN model 

for damage detection of many degrees of freedom structures. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

During 1970s, engineers and researchers in offshore oil industries have made a 

considerable effort to develop vibration based damage detection technique. The 

objectives included the detection of near-failing drilling equipment and the 

prevention of expensive oil pumps from becoming inoperable (Carden and Fanning 

2004). The research in aerospace industry in vibration damage detection started in 

the late 1970s and early 1980s. According to a review by Farrar et al.(2001), the civil 

engineering community has studied vibration based damage detection since 1980s, 

vibration properties such as frequency, mode shape and its derivatives have been 

used for damage assessment focusing on bridge structures.  

 

The vibration based damage detection is based on the equation of motion 

 

0xKxCxM   (2-1) 

 

where M  is the mass matrix, C  is the viscous damping matrix, K  is the 

stiffness matrix. x , x  and x  are vectors of displacement, velocity and 

acceleration; respectively.  

 

The associated eigenvalue problem is  

 

02

iii KCjM  (2-2) 

 

where i and i  are the i
th

 modal circular frequency and mode shape respectively. j 

is the imaginary unit  
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If damage exists in a structure system, such as changes in the mass, stiffness or 

damping or combination of them, the vibration characteristics such as natural 

frequencies and mode shapes will change accordingly. Thus, damage can be detected 

from changes of vibration properties which can be extracted from the measured 

response data. 

 

There are three basic types of data used in the vibration based damage detection. 

They are time domain, frequency domain and modal domain. Time domain data is 

the time history response of the structure that can be measured by sensors (e.g. 

displacement, acceleration). This time series data can be converted to the frequency 

domain using Fourier transform to form a frequency response function (FRF). 

Further analysis of the frequency domain data is often undertaken to extract the 

modal domain parameters such as vibration frequency, mode shape and damping. 

 

While all the above data reflect the condition of a structure, damage identification 

can be done based on data in the time, frequency or modal domain. However, there 

are arguments about the suitability of data for damage detection since in each stage 

the processing involves data compression process which results in a reduction in the 

volume of the data. For example Banks et al. (1996) questioned the suitability of 

modal data for damage detection arguing that modal data is a global system 

properties while damage is a local phenomenon. In contrast, according to Friswell 

and Penny (1997), the FRF and modal data essentially contain the same information 

unless the modes are out of range. Lee and Shin (2002) pointed out that the modal 

domain data can be contaminated by modal extraction error not present in the FRF 

data. They suggest that FRF can provide more information as the modal data is 

extracted from a very limited range around resonance. Doeblíng and co-workers 

(1996) concluded in their report that there are disagreements among researchers 

about the suitable parameters for damage identification. Research in all the three 

domains are likely to continue because no constructive method has been found yet to 

identify every type of damage in every type of structure. Nevertheless, most 

applications of vibration based damage detection focused on the methods that are 

based on the modal domain. This may be due to the fact that modal properties are 
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easy to obtain and to interpret as compared to the more abstract features in the 

frequency domain and the time domain.  

 

Damage can be classified into linear or nonlinear. A linear damage is when the 

initially linear-elastic structure remains linear-elastic after damage. The changes in 

the modal characteristics are a result of changes in the geometry, boundary condition 

or material properties of the structure. The structural response can still be modeled 

using linear equations of motion. Nonlinear damage is defined as the case when the 

initially linear-elastic structure behaves in nonlinear manner after the damage has 

been introduced. One example of nonlinear damage is the formation of a crack that 

subsequently opens and closes under the normal operating vibration environment. 

The majority of the studies reported in the technical literature addresses only the 

problem of linear damage detection (Farrar and Doebling 1997). 

 

Rytter (1993) classified damage identification into four levels: 

Level 1: Determination that damage is present in the structure 

Level 2: Determination of the geometric location of the damage 

Level 3: Quantification of the severity of the damage 

Level 4: Prediction of remaining service life of the structure 

 

Doebling et al. (1998) presented an extensive review on the damage detection 

methods based on modal parameters and Carden and Fanning (2004) provides the 

updated version. These literature reviews concentrated primarily on Level 1 to 3 

only. Level 4 is generally associated with the fields of fracture mechanics, fatigue 

life analysis, or structural design assessment which is rarely addressed by 

researchers. 

 

This section reviews various methods for damage detection based on vibration data, 

emphasizing on structural engineering applications. Due to a vast amount of 

publications in this area, the literature review in this section mainly focuses on the 

technical papers published after 1990; however some earlier publications that are 

considered to be important are also included. The damage identification methods 
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reviewed below are categorised based on vibration parameters and analysis 

techniques. 

 

 

2.2 Artificial neural network methods 

Most of the proposed methods in the literature above are a direct process involving 

constructions of mathematical models, which are then used to develop a relationship 

between damage conditions and changes in structural response. Since the damage 

identification is an inverse process, where causes must be discerned from effects, a 

search for the causes of the structural responses is quite complicated and 

computationally expensive. A unique solution often does not exist for an inverse 

problem, especially when insufficient data is available. Thus, it is very difficult to 

evaluate an existing structure that has suffered some unknown type of damage using 

traditional damage detection methods based on a priori knowledge of damage 

scenarios. The model updating techniques which include iterative method and 

optimization method also results in a huge amount of calculation and is time 

consuming. Although many algorithms have been developed to improve the updating 

process, it still remains computationally complex.  

 

As ANNs are known for its capability to model nonlinear and complex relationship, 

the inverse relationship between structural responses to structural characteristics can 

be modeled.  

 

The application of ANN to civil engineering began in 1989. The first journal article 

on civil/structural engineering was published by Adeli and Yeh (1989) to solve a 

problem in engineering design. Adeli (2001) has conducted a comprehensive review 

in the application of ANN in civil engineering. In damage detection, Wu et al.(1992) 

published the first journal article to detect damage from dynamic parameters by 

employing ANN. 

 

The basic strategy in applying ANN model for damage detection is to train the ANN 

model to recognize the changes of structural characteristics based on measured 

response. This is due to the reason that the rules governing the cause and effect 
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relationships must be established explicitly and methodology for using these 

relationships must be developed in priori (Wu et al. 1992). Through a training 

process, ANN is able to extract the relationship between inputs and outputs and then 

store within the connection strengths.  

 

There are two main steps in building an ANN model, i) training stage; and ii) testing 

stage. In training, a network is trained by data of various damage cases using an 

appropriate training algorithm. In the testing stage, the trained ANN is fed with input 

data that has not been used in the training. To generate a set of data that can be used 

in training process, the data must contain the information regarding cause and effect 

relationships. In any typical application of ANN, an appropriate ANN architecture 

must be determined in the first place followed by selection of training algorithm to 

train the network. In most cases ANN architecture is expressed as n-p-m, where 

n,p,m are the number of neurons in input, hidden and output layer respectively. 

 

In previous studies, many types of parameters corresponding to measured response 

were applied as the inputs. For damage detection, measured response parameters 

(time domain or frequency domain or modal domain data) are normally used as the 

inputs, while for the outputs, the non-parametric and parametric parameters were 

normally used to represent the condition of the structure. Non-parametric parameter 

refers to any form of variable used to classify the structure condition, such as binary 

number, while parametric parameters quantify the damage extent, such as reduction 

of stiffness value (Xu et al. 2004). The application of ANN for damage detection is 

the major concern in this study. 

 

As the research in the application of ANN for damage detection progressing, in this 

subsection, the related studies are reviewed in three major categories: i) Input and 

output parameter; ii) process mapping and algorithm; and iii) application.  

 

 

2.2.1 Input and output parameter 

As mentioned earlier, the relationships between cause and effect are obtained from 

training data through an appropriate training scheme. Most researchers in the early 
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stage focused on determining the appropriate combination of input and output 

variables. 

 

The first journal article by Wu et al. (1992) applied FRF of acceleration data as the 

input vector. The FRF between 0 and 20Hz was discretized at the interval of 0.1Hz 

resulting in 200 spectral values. Binary number, 1 and 0 were used as the output to 

represent the undamaged and damaged condition of each member in a simulated 

three-storey building. Povich and Lim (1994) verified the application of FRF as the 

input parameters to detect damage condition in a 20-bay planar truss composed of 60 

struts. 394 input nodes were used, corresponding to spectral values between 0 and 50 

Hz. The same binary code was applied as the outputs to represent the condition of 

each strut. Both studies demonstrated that ANN is capable of learning the behaviour 

of damaged and undamaged structures and to identify the damaged member from 

patterns in the FRF of the structure. 

 

Kudva et al. (1992) examined the viability of measured strain values at discrete 

locations as the inputs to deduce the damage size and locations on a numerically 

modeled plate stiffened by 4 x 4 array bays. ANN was used to relate the inputs with 

the damage size and location of the damaged bays. Two output nodes were used; to 

represent damage location and damage size. The results show that the training 

performance is good which indicate that ANN is able to provide good correlation 

between strain values and damage location and size. However, some false predictions 

are experienced in testing, due to the reason that strain values is unable to provide 

unique representation of damage location and severities. Furthermore, the output 

nodes setting used in this study only allow ANN to detect single damage only. 

Worden et al. (1993) applied the same approach to classify the damaged and 

undamaged member of an experimental framework structure in terms of binary 

number. The study suggested that ANN should be trained using noise-corrupted data 

to produce better classification results if experimental data is employed.  

 

Elkordy et al. (1992) used the percent changes in vibrational signatures obtained 

from experimental study of a five-story frame as input to backpropagation ANN. 

They demonstrated that using the percent changes in vibrational signatures rather 
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than absolute values effectively distinguishes between the patterns corresponding to 

different damage states. Pandey and Barai (1995) applied vertical displacements at 

selected nodes as the input parameter to identify damage in a numerically modeled 

21-bar bridge truss structure. The outputs are cross sectional area of every member. 

The damage scenarios considered were formed by reducing the cross section of the 

corresponding truss members. The ANN models used in this study were able to 

predict the cross sectional area of the simulated damages with a minimum error 

percentage.  

 

A more detailed study related to the number of measurement nodes of vibration 

signature was conducted in Barai and Pandey (1995). The vibration signature of a 

bridge truss structure under moving load was used as the ANN’s input. The 

prediction performance of ANN models employing single-node; three-node and five-

node of measurement were compared. The authors concluded that the vibration 

signature obtained from single-node provides better performance compared to 

multiple measurement nodes. However, the authors did not address the issue 

regarding selection of time interval and length of vibration signature. 

 

Masri et al.(1996) carried out a study regarding the effect of different lengths of 

vibration signature to ANN performance. A backpropagation ANN model was 

trained to detect the abnormality in a linear and nonlinear single-degree-of freedom 

system based on vibration signature. The inputs of the network are the relative 

displacement and relative velocity, and the output is the restoring force. The results 

show that better training and prediction performances are obtained when longer 

vibration signature is used as the input. This is aligned with the ANN learning theory 

that more information provides the better prediction results. However, there was no 

specific guideline provided on selecting the appropriate length of the vibration 

signature. The application of this method to actual data was demonstrated in 

Nakamura et al. (1998), while Masri et al.(2000) applied the proposed approach to 

experimental nonlinear multi-degree of freedom system. 

 

The use of time series data such as FRF and vibration signature required a small 

sampling rate, in turn, a tremendous amount of training data is needed and a large 
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training time may involve. In order to address this issue, researchers proposed 

several alternatives. 

 

In Spillman et al. (1993), instead of using spectral values, the authors applied the 

amplitudes and frequencies of the first two modal peaks of Fourier transformed 

acceleration time history signal together with impact intensity and location of the 

sensor as inputs to ANN model. A 4.5m steel bridge element was used as an 

example. Damage was introduced by cutting and bolting a plate reinforcement over 

top of the cut. With the plate attached, the element was considered undamaged. With 

the bolts loosened, the element was considered to be partially damaged. The impact 

intensity and location were also used as inputs. An ANN model with 14 inputs, 20 

hidden nodes and 3 outputs were used, one for each of the possible damage. The 

results show that the proportion of correct diagnosis was around 60%. The authors 

justified this number by citing the small size of the training data. 

 

Islam and Craig (1994) applied natural frequency as the input parameters of ANN in 

determining the location and size of delamination in a cantilever delaminated 

composite beams. Numerical and experimental examples were used to verify the 

proposed method. The ANN architecture consisted of three layers with five nodes in 

the input layer corresponding to the first five modal frequencies. Three and two 

nodes were used in hidden and output layers respectively. The nodes at the output 

layer corresponding to delamination size and location. The ANN was trained with 

14000 training patterns. Their results showed a good agreement between natural 

frequency and damage location and size. The simulated and experimental damages 

were successfully detected. Ceravolo and De Stefano (1995) also applied natural 

frequency as the input to ANN model to predict the (x,y) coordinates corresponding  

to the damage location. A truss structure simulated by finite element model was used 

as the example. The damage was imposed by removing truss elements. A 

backpropagation ANN model with 10 input corresponding to 10 modal frequencies, 

10 hidden nodes and two output nodes corresponding to the x and y position was 

used. Only single-damage cases were considered. The network was trained with 18 

samples consisting of various single-damage cases. The ANN located the damages 

well. 
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Similar input parameters were applied by Ferregut et al.(1995) to detect damage in 

numerically modeled aluminium cantilever beam. A backpropagation with 6 input 

nodes, 17 hidden nodes and 11 output nodes was applied. The first output node in 

output layer was for damage magnitude, while the other 10 were for damage 

location. The ANN was trained with 240 pairs of input and output data. The damages 

were simulated by reducing the width and depth of the corresponding element from 

1% to 30%. The results show that only severe damages were identified. This may be 

due to the reason that the natural frequency alone is not sensitive to small damage. A 

similar outcome was experienced by Kirkegaard and Rytter (1994), when similar 

input parameter was applied to identify damage in a 20-m steel lattice mast subject to 

wind excitation. Damage was simulated by replacing lower diagonal with bolted 

joints of diminished thickness. The ANN model was used to identify the mapping 

from the first five modes of frequencies to the percentage of damages in member 

stiffness. One output was used for each element of interest. The network was trained 

with 21 examples generated from a finite element model. The results show that at 

100% damage, the ANN was able to locate and quantify damage. At 50% damage 

the ANN was able to predict the existence of damage but not the magnitude. The 

damage less than 50% was not detected. 

 

From the studies above, it is observed that natural frequencies alone are not effective 

to identify damage in structures. Good results only limited to the cantilever structure 

and single-damage only. As mentioned earlier, it is not capable in differentiating 

damage in a symmetrical structure. Moreover, the frequency shift due to a small 

damage is not significant, thus the frequency is not sensitive to small damages.  

 

Elkordy et al. (1993) applied mode shapes as the inputs to ANN model to identify 

damage in a five story building. The ANN model was trained using data generated 

from finite element model and tested with numerical and experimental data. Two 

types of ANN models were used. The two ANN models were trained using 11 and 9 

training data respectively. The first model was used to classify the structure members 

into damaged or undamaged, while the second was used to determine the percent 

change in member stiffness. The output of the first and the second ANN model were 

good when tested with numerical data but inaccurate results were observed when the 
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experimental data was used. According to the authors, this may be because of the 

inevitable measurement error in the measured data.  

More comprehensive study regarding input parameter was conducted by Tsou and 

Shen (1994). In their study, the detectability of two ANN model with different input 

variables are compared. The first ANN model was trained using changes in 

eigenvalues as the input parameters and the second ANN model was trained using a 

combination of frequencies and mode shapes as the input vector. Those ANN were 

tested with single and multiple damages. Instead of applying the conventional 

classification method, a new ANN architecture was also proposed to deal with 

parametric output parameter of multiple damages. Each node in the output layer was 

used to represent the stiffness loses of each member. Finite element model of a three 

degree of freedom and an eight degree of freedom spring system was used as the 

examples. The authors concluded that the ANN with changes in eigenvalues as the 

inputs was able to detect single and multiple damages in a simple system. However, 

for more complicated problems, the information from mode shape is required to 

provide more precise identification. The authors also claimed that by using modal 

data as input parameters the length of the input vector was significantly reduced as 

compared to FRF. Levin and Lieven (1998) verified the use of natural frequency and 

mode shape as the input parameters to ANN model to update the finite element 

model based on experiment modal data. A radial basis neural network was applied to 

map the relationship between the vector and the structure properties. A simple ten-

element cantilever beam was used as an example. The successful  applications of 

natural frequency and mode shape as input parameter were also reported in other 

studies.(Ko et al. 2002; Mehrjoo et al. 2007; Yun and Bahng 2000; Zapico et al. 

2001). 

 

A comparative study between static displacement and modal data as diagnostic 

parameters for damage detection using ANN was conducted by Zhao et al. (1998). A 

counterpropagation ANN was used to predict Young’s modulus of each structure 

member. For static displacement, a numerical plane frame was used as an example. 

Single and multiple damages were used for testing. The ANN was used to identify 

the relationship between static displacement and Young’s modulus of each member. 

The results show that ANN was not successful to detect multiple damages based on 
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static displacement. For modal parameters, four different input parameters were 

considered. i) natural frequencies; ii) mode shapes; iii) slope array; and iv) state 

arrays. A three-span continuous beam was used as an example. The results show that 

natural frequencies and slope arrays provide better results compared to mode shapes 

and state arrays. The author concluded that the dynamics parameters are good 

diagnostic parameters for damage detection, while static displacement is not suitable 

to detect multiple damages as similar displacements can be obtained with different 

combination of damage and loading. 

 

Zang and Imregun (2001a) proposed a different method to reduce the size of FRF as 

input variables. The authors employed a principal component analysis to reduce the 

size of FRF before it can be used as the input variables. The output of the ANN 

model is the condition of structure (healthy or damaged). The original FRF data of 

railways wheels with 4096 data points in x, y and z direction was reduced to 7, 9 and 

13 for x,y and z direction respectively. The reduced data sets were used as input 

vectors to three different ANN models. 80 samples were used for training and 20 

cases for testing. The results show that all the damage cases were correctly classified. 

Zang and Imregun (2001b) quantified the above approach for slight damage 

detection. Kim and Kapania (2006) enhanced the above method by applying 

principal component together with orthogonal array method to reduce the number of 

training data. According to Zang and Imregun (2001b) the application of FRF to 

detect damage location and severities is still very difficult since a fine spatial 

resolution of FRF is needed for damage location and the quality of raw FRF data 

remains a major consideration. 

 

Instead of using measured response parameters directly as the input variables to 

ANN model, several researchers proposed proxy variables as the input parameters to 

overcome the shortcomings of the existing method. Rhim and Lee (1995) highlighted 

an issue regarding a large number of sensors needed if dynamic parameters are used 

directly as the inputs. In their study, transfer functions of auto-regressive model with 

exogenous input (ARX) served as the input patterns for damage classification using 

backpropagation ANN. A Transfer functions was used as the system feature by 

combining the information on a dynamic system from a given input-output data pair. 
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The ANN was used to identify the map from characteristic polynomial to an 

empirical damage scale. Each of the four outputs represented a different level of 

damage, where 0 indicated no damage and 1 for total damage. The damage cases 

were modeled as delamination in finite element model of a composite cantilever 

beam. The authors chose ANN with 13 input nodes, 30 hidden nodes and 4 outputs 

and trained with 10 training patterns. The ANN model was tested with three 

examples and correctly identified the damage in those cases. 

 

The development of wavelet-based approach for vibration data processing, which is 

claimed to be more accurate, has enhanced the research in damage detection. Only 

one paper found on the use of wavelet variables as the input parameters to ANN for 

damage detection. Yam et al. (2003) applied structural damage feature proxy vectors 

as the input to ANN to increase the sensitivity of the existing method to small and 

incipient structural damage. Location and severity of the damage are used as the 

output variables. The vectors were constructed based on energy variation of 

structural vibration response. The vibration responses are decomposed into wavelet 

sub-signals to extract structural damage information using wavelet packet analysis 

method (WPA). By using a specified formula, the sub-signals are composed to form 

a non-dimensional damage feature proxy vector. Numerical and experimental PVC 

sandwich plates were used to verify the method. In numerical example, a damage 

scenario with 12 cracks was modeled in the finite element model. A Backpropagation 

ANN (32-16-4) was applied. 108 sets of training data were used for training. The 

results show that the ANN was able to predict the crack location for all the 12 crack 

cases. In experimental example, 6 crack cases with different length were considered. 

Some errors in the results were observed in determining the crack length. This is 

again because of the measurement error and modeling error.  

 

Lam et al. (2006) proposed to use the changes of Ritz vectors as the features to 

characterize the damage pattern defined by the corresponding locations and 

severities. This approach is based on the reason that Ritz vectors possess higher 

sensitivity to structural damage than natural frequency and mode shape. Ritz vectors 

were extracted from frequencies and mode shapes using flexibility matrix. A Radial 

basis function neural network was employed to identify the map between changes of 
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Ritz vector and E values of any possible damage location. A numerically modeled 

two-bay truss structure with 11 members was used to illustrate the proposed method. 

ANN with 9 input neurons, 41 hidden nodes and 11 output nodes was used. Three 

damage types were simulated for testing, ranging from single-damage to triple-

damage. The locations and damage severities for all cases were successfully 

identified. The author concluded that the ANN trained with Ritz vector changes 

provides more reliable results. 

 

From the reviews above, the input parameters that used to identify damage with an 

ANN model ranging from direct application of time domain data (e.g. vibration 

signature), frequency domain (FRF) to modal domain data (frequency and mode 

shape). Several attempts in using proxy parameters derived from dynamic data are 

also reviewed. Despite of the fact that each vibration parameter has its own pros and 

cons in damage identification as mentioned earlier, the application of time series data 

(vibration signature and FRF) as the input parameter has another issue. In ANN 

model, the values at each time interval are represented by an input node, thus for 

time series data, a large number of nodes at the ANN’s input layer are needed. This 

leads to a phenomenon known as ‘curse of dimensionality ‘ as discussed by Bishop 

(1995) which significantly jeopardizes the efficiency and accuracy of ANN training 

process. The modal frequency has the advantage of ease and accuracy of 

measurement, since it is a global properties and not spatially specific, extra 

information, such as mode shape can be used together to identify damage. Since 

these parameters are not a time-based parameter, the number of ANN input node 

depends on the number of modes and measurement points only, hence the length of 

the input variables can be substantially reduced.  

 

Application of wavelet data as the input variables provides an alternative for damage 

detection, nevertheless there are many types of wavelets and there is no systematic 

method to choose the most appropriate wavelet transform data for damage detection 

(Marwala 2000). 

 

It is important that the output of ANN is able to provide as much information as 

possible about the damage status. In the early stage, most researchers applied non-
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parametric parameter as the outputs. This type of output parameter classified the 

structure conditions to damaged and undamaged condition, thus the results are 

limited to level 1 in Rytter’s terminology. Attempts to use parametric parameters as 

the outputs are subjected to small structure system only. This may be due to 

computational power that limits the training of large dimension ANN model, because 

certain training algorithms require high computer memory to train the ANN model. 

For example, Levenberg-Marquardt algorithm requires high computational power, 

but in many cases it converges while the other algorithms such as conjugate gradient 

and variable learning rate algorithm may not converge (Hagan and Menhaj 1994). As 

a result, in most studies, only minimum number of output node is used at the ANN 

output layer. This leads the researchers to use the coding system such as binary code 

as the output to represent different structural location and condition. This limitation 

also induces the difficulty in detecting multiple damages. As technology grows, more 

studies used parametric parameters, involving structural parameters (e.g. damage 

location and severity) as the outputs, thus qualitative way of damage detection have 

taken place, and better information can be obtained. 

 

 

2.2.2 Process mapping and training algorithm 

Among various types of ANN models, multi-layer neural networks with 

backpropagation algorithm are most commonly used in damage detection (Elkordy et 

al. 1993; Elkordy et al. 1994; Povich and Lim 1994; Spillman et al. 1993; Wu et al. 

1992). Although this ANN model has been proven to be an effective tool in damage 

detection, it still suffers several drawbacks such as slow convergence and the 

possibility to be trapped into local minima especially when it involves time series 

input parameters. In this subsection, studies pertaining to various methods in 

improving the conventional ANN model for damage identification are reviewed. This 

includes the improvement of ANN performance in terms of mapping topology, 

training algorithm and ANN integrated approach. 

 

Szewczyk and Hajela (1994) introduced a new algorithm called Feature-sensitive 

Neural Network to overcome the problem in variation of static displacements under 

different load conditions. According to the authors, the feature-sensitive neural 



20 

 

 

network is a modified version of counterpropagation neural network, which features 

increased processing power over standard ANN while preserving its general 

characteristics. This was done by implementing a clustering device as the hidden 

layer to classify the input pattern on the basis of minimum disturbance principle. As 

a result, only the weight vector of one neuron (the closest to a current input) is 

modified. At the output layer, a nonlinear interpolation scheme was introduced to 

increase the prediction accuracy. This new algorithm was applied on three numerical 

structures of increasing complexity: a 2-dimensional six-bar truss, 2-dimensional 18-

degree of freedom portal frame and 3-dimensional 12-degree of freedom system. The 

networks were trained with 200, 3600 and 3000 examples respectively. Quite 

satisfactory results were exhibited for simple structure, but poor results were 

observed for complex structures.  

 

Ceravolo et al. (1995) extended the standard process mapping by applying 

hierarchical ANN to detect the presence of structural faults. The network consists of 

two levels of ANN model. The first level was used to determine the damaged area, 

and the second level identified the damaged element in the area. Acceleration cross-

correlation values recorded over 1 second, with sampling period 0.005 second were 

used as the inputs to backpropagation ANN model at both levels. Both networks 

were trained with 54 and 18 training samples. A 5m numerically modeled beam was 

served as the example. Although all the 12 simulated single-damage cases were 

successfully detected, this approach is limited to single-damage cases only. 

 

Worden (1997) applied novelty detection method using Auto-associative network 

(AAN) in simple 3-degree of freedom simulated lumped-parameter mechanical 

system. The purpose of the approach is to identify any changes in the system. The 

AAN was forced to reproduce the patterns which were presented at the input layer. 

The novelty index, which was defined as Euclidean distance between undamaged 

and damaged pattern was used as the indicator of abnormality. The input and output 

of the AAN was 50 spaced points of FRF between 0 to 50Hz. The effect of 

measurement error was also considered by applying normally distributed noise in the 

inputs. 50%, 10% and 1% fault cases were simulated by reducing the stiffness of one 

of the spring in the system. The results showed that the AAN was able to detect the 
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abnormality for 50% and 10% cases, but had difficulties to detect abnormality in 1% 

damaged case. The author also demonstrated that the reliability of the proposed 

approach also decreased as the noise increased. This method was only limited to 

damage detection of level 1 in Rytters terminology. 

 

Hung and Kao (2002) upgraded the novel detection method proposed by Worden 

(1997) to comply with level 2 detection in Rytter’s terminology. Another ANN 

model was introduced in the second stage to determine the location and severity. The 

novel ANN model in the first stage was used to identify the undamaged and damaged 

states of a structural system. The relative displacement, velocity and acceleration 

were used as the input and output for the ANN in this stage. The partial derivatives 

of the outputs of ANN in the first stage were used as the input for the ANN in the 

second stage to determine the damage locations and severities. Examples of a single 

degree-of freedom system and a multiple degrees-of freedom system were used to 

demonstrate the approach. Simulated cases for both systems were satisfactorily 

diagnosed. Kao and Hung (2003) further demonstrated the above approach using free 

vibration responses. 

 

Xu et al. (2004) proposed a new strategy of novel detection method to identify 

damage directly from the vibration time-domain responses. The authors also claimed 

that the proposed method is feasible to identify stiffness and damping without the 

parameters of an undamaged structure to be known as a priori. Two ANN models 

were applied. The first ANN model was used to model the time-domain behaviour of 

a reference structure and the second was to identify the parameter of the structure. 

Velocity and displacement and excitation force at the k time step were used as the 

inputs and the outputs were velocity and displacement at the k+1 time step. The 

deviation of the outputs from reference values indicates damage existence. The error 

between the reference and the output values was then applied as the input for the 

second ANN model to predict the parameters of the structure. A numerical five-story 

frame was used as an example. The results showed that the stiffness parameters were 

predicted with less than 7% error. 
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In Marwala and Hunt (1999), a new mapping topology called committee neural 

network to combine the information from FRF and modal data were proposed. Two 

backpropagation ANN models were used to predict the fault identity based on FRF 

and modal data respectively. Frequency energy calculated from FRF was used as the 

input for the first ANN model and modal properties for the second. The predicted 

fault identity values were combined to represent the condition of the structure. In this 

study, a simulated 1.0m cantilever beam was used to illustrate the method. The beam 

was divided into 5 segments, and the committee ANN was used to identify the 

damage existence in each segment. An ANN architecture of 50-25-5 was selected for 

the first ANN model and for the second one 55-25-5 was applied. 243 data were used 

for training both networks. The results showed that those ANN was trainable with 

low mean errors but no testing has been demonstrated. Marwala (2000) enhanced the 

above study by applying wavelet transform data together with FRF and modal 

properties. An experimental data of ten steel seam-welded cylindrical shells was used 

for verification. The author claimed that the performance of the proposed approach is 

not influenced by error and the effectiveness of the method is enhanced when 

experimental data are applied.  

 

Chang et al.(2000) proposed a modified backpropagation ANN algorithm known as 

iterative artificial neural network to increase the ANN prediction accuracy in damage 

detection based on modal data. The outputs of the trained ANN are fed to finite 

element model to calculate the dynamic characteristics. If the calculated 

characteristics deviate from the measured ones, the ANN model would go through a 

retraining process. Natural frequencies and changes of mode shape curvatures were 

used as the inputs, while structural stiffness was used as the outputs. A numerical 

model and an experimental clamped-clamped reinforced concrete T beam were used 

as the example. The results showed that all four simulated damage cases were 

successfully detected; however, some slight errors were observed when experimental 

data was used. According to the authors, this may be due to uncertainties related to 

material properties or material in homogeneity. 

 

Attempts to improve the performance of conventional backpropagation ANN 

algorithm demonstrated in several studies above have shown promising results, 
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however the computational efficiency is still an issue. Luo and Hanagud (1997) 

proposed a dynamic learning rate steepest decent (DSD) algorithm to speed up the 

training time. The DSD was used to train a neural network for direct identification of 

composite structural damage through structural dynamic responses. Through 

numerical experiments, the proposed method was shown to have much better 

learning ability than the standard constant learning rate steepest descent method and 

the accelerated steepest descendent method. The same approach was further 

demonstrated by Zhu et al. (2002). 

 

Xu et al. (2000) improved the above algorithm by introducing the concept of 

dynamically adjusted learning rate and additional jump factor to speed up the 

convergence of multilayer neural network. According to the authors the proposed 

algorithm is able to alleviate the oscillation and stagnation in backpropagation 

algorithm, thus speed up the convergence of the ANN model. In that study, the ANN 

model was used to identify the correlation between the displacement response and 

the location/size of the cracks. A numerically modeled anisotropic laminated plate 

was used as the example. The authors claimed that the proposed algorithm can speed 

up the convergence of neural network. 

 

Liang and Feng (2001) argued the efficiency of dynamically adjusted learning rate 

algorithms since this method heavily depends on selection of control parameters such 

as error rate controller and learning rate controller that are typically determined 

based on trial and error. Thus, the authors proposed a fuzzy adaptive 

backpropagation (FABP) algorithm by integrating fuzzy logic concept with the 

characteristics of ANN to identify the restoring forces in a nonlinear vibration 

system. By applying fuzzy concept, error function and the changes of learning rate 

are defined fuzzily based on human expertise. The authors concluded that FABP is 

able to increase the training speed of the network. Nevertheless, this method has its 

own limitation. The design of fuzzy logic approach still requires a rule based 

formulation which is very difficult to implement and also time consuming. To tackle 

this problem, Fang et al.(2005) developed a tunable steepest descent (TSD) algorithm 

which is based on DSD algorithm incorporated with heuristics approach to improve 

the ANN training process. According to the authors, a heuristic rule in which the 
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learning rate is kept as large as possible to the extent that the network can learn 

without increasing the error is used to determine the step size. This algorithm was 

used to train ANN to establish relationship between FRF and damage 

location/severity of a 20-elements cantilever beam. Key spectral points around the 

resonant frequencies in FRF data together with 78 points of stiffness loss were 

chosen as the input. The outputs were the stiffness loss of five specified locations of 

the beam. The results show that ANN trained with TSD algorithm was able to detect 

single and multiple damages. A comparison of training performance of the proposed 

method with DSD and FABP was also performed. The authors concluded that TSD 

algorithm outperforms DSD and FABP in training effectiveness without increasing 

the algorithm complexity. 

 

Another strategy to improve the performance of the conventional backpropagation 

ANN for damage detection was proposed by Hung et al.(2003). The authors applied 

Wavelet Neural Network (WNN) as a non-parametric system identification based on 

a study by Zhang and Benveniste (1992). The wavelet decomposition method was 

combined with ANN structure to enhance the convergence accuracy and to overcome 

the problem of local minima in a conventional ANN. The feasibility of WNN was 

examined using a five story 1/2-scaled steel frame excited under Kobe earthquake. 

During the training, the story acceleration responses were used as input and outputs. 

The authors found that the WNN performed equally well as a conventional ANN, 

however, the training time needed for a WNN is much less than a conventional 

ANN. 

 

However, according to Adeli (2006), the WNN method suffers three major 

drawbacks: i) lack of an efficient constructive model; ii) the need to find the model 

parameters such as the input vector dimension by trial and error; and  iii) low 

identification accuracy. Thus, the author proposed a new multiparadigm dynamic 

time-delay fuzzy WNN (DFWNN) model to tackle the above problems. The method 

is based on the integration of four different computing concepts: dynamic time delay 

ANN, wavelet, fuzzy logic and the reconstructed state space concept from chaos 

theory. The same input and output parameters were used and the same example was 

applied. The performance of the DFWNN and WNN was compared. The results 
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show that the proposed method provides more accurate output as compared to WNN. 

Jiang and Adeli (2005) demonstrated the application of DFWNN for nonlinear 

highrise buildings. Wen et al. (2007) proposed a parametric version of this method 

namely Unsupervised Fuzzy Neural networks (UFN). The authors investigated the 

feasibility of unsupervised ANN incorporated fuzzy logic to determine damage 

location and severity. The performance of UFN and conventional backpropagation 

ANN were compared. Additionally, the effect of measured noise and the use of 

incomplete modal data were investigated. A finite element model of the same 

structure was applied for verification. This study concluded that both 

backpropagation ANN and UFN are capable of locating the damage. The use of 

fuzzy relationship in UFN increased detection robustness and flexibility of ANN 

model to noise. Nonetheless, the traditional shortcomings of fuzzy logic in 

determining the fuzzy rule are still an issue. 

 

Suh et al. (2000) demonstrated another hybrid technique by combining ANN with 

genetic algorithm to identify the location and depth of cracks in a structure with 

frequency information only. Multilayer ANN trained by backpropagation algorithm 

was used to learn the input (the location and depth of a crack) and output (the 

structural eigenfrequencies) relation of structural system. With the trained ANN, 

genetic algorithm was applied to identify the crack location and depth minimizing 

the difference from the measured frequencies. Finite element model of a clamped-

free beam and a clamped-clamped plane frame were used to confirm the 

effectiveness of the proposed method. 

 

The issue regarding the complexity of ANN design was addressed in Yuen and Lam 

(2006). They developed a mathematically rigorous method to select the optimal class 

of ANN models based on Bayesian probabilistic method. The damage detection 

method presented in their study consisted of two phases. The first was to identify the 

damage location using vibration signature and the second was to estimate the damage 

severity based on modal parameter. A numerical model of a five-story shear building 

was used to quantify the method. The authors only focused on selecting the best 

number of nodes in hidden layer. The efficiency of this method were compared with 
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the rule of thumb to calculate the number of hidden nodes suggested by Kermanshahi 

(1999). No comparison in terms of ANN performance has been made. 

Sahoo and Maity (2007) followed up the above study to consider the problem in 

selection of the network parameters such as learning and momentum rate, 

convergence criteria, training algorithm. The authors applied neuro-genetic algorithm 

to determine the damage location and severity based on modal parameter and strain 

value. Genetic algorithm was applied to select the suitable values of the network 

parameters by treating them as variables and backpropagation ANN for damage 

detection. The efficiency of the algorithm was tested with two structures, a beam and 

a plane frame. 

 

Although algorithm/mapping topology proposed in some studies has been claimed 

feasible to improve the conventional multilayer backpropagation ANN, there were no 

specific guideline on their applications, moreover, the mechanism has not been well 

explained and quantified. Most of them are context dependant and certain algorithms 

are difficult to apply. It must also be noted that the accuracy of ANN prediction is 

also influenced by the characteristic of training data. In most of the studies, there 

were no detailed explanations on how the training data were prepared. Through a 

literature search, no article that investigates the influence of training data 

characteristic to ANN performance for the purpose of damage detection is found. 

 

 

2.2.3 Application 

Although great progress has been made in application of ANN for damage detection, 

most of the presented works only demonstrated their feasibility through numerical 

simulations. A few successful verification works using experimental data are limited 

to simple laboratory tests under controlled conditions, such as beam-like structure 

(Islam and Craig 1994; Levin and Lieven 1998; Sahin and Shenoi 2003) and 

cylindrical shell (Marwala 2000; Yu et al. 2007). There are also several studies 

involving experiments in uncontrolled conditions and most of them reported the 

ANN model less successful (Chang et al. 2000; Feng and Bahng 1999; Worden et al. 

1993; Zapico et al. 2001), probably because of the inevitable modeling and 
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measurement error. Those studies recommended that noise should be considered in 

training. But only a few studies are found addressing this problem. 

 

Ortiz et al. (1997) investigated the application of noise corrupted training data based 

on a study by Matsouka (1992). The corrupted analytical data was used to train the 

ANN model to reduce the effect of error in measurement data. The method was 

illustrated using a numerically modeled cantilever beam. This method is known as 

noise injection learning method (NIL).The author concluded that the network trained 

with data containing noise had a tendency to provide better results when tested with 

noisy experimental data. Lee et al. (2002b) further investigated the method using 

experimental data of a bridge structure model under traffic loading, and provided the 

same conclusion. This approach was then applied in several other studies (Lee and 

Yun 2006; Shahin et al. 2003; Yeung and Smith 2005). 

 

For modeling error, Lee et al. (2005) applied the difference of mode shape before 

and after damage as inputs to ANN model. Two numerical models, laboratory and 

field test data were used to verify the proposed method. The authors concluded that 

the mode shape differences or the ratios of mode shapes before and after damage is 

less sensitive to modeling error in the baseline finite element model. Ni et al. (2002) 

suggested a method using differences in the estimated element-level stiffness before 

and after damages as the output variables to deal with modeling error. 

 

Most of the studies in applications of ANN for damage detection have been limited 

to example structures with small number of degrees of freedom and the damage 

levels have been usually assumed quite significant. This is because the computational 

time needed and the computer memory required to train and test an ANN model 

increase exponentially with the number of freedom in a structure model. To improve 

the computational efficiency, Yun and Bahng (2000) proposed an approach 

employing the substructural method and submatrix scaling factor to tackle this 

problem. A numerical modeled truss structure with 55 elements was used to 

demonstrate the approach. The damage scenarios considered were formed by 

reducing the stiffness of one or a few truss members. The strategy was to divide the 

structure to several substructures and the identification process is carried out on a 
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substructure at a time. Frequencies and mode shapes were used as the inputs and 

submatrix scaling factors were used as the output. This study also demonstrated the 

efficiency of the proposed method with the effect of measurement noise by 

employing NIL. 

 

Qu et al.(2004) further investigated this approach using FRF as the inputs. The 

spectral lines used were from 0Hz to 200Hz with an interval of 0.2Hz. Independent 

component analysis (ICA) was used to reduce the length of input data. The study 

employed the same truss structure as Yun and Bahng (2000) for verification. Damage 

scenarios were simulated by reducing the stiffness of two of the truss member. The 

authors claimed that the method improved the ability and computational efficiency to 

identify damages in large structures. 

 

However, in the above method, early and sometimes subjective judgement using 

conventional technique such as visual inspection is required to select the probable 

damage areas. To improve this method Ko et al. (2002) has developed a three-stage 

identification technique. A novelty technique utilizing auto associative neural 

network is suggested in the first stage to identify the damage existence in the 

structure, followed by a combination of modal curvature index and modal flexibility 

index to identify the damage area in the second stage. Once a probable damage area 

is identified an ANN model is used to determine the damage location and severity in 

the third stage. The method was demonstrated using numerical model of Kap Shui 

Mun Bridge in Hong Kong. The method has some shortcomings: i) the novel 

detection approach used in the first stage may not be sensitive enough to trigger the 

alarm for damage existence, as shown in two of the twelve cases analysed in the 

study; ii) modal curvature index and modal flexibility index are sometimes unable to 

provide accurate identification especially when damage is near the support area, as 

demonstrated in the study; iii) if the damage occurs in multiple areas, expensive 

computation is still required in the third stage to train the ANN model as the number 

of areas that contain damages increases.  
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2.3 Summary 

This chapter presents a review of the vibration based damage detection methods. The 

review demonstrates that the ANN based methods provide several advantages over 

the traditional mathematical methods 

 

i) ANN is able to detect damage correctly, even when trained with 

incomplete data, without using data expansion or finite element reduction 

methods. 

ii) Once properly trained, the ANN calculation is relatively fast. The need 

for construction of mathematical models can be avoided. 

iii) There is no prior limit on the type of vibration parameters to be used as 

the diagnostic parameter. The inputs and outputs can be selected with 

certain flexibility without increasing the complexity of the training 

process. 

 

Although many studies demonstrated that ANN is a feasible tool for damage 

detection based on vibration data, several problems still remain to be resolved before 

this approach becomes a truly viable method for structural health monitoring and 

damage identification.  

 

The impact of uncertainties on the reliability of ANN models for structural damage 

detection needs to be analysed. In practice uncertainties in the finite element model 

parameters and modeling errors are inevitable. The existence of modeling error in a 

finite element model due to the inaccuracy of physical parameters, non-ideal 

boundary conditions, finite element discretization and nonlinear structural properties 

may result in the vibration parameters generated from such a finite element model 

not exactly representing the relationship between the modal parameters and the 

damage parameters of the real structure. On the other hand, the existence of 

measurement noise in the measured data that is normally used as the testing data for 

damage identification is unavoidable. Since the reliability of an ANN prediction 

relies on the accuracy of both components, the existence of these uncertainties may 

result in false and inaccurate ANN predictions. 
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Another problem is the difficulty to apply ANN to detect local and small damage 

especially in complex structures. This is because it needs a fine finite element mesh 

to detect small local damages in a structure, which will results in a large number of 

elements in the finite element model of a structure, hence, a high dimension network 

in the ANN model. It then requires excessive computational time and computer 

memory to train the ANN model. The computational time and computer memory 

needed to train an ANN model increase dramatically with the number of the 

structural degrees of freedom. Therefore, in most examples published in the literature 

that use ANN to detect damage, rather large finite elements are used in structure 

model to reduce the degrees of freedom. Since a large element is insensitive to a 

small damage and severe damage scenarios are usually assumed to demonstrate the 

ANN model.  
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CHAPTER 3 

DETERMINISTIC DAMAGE DETECTION USING 

ARTIFICIAL NEURAL NETWORK 

3.1 Introduction 

ANN can handle problems involving imprecise data and that are highly nonlinear 

and complex. They are ideally suited for pattern recognition and do not require a 

prior fundamental understanding of the process or phenomena being modeled 

(Bhagat 1990). As damage detection is an inverse process involving the comparison 

of the changes in structural response, it appears to be within the scope of pattern 

recognition capabilities of ANN.  

 

This chapter demonstrates the ability of a deterministic ANN model to identify 

damage in structures. ‘Deterministic’ method implies that the ANN model is trained 

using data from finite element model and the uncertainties in finite element model 

and measured data are not considered. Numerical models of a reinforced concrete 

slab and a single span steel frame are used to demonstrate the method. Experimental 

data of the reinforced concrete slab is applied for verification. To evaluate the effect 

of different input parameters on ANN performance, a sensitivity study is performed 

by using different combinations of input parameters to train the ANN model, such as 

using different numbers of natural frequencies or a combination of natural 

frequencies and mode shapes. 

 

Modal data (frequencies and mode shapes) are used as the input parameters to predict 

the elemental stiffness parameter of the structure in this study. Modal data has been 

selected based on the following considerations: 

i) Modal data is easy to obtain from measurements of the structural 

behaviour. 

ii) Frequency represents global behaviours, while the mode vector represents 

local characteristics. 
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iii) Modal data is not subjected to time constraint; hence, the length of the 

input pattern can be selected based on the number of modes and degree of 

freedom. 

 

 

3.2 ANN model 

ANN involves processing elements or neurons and interconnection weights between 

the neurons. These interconnection weights determine the nature and the strength of 

the connections between neurons. Figure 4-1 shows a neuron with an input vector of 

R variables.  

 

 

Figure 3-1: A neuron with an input vector of R variables (Hagan et al. 1995) 

 

 

The inputs p1, p2 ,..., pR are multiplied by weights w1,1, w1,2, ...,w1,R  and the weighted 

values are summed together with a bias b to produce the net input n: 

 

bpwpwpwn RR,122,111,1   (3-1) 

 

The expression in matrix form: 

 

bWpn  (3-2) 

 

The neuron output can be written as: 

 

)( bWpfa  (3-3) 
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where )(f is the transfer function. 

 

Examples of transfer functions are: hard limit, linear, log-sigmoid and sigmoid. 

Hagan et al.(1995) provides detail explanation regarding the transfer functions. For 

normal applications, the neurons are combined and arranged in layers and it is known 

as multilayer perceptron. The layer which receives the inputs is called an input layer 

while the layer which provides output is known as output layer. The middle layers 

are called hidden layers. Figure 4-2 exhibits an ANN model with two hidden layers. 

  

 

 

Figure 3-2: ANN model with two hidden layers (Hagan et al. 1995) 

 

As shown in the figure, there are R inputs, S
1
neurons in the first hidden layer, S

2
 in 

the second hidden layer and S
3
 neurons in the output layer. The outputs of the first 

hidden layer are the inputs tofor the second hidden layer and the output of the second 

hidden layer are the inputs to the output layer. Typically, there are two main stages in 

building an ANN model: i) selection of an ANN architecture; ii) training the ANN 

model. Details of both stages are explained in the following subsections. 

 

 

Input layer 
Second hidden 

layer Output layer 

First hidden 

layer 
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3.2.1 Selection of an ANN architecture 

Many types of ANN have been developed, such as Hopfield neural network, Radial 

Basis neural network and Kohonen neural network. In this study, multilayer 

perceptron ANN model is used. The reason is that multilayer perceptron networks 

have been applied successfully to many different problems (Rumelhart and 

McCleland 1986) and it has been proven to be an universal approximator, which 

means that it can approximate any continuous multivariate function to any degree of 

accuracy (Funahashi 1989; Hornik et al. 1989)  

 

A multilayer perceptron consists of an input layer, one or more hidden layer and an 

output layer. The number of neurons in input and output layer depends on the length 

of input and output vectors. However, there are no standard rules available for 

determining the appropriate number of hidden layers and hidden neurons per layer. 

General rules of thumb have been proposed by a number of researchers. For 

example, Shih (1994) proposed the pyramidical topology, which can be used to 

approximate numbers of hidden layers and hidden neurons. In the Kalmorogov and 

Lippmann’s approach (Maren et al. 1990), the number of hidden neurons is 

calculated as 2N+1, where N is the number of input neurons. Gately (1996) 

suggested the number of hidden nodes to be equal to the total of the number of inputs 

and outputs. Azroff (1994) concludes that the optimum number of hidden neurons 

and hidden layers is highly problem dependant. Ash (1989) and Kaastra and Boyd 

(1996) suggest a trial and error method to determine the number of hidden neuron. 

The trial and error method has been widely applied by researchers in many areas 

including damage detection (Sahin and Shenoi 2003; Spillman et al. 1993; Szewczyk 

and Hajela 1992; Yun and Bahng 2000). In this study, an ANN architecture with one 

hidden layer is used and the number of hidden neurons is determined using the trial 

and error method.  

 

Another component in an ANN model that needs to be specified is the transfer 

function. The transfer function is chosen by the designer to meet certain requirements 

of the problem to be solved by ANN. This transfer function may be a linear or a 

nonlinear function of n (refer to Figure 4-1). In this study, a hyperbolic tangent 

sigmoid function (tansig) is chosen for hidden and output layer since the input and 
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output vectors are normalized between -1 to 1. This transfer function is also known 

as sigmoid function. The hyperbolic tangent sigmoid function is shown in Figure 4-3. 

The input and output normalization process will be described in the following 

subsection. 

 

 

Figure 3-3: Hyperbolic tangent sigmoid function 

(Hagan et al. 1995) 

   

 

This transfer function takes the input and squashes the output into the range of -1 to 

1, according to the expression:  

 

nn

nn

ee

ee
a  

 

(3-4) 

 

where a is the output and n is the input 

 

Neural network toolbox which runs on MATLAB platform is used to model the ANN 

model in this study. 

 

 

3.2.2 Training an ANN model 

Once the ANN architecture has been configured, the weights must be set to minimize 

the prediction error. This process is known as training. The training process is 

performed by introducing a set of input and output data to the ANN model. The 

network then processes the inputs and compares its resulting outputs against the 

desired outputs. This type of training process is known as supervised learning. The 

learning process is performed by a learning algorithm. The well-known example is 

backpropagation algorithm (Fausett 1994; Haykin 1994). Through backpropagation 
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algorithm, the process is repeated until the error between the desired output and the 

predicted output met the specific stopping criteria. The differences between desired 

output and the predicted output are combined and denoted by an error function.  

 

 

3.2.2.1 Learning algorithm 

Backpropagation algorithms are categorized into traditional and modern second order 

algorithm. According to Bishop (1995) and Shepherd (1997), modern second-order 

algorithms such as Conjugate gradient and Levenberg-Marquardt are substantially 

more efficient for many problems. A comparison study between Leverberg Maquardt 

algorithm and Conjugate gradient algorithm was carried out by Hagan and Menhaj 

(1994), and the authors found that Leverberg Maquardt outperformed Conjugate 

gradient algorithm in terms of convergence performance. As a result, this study 

employs Leverberg Maquardt algorithm to train the network. This algorithm is a 

variation of Newton’s method that was designed for minimizing functions that are 

sums of squares of other nonlinear functions. Detail derivation of Leverberg 

Maquardt algorithm can be found in Bishop (1995) and Hagan et al. (1995). In this 

study, mean squared error (MSE) is used as the error function.  

 

2

1

)(
1 n

j

pt OO
n

MSE  
 

(3-5) 

 

where Ot and Op are the target and predicted outputs and n is the number of data. 

 

MSE indicates the difference between the ANN output value and the desired value. 

The relationship between input and output variables is considered established when 

the MSE value is close to 0.  

 

 

3.2.2.2 Stopping criteria 

A multilayer perceptron ANN model is prone to an overfitting problem (Geman et al. 

1992). Under the overfitting situation, the training performance still increases while 

the performance on unseen data becomes worse. Several methods have been 
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proposed by researchers to overcome overfitting, such as pruning (Hassibi and Stork 

1993) , regularization methods (Krogh and Hertz 1995) and early stopping method 

(Prechelt 1995). According to Finnoff et al. (1993), early stopping method is widely 

applied because it is simple to understand and has been reported superior than the 

regularization method. In this study early stopping method is applied as the stopping 

criteria.  

 

This study applies four basic steps of early stopping method. 

i) Split the training data into a training set and a validation set 

ii) Train only on the training set and evaluate the per-example error on the 

validation set once in a while. In this study the error is assessed in every fifth 

training cycle (epoch). 

iii) Stop training as soon as the error on the validation set is higher than the last 

time it was checked. 

iv) Use the weights the network had in that previous step as the result of the 

training run. 

 

 

3.2.2.3 Training data 

The training data to train the ANN model is generated using the finite element model 

of the desired structure. It is very important that the training data represents the 

largest possible range of input data. In this study, there is no prior assumption of the 

damage area, thus the data is generated randomly over all possible damage areas. 

Latin hypercube sampling method (Helton and Davis 2003) is employed to guarantee 

that the training data is generated uniformly over each area within the specified range 

of damage severities.  

 

As mentioned earlier, the input variables for the ANN model in this study comprises 

of frequency and mode shape. Both parameters vary in different range of magnitude, 

and thus it is easy to see that rows of the input matrix with large magnitude variation 

dominate the value of the distance, making inputs with small magnitude differences 

irrelevant to the estimation process. To overcome this problem, the input and output 

data are normalized within the prescribed bounds. In this study, input and output data 
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are normalized between the interval of [-1, 1]. The normalized inputs and outputs are 

calculated by: 

1
))min()(max(

))min((2

pp

pp
pn  

 

(3-6) 

 

where p is a row of the input/output matrix and pn is the normalized input and output 

parameters. 

 

Testing steps took place after the training process. A new set of data is applied to the 

trained model for damage detection. The testing data are normalized using 

precalculated minimum and maximum values of training data. In this study, 

numerically simulated damage data is used to train the ANN model. For testing, both 

numerical and experimental data are applied. 

 

 

3.3 Numerical examples 

This section demonstrates the ability of ANN in detecting damage from noise-free 

data. Two different structures are used as the examples which are; i) a two-span 

reinforced concrete slab and ii) a single-span steel portal frame. Both structures are 

modeled using finite element model through Structural Dynamics Toolbox (Balmes 

1996), which runs on MATLAB platform. Several damage cases involving single 

and multiple damages are simulated to assess the ANN model. The damages are 

imposed by reducing the E values of each corresponding segment.  

 

 

3.3.1 Numerical example 1 – Concrete slab 

To demonstrate the ability of ANN in damage detection, a numerical example of the 

concrete slab presented in Chapter 3 is utilized. The slab is modeled with 52 shell 

elements and 81 nodes and the supports are idealized as simply supported. The slab 

is divided into seven segments and every element within the same segment is 

assumed to have the same material properties. The material properties used are: 

Young’s modulus (E) = 3.3  10
10

 N/mm
2
, mass density (ρ) = 10

3
 kg/m

3
 and 

Poisson’s ratio (υ) = 0.2. Figure 4-4(a)-(b) show the slab mesh together with node 
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number and the slab segmentation. Modal analysis is conducted using finite element 

to generate the input and output data to train the ANN model. Four damage scenarios 

are simulated to assess the ANN ability in damage detection. Scenarios 1 to 3 consist 

of a single damage in segment 2 with different severities. Multiple damages are 

simulated in scenario 4 involving segment 2, 4 and 6. Table 4-1 show the E values of 

the damage scenarios. 

 

Figure 3-4: Slab model 
 

 

Table 3-1: E values for Scenario1 to Scenario 4 

Segment 1 2 3 4 5 6 7 

Scenario 1 1.0 E 0.95

E 

1.0 E 1.0 E 1.0 E 1.0 E 1.0 E 

Scenario 2 1.0 E 0.90

E 

1.0 E 1.0 E 1.0 E 1.0 E 1.0 E 

Scenario 3 1.0 E 0.85

E 

1.0 E 1.0 E 1.0 E 1.0 E 1.0 E 

Scenario 4 1.0 E 0.85

E 

1.0 E 0.85

E 

1.0 E 0.85 E 1.0 E 

200mm 24 @ 250mm 200mm 

2 @ 400mm 

1    2     3      4      5     6      7      8      9     10    11   12    13    14    15    16    17    18   19     20   21    22    23    24    25    26   27   

28   29   30    31    32   33    34    35    36    37   38    39    40    41    42    43    44   45    46    47    48    49   50    51    52   53    54 

55   56   57    58    59   60    61    62    63    64    65   66    67    68    69    70    71    72   73    74    75    76    77   78    79    80   81   

950mm 1000mm 750mm 1000mm 750mm 1000mm 950mm 

1        2                   3                          4                        5                           6                             7    

(a) Finite element mesh 

(b) 7 segments of the slab 
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The frequencies of the first four modes generated from the finite element analysis are 

shown in Table 4-2. The values in the parenthesis are the percentage of frequency 

change as compared to the undamaged state. The average percentage of the 

frequency change decreases from -0.48% (scenario 1) to -2.79% (scenario 4) as the 

damage severities increase. Figure 4.5(a)-(d) illustrate the first four mode shapes of 

the slab in different damage states. It is assumed that the mode shapes are measured 

at every node on the centreline along the span length. It is observed that the mode 

shape differences are more obvious when severer damage occurs. Only frequencies 

and mode shapes of the first four modes are selected as the inputs to train the ANN 

model. All mode shape values at the points on the centreline are considered except 

the points at the supports as they provide 0 values in every mode. The outputs are E 

values of each segment. Thus, there are 112 input nodes and 7 output nodes used in 

the ANN model. Figure 4-6 shows the ANN architecture. 

 

Table 3-2: Frequencies of the slab in different damage states (Hz) 

 

 

Undamaged Scenario 1 Scenario 2 Scenario 3 Scenario 4 

1
st
 mode 18.222 18.086  

(-0.72) 

17.933 

(-0.84) 

17.776 

(-0.88) 

17.334 

(-2.48) 

2
nd

 mode 28.576 27.910  

(-0.59) 

27.731 

(-0.64) 

27.558 

(-0.63) 

26.3119 

(-4.52) 

3
rd

 mode 72.107 71.872  

(-0.33) 

71.599 

(-0.38) 

71.315 

(-0.40) 

69.997 

(-1.85) 

4
th

 mode 87.733 87.495  

(-0.27) 

87.226 

(-0.31) 

86.958 

(-0.31) 

84.963 

(-2.29) 

Average 

of change 

(%) 

  

-0.48 

 

-0.54 

 

-0.55 

 

-2.79 

 

 

 

 

 

 

 

 

 

 



41 

 

 

 

Figure 3-5: The first four mode shapes in different damage states. 

(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 
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Figure 3-6: ANN architecture 

 

To train the model, 1200 cases are generated, with the elastic modulus values for 

each member varying from 0.2E to 1.5E, using the finite element model. To apply 

the early stopping method, the data are randomly partitioned into training set and 

validation set in a ratio of 2:1, resulting in 800 data sets for training and 400 data sets 

for validation. The probability density functions of E values of every segment are 

uniformly distributed as shown in Figure 4-7(a)-(g). 

 

A series of trial and error process are performed to select the best number of hidden 

neurons. ANN models with different number of hidden neurons are trained and each 

ANN model is evaluated based on training performance. The number of hidden 

neurons is varied from 4 to 36 hidden neurons with the increment of two. Figure 4-8 

illustrates the ANN training and validation performance at different number of 

neurons. It is seen that the training MSE values decrease indicating that the 

performance of ANN improves when the number of hidden neurons are increased to 

16 hidden neurons (MSE = 0.0026) and then it remained around the same magnitude 

up to 22 hidden neurons before went up to 0.0126 at 36 hidden neurons. The same 

trend is also observed in validation performance, where the minimum error occurred 

at 16 hidden neurons. Based on this result, the ANN with least error (16 hidden 

neurons) is selected. Figure 4-9 illustrates the training and validation performance of 

the selected ANN model with increasing number of epochs. It is shown that the 

training stopped at 31
st
 epoch with a MSE value of validation 0.035. Generally the 

training process is satisfactory as both the training and validation performances 

converged at low MSE values.  
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(a) Segment 1 

 
(b) Segment 2 

 
(c) Segment 3 

 
(d) Segment 4 

 
(e) Segment 4 

 
(f) Segment 6 

 
(g) Segment 7 

Figure 3-7: Probability density functions of E value at different segments. 
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Figure 3-8: ANN performance with different number of neurons 

 

 

Figure 3-9: ANN performance with increasing number of epochs 

 

Once the appropriate ANN is determined, the testing data are fed to the trained 

model to predict the location and severity of the simulated damage cases. These 

testing data are the four simulated damage scenarios in Table 4-1. Figure 4-10(a)-(d) 

show the predicted results in comparison with the actual values. The changes of the 

stiffness parameter or the damage severity for each segment are defined by a 

Stiffness Reduction Ratio (SRF) as: 

 

E

E
SRF

'
1  

(3-7) 

 

where E is the Young’s modulus of the undamaged state and E’ is that at the damage 

level of interest.  
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(a) Scenario 1 

 
(b) Scenario 2 

 
(c) Scenario 3 

 
(d) Scenario 4 

Figure 3-10: ANN prediction result 
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The results show that the predicted SRF values are very similar to the actual SRF 

values, which indicate that the ANN model is able to predict the locations and 

severities of the damage correctly. Some minor overestimation and underestimation 

of the SRF values are observed at undamaged segments due to numerical error. This 

type of error was also experienced by many other researchers. However, as the errors 

are very small, they are unlikely to lead to false damage identifications. 

 

 

3.3.2 Numerical example 2 – Steel frame 

To further demonstrate the ability of ANN for damage detection, a single span steel 

portal frame shown in Figure 4-11 is used as an example. The cross section of beam 

is 40.50  6.0 mm
2
, and column is 50.50  6.0mm

2
. The span length and height of 

the frame are both 1000mm. Rigid connections are applied between the beam and the 

columns, and the supports are assumed as clamped. The material properties used are:

2.0,1067.7,/101.2 3211

vmNE . The frame is modeled 

with 10 elements in each member. To reduce the computational time and memory 

requirement, the elements are lumped into 6 segments as shown in the figure. Each 

segment consists of 5 elements, and the 5 elements in each segment are assumed to 

have the same stiffness values.  

 

Modal analysis is conducted using the finite element model to estimate the vibration 

frequencies and mode shapes of the frame structure. These vibration properties are 

used as input and output data to train and test the ANN model. Two damage 

scenarios are generated to assess the ANN prediction performance. Scenario 1 

consists of damage in two segments (1 & 4) of the frame, and scenario 2 consists of 

damage in four segments (1, 3, 5 & 6). Table 4-3 shows the E values for scenario 1 

and scenario 2. The frequencies and mode shapes of the first three modes are shown 

in Table 4-4 and Figure 4-12.  
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Figure 3-11: Finite element model of the steel portal frame 

 

Table 3-3: E values for scenario 1 and 2 

Segment 1 2 3 4 5 6 

Scenario 1 0.4 E 1.0 E 1.0 E 0.2 E 1.0 E 1.0 E 

Scenario 2 0.4 E 1.0 E 0.3 E 1.0 E 0.4 E 0.3 E 

 

Table 3-4: Frequencies of the frame in different damage states 

 Undamaged Scenario 1 Scenario 2 

Mode 1 4.628 3.937 3.530 

Mode 2 16.112 12.567 11.269 

Mode 3 20.649 16.491 14.891 
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(a) Mode 1 

 
(b) Mode 2 

 
(c)  Mode 3 

 

 
 

Figure 3-12: First three mode shapes of undamaged, scenario 1 and scenario 2 state 

 

To train the ANN model, 1200 data sets are generated based on the Latin hypercube 

sampling method. The data are divided into training and validation sets in a ratio of 

2:1. A trial and error method is utilized to attain the best ANN topology. Only nine 

mode shape points and frequencies for the first three modes are used as the input 

parameters and Young’s modulus (E values) of all the segments are used as the 

output. The selected points are 2, 6, 10, 12, 16, 20, 21, 26 and 30. By using the same 

trial and error process, the best ANN model obtained is with 17 hidden neurons. The 

trained ANN model is then assessed by introducing the modal parameters of the two 

damage scenarios mentioned above. Figure 4-13(a)-(b) show the predicted SRF 

values for every segment in comparison with the actual values. 
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(a) Scenario 1 

 

 
(b) Scenario 2 

 
Figure 3-13: ANN prediction results 

 

The figure shows that the location and severities of the damage are accurately 

predicted. Some minor numerical errors are also seen in other segments, however 

these are considered acceptable. 

 

Both examples show that the ANN model is capable of detecting damage location 

and severity of the damage accurately from frequency and mode shape data. This 

indicates that ANN model is capable of learning the features of the damage 

information and provides satisfactory results from noise free data. 

 

 

3.4 Sensitivity study 

In this section more detailed studies are carried out to investigate the sensitivity of 

the ANN technique to different combination of input parameters. For this purpose, 

the numerical model of the concrete slab and two of the simulated damage scenarios 

described above are used for demonstration. Damage scenario 3 and 4 are used to 

represent a single and a multiple-damages case. To evaluate the effect of different 
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input parameters on ANN performance, five ANN models with different input 

combinations are used to detect the simulated damage scenarios. Table 4-5 shows the 

input combinations for each ANN model. The outputs are E values of all the 

segments. Similar procedure is performed to design the ANN models and the same 

data sets as in section 4.3.1 are used for training and validation. Table 4-6 shows the 

ANN architectures and the training and validation performance for every ANN 

model. The prediction results of the ANN models in comparison with the actual 

values are shown in Figure 4-14(a)-(b) to 4-18(a)-(b). A typical ANN architecture is 

expressed as n-p-m, where n,p,m are the number of neurons in input, hidden and 

output layer respectively  

 

Table 3-5: ANN model with different combinations of input parameter 

Model Input parameter 

1 Frequencies of the first three modes 

2 Mode shapes of the first three modes 

3 frequency and mode shape of the first mode 

4 frequencies and mode shapes of the first two modes 

5 frequencies and mode shapes of the first three modes 

 

Table 3-6: Training and validation performance of ANN models 

Model ANN 

architecture 

Training performance 

(MSE) 

Validation performance 

(MSE) 

1 3-12-7 0.2451 0.2801 

2 81-16-7 0.0083 0.0493 

3 28-14-7 0.0266 0.0737 

4 56-18-7 0.0097 0.0572 

5 84-18-7 0.0037 0.0434 
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(a) Scenario 3 

 
(b) Scenario 4 

Figure 3-14: Prediction results of model 1 

 

 
(a) Scenario 3 

 
(b) Scenario 4 

Figure 3-15: Prediction results of model 2 
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(a) Scenario 3 

 
(b) Scenario 4 

Figure 3-16: Prediction results of model 3 

 

 
(a) Scenario 3 

 
(b) Scenario 4 

Figure 3-17: Prediction results of model 4 
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(a) Scenario 3 

 
(b) Scenario 4 

Figure 3-18: Prediction results of model 5 

 

From Table 4-6, it can be found that the ANN model trained using frequencies only 

(model 1) provides the lowest training and validation performance with rather high 

MSE values as compared to other models. As early stopping method is applied in this 

study, the training process stops when the error on the validation set begins to 

increase. The error may be due to the reason that the trained ANN model is unable to 

learn the input and output relationship sufficiently from the training sets given, 

resulting in a relatively large error in validation. Another possible reason is that the 

frequencies that are used as the input parameters are not sufficient to provide a 

unique solution to predict symmetric damages in a symmetric structure, which may 

result in the network to generalize a single damage as multiple damages or vice 

versa. This is evidenced in the prediction results shown in Figure 4-14(a)-(b), where 

the predicted SRF values of element 2 and 6 are similar, which indicates a single 

damage is predicted as multiple damages, but for symmetric multiple damages all the 

damage locations and severities are well predicted.  
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The training and validation performance of ANN model trained with mode shapes as 

the inputs (model 2) are also shown in the table. Both training and validation error 

are rather low indicating that the ANN model is able to learn the relationship 

between mode shapes and damage locations and severities well. The prediction 

results for single and multiple damages are also good as shown in Figure 4-15(a)-(b) 

where the damage locations and severities for the both damages cases are accurately 

predicted. This indicates that mode shape is sensitive to structural damage. However 

in practice, the measured mode shapes usually have relatively larger errors than the 

measured frequencies, which may lead to unsatisfactory damage detection results if 

actual measured mode shapes are used. 

 

A combination of the frequencies and modes shapes with incremental number of 

modes are used as the input parameters for model 3, model 4 and model 5. As 

indicated in the table, low MSE values are obtained for training and validation of 

model 3, model 4 and model 5, indicating that the relationships between input and 

output are established in all those ANN models. It is also observed that the training 

and validation performance improve when more numbers of modes are used as the 

input variable. In terms of the prediction results, both damage scenarios are correctly 

identified by the ANN models as shown in Figure 4-16(a)-(b) to Figure 4-18(a)-(b). 

However, model 3 provides less accurate prediction where SRF at segment 4 in 

scenario 4 is underestimated and some minor false damage estimations are also 

noticed at segment 5 and 6. The prediction accuracy improves when more numbers 

of modes are used. For example, for model 5 (Figure 4-18(a)-(b)), the predicted SRF 

values are almost similar to the actual SRF with less false prediction as compared to 

model 3 and model 4. These results indicate that ANN provides better prediction 

when more information is provided. However in practice, high modes are difficult to 

obtain and higher modes may also introduce more noise, thus does not necessarily 

give more accurate prediction. The results also indicate that the combination of 

global and local vibration parameters provides a better outcome than using global 

parameters only. 
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3.5 Experimental example 

The laboratory tested concrete slab data given in Chapter 3 are used as testing data in 

this section. A new ANN model is developed to match the arrangement of the 

measurement point and the measured number of modes of the slab. The first two 

modal frequencies and mode shapes are used as the input parameters and only six 

mode shape points are used in training to match the sensor locations of the tested 

slab. The points are 32, 35, 38, 44, 47, and 50 (refer to Figure 4-4(a)). Points 29, 41, 

and 53 are not used since they provide 0 values in every mode. Table 4-7 shows the 

comparison of the frequencies produced by numerical model and the experimental 

measured frequencies in undamaged state. Figure 4-19(a)-(b) compare the mode 

shapes. 

 

Table 3-7: Comparison of numerical and experimental frequencies 

Mode Numerical  Experimental Error 

1 18.222 17.818 2.2% 

2 28.576 25.472 10.8% 

Average of difference (%) 6.5% 

 

 

From Table 4-7, it is observed that there is a discrepancy between the numerical and 

experimental frequencies with an average error of 6.5%. The same situation also 

occurs for mode shapes, where the discrepancy of mode shapes is more obvious in 

mode 2. This is because of the existence of modeling error in finite element model 

and measurement error in measured data. 

 

The same procedure is applied to build the ANN model and the same training cases 

as in section 4.3.1 are used to train the network. The best ANN model obtained is 14-

14-7 and the training and validation performance (MSE) are 0.0175 and 0.0602, 

respectively. The experimental data are then introduced to the trained ANN model. 

Figure 4-20(a)-(j) show the predicted results from level 1 to level 10 of experimental 

data. 
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(a) Mode 1 

 
(b) Mode 2 

 
Figure 3-19: Comparison of numerical and experimental mode shapes 

 

The figures show that the general trend of the predicted damage does not match the 

damage pattern obtained in the experiment. At level 1, severe damage is predicted at 

segment 3 and 6, while in experiment there was no significant crack observed in both 

spans. The same situation occurs at level 2 to level 6 where the ANN falsely predicts  

the crack in the right span (segment 6) and severe damage in the left span (segment 2 

and 3). At the same loading level in the experiment, the severe damage in the left 

span only occured at level 3 to level 6, while in the right span the cracks were 

obviously seen only at loading level 7. The predicted damage, from level 8 to level 

10 also does not match the crack pattern observed in the experiment. 

 

The results indicate that ANN trained with simulated vibration parameters 

(deterministic ANN) fails to provide reliable structural damage prediction when 

Numerical

Experimental
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tested with noisy experimental data. The reason is that, the existence of modeling 

error in the finite element model may result in the vibration parameters generated 

from such a finite element model not exactly representing the relationship between 

the modal parameters and the damage parameters of the corresponding experimental 

structure, while the measurement noise also leads to erroneous predictions of the 

structural vibration properties.  

 

 

 

(a) Level 1 (6kN (left)-0kN(right)) 

 

(b) Level 2 (12kN (left)-0kN(right)) 

 

 

(c) Level 3 (18kN (left)-0kN(right)) 

 

 

(d) Level 4 (18kN (left)-3kN(right)) 

 

 

(e) Level 5 (18kN (left)-6kN(right)) 

 

 

(f) Level 6 (18kN (left)-12kN(right)) 
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(g) Level 7 (18kN (left)-18kN(right)) 

 

(h) Level 8 (25kN (left)-25kN(right)) 

 

(g) Level 9 (32kN (left)-26kN(right)) 

 

(h) Level 10 (38kN (left)-38kN(right)) 

Figure 3-20: Prediction results of the tested concrete slab 
 

 

3.6 Summary 

In this chapter, the ANN models are trained using modal data from numerical 

simulations and then applied to detect damage location and severity for example 

structures using numerical and experimental data. A sensitivity study has been 

conducted to investigate the sensitivity of the ANN technique using different 

combinations of input parameters. The results demonstrate that: 

i) A deterministic ANN model is capable of detecting structural damage if the 

data is noise-free, but unable to provide a good prediction from noisy data. 

Based on the results, it is evident that ANN models have successfully 

predicted the simulated damages generated using a finite element model but 

failed to give reasonable results using experimental data. 

ii) An ANN model trained with a combination of global and local parameters 

(frequency and mode shape) provides more reliable results in detecting 

damage location and severity. 

iii) To apply an ANN model to structural damage detection, it is important to 

consider the uncertainties in the finite element model and the measured data. 
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CHAPTER 4  

STRUCTURE DAMAGE DETECTION USING 

ARTIFICIAL NEURAL NETWORK WITH A MULTI-

STAGE SUBSTRUCTING TECHNIQUE 

4.1 Introduction 

Another issue in application of ANN in damage detection is that it requires enormous 

computational effort and sometimes prohibitive for training an ANN model, 

especially when structures with many degrees of freedom are involved. 

Consequently, almost all the previous examples used to demonstrate the ANN model 

in the literature limited the structural members to a small number of large elements 

and quite significant damage levels. This makes the structural vibration properties 

not sensitive to small damage in a large element. As a result, ANN is not a feasible 

method for detecting small damage in a large structure. For example, Zhao et 

al.(1998) used ANN to identify damage of a 9m beam with 18 elements. The damage 

was introduced as a stiffness reduction of 15% to 45% of the original stiffness value 

of each element. Chang et al. (2000) employed ANN to detect damage in an eight-

element RC beam. The damage considered was stiffness reduction of 10% to 25% of 

design stiffness values in each element. Pandey and Barai (1991) applied ANN to 

detect damage in a 0.5m long 21-bar truss bridge model. The damage scenarios 

considered were formed by reducing the cross sectional area of a small number of 

truss members. 

 

Examples of successful identification of local small damage in structures by ANN 

are quite limited. This is because a fine finite element mesh is needed to detect small 

local damage in a structure. This results in a large number of elements in the finite 

element model of a structure, and hence a high dimension network in the ANN 

model. It then requires significant computational time and computer memory to train 

the ANN model. The computational time and computer memory needed to train an 

ANN model increases dramatically with increasing number of structural degrees of 

freedom. That is why in most examples; rather large elements are used in structure 
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model to reduce the degrees of freedom. Since a large element is insensitive to small 

damage, severe damage scenarios are usually assumed to demonstrate the feasibility 

of ANN.  

 

Several attempts have also been made to apply ANN to complex structures with large 

degrees of freedom. In those studies, the structures are divided to a small number of 

segments. Each segment consists of several elements (Lee et al. 2002a; Ni et al. 

2000; Xu and Humar 2006) and all the elements within the same segment are 

assumed to have the same material properties. This simplification reduces the 

number of variables and makes training ANN model efficient. However, it also 

makes the ANN model insensitive to small local damage, and therefore reduces its 

ability to provide reliable structure damage detection.  

 

Some studies have applied the substructuring technique for structural condition 

identification. Oreta et al.(1994) and Koh et al. (2003) demonstrated the substructural 

approach derived from static condensation using a Genetic algorithm and the 

Extended Kalman Filter to identify the physical properties in a specified damage area 

of a model frame structure. As static condensation depends on the information from 

other part of the structure, the derivation of the substructure model is complicated 

and the computation is also relatively time consuming. Moreover, certain prescribed 

rules are needed to use those mathematical models. Recently, Yuen and Katafygiotis 

(2006) presented a probabilistic substructure identification and health determination 

methodology for linear systems using time history data. In this study, the authors 

proved that the condition of the substructure can be determined by considering 

acceleration only from the substructure of interest within a large structure through 

probability method. 

 

Yun and Bhang (2000) and Mehrjoo et al. (2007) have applied the substructure 

technique for damage detection using ANN. In their study, they assumed that the 

damage occurs at the predetermined area and the ANN models were trained using the 

training cases that were generated with damages of the components in the 

corresponding area only. Those studies implied that, to identify damage in a 

substructure, only measurement data on the substructure of interest is required, 
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instead of the whole structure. However, this method still depends on subjective 

judgement using conventional techniques such as visual inspection to select the 

probable damage areas. This chapter presents an approach to detect small structural 

damage using ANN with a progressive substructuring technique. A multi-stage ANN 

model is proposed as a basic structure for the damage detection system. A two-span 

concrete slab and a one-span two-storey frame with various damage scenarios in 

single and multiple locations are used as the examples in this chapter. The 

effectiveness of the proposed method as compared to the conventional one-stage 

ANN method is demonstrated. 

 

 

4.2 Methodology 

A progressive substructuring technique applies the substructure technique together 

with a multi-stage ANN models to detect the location and extent of the damage. 

Through this method, a structure is divided to several substructures, and each 

substructure is assessed independently. Once the damaged substructure is identified, 

a second stage ANN model is developed to identify the location and severity of small 

structural damage. Because only the damaged substructure is involved in the second 

stage ANN model, the number of degrees of freedom in each ANN model is small 

thus reduce the excessive computational demand. 

 

In this study, the substructure is defined as an independent structure by assuming the 

fixed interface. The method was introduced by Hurty (1964), and is known as 

Component Mode Synthesis (CMS). In CMS, the mode shape components are 

assembled to construct Ritz vectors, which are subsequently used to construct the 

mode shapes for the whole structure. This idea is adopted in the present study 

because any change of condition in the structure will change the condition of some or 

all the substructures. Since frequency alone is not sufficient to detect damage 

location, the mode shapes of the full structure at points corresponding to the 

substructure are also used to train and test the ANN model. In each substructure, 

although the available mode shape points are limited, the components of the mode 

vectors of the substructure are affected by most of the stiffness parameters of the 

substructure (Yun and Bahng 2000).  
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Furthermore, this idea is also based on the ability of the ANN approximation 

technique to handles non-unique cases by either returning one of the possible 

solutions or an average taken over all possible solutions (Szewczyk and Hajela 

1992). In addition, ANN is also capable of recognizing patterns, where the ANN 

output is dependant on the likeness of given input data to the population that is used 

to train the network. Hence, when the testing data is close to the training data, 

satisfactory output can be obtained.  

 

 

4.2.1 Multi-stage ANN model 

Without losing generality, the multi-stage ANN system used in this study is briefly 

discussed below. Figure 6-1 depicts the basic structure of the system. 

 

 
Figure 4-1: Structure of the two-stage ANN 

 

The ANN model in the first stage is referred to as the primary ANN and the second 

stage ANN is referred to as the secondary ANN. The primary ANN is used to identify 

the substructures that have suffered damage while the secondary ANN identifies the 

damage location and estimate the damage severities. Each primary ANN is trained to 

relate the frequencies and mode shapes of the full structure and the frequencies of 

every substructure. Once the relationship is established, the ANN model can be used 
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to estimate the frequencies of each substructure from modal parameters of the full 

structure. The substructures that suffer damage can be identified from their frequency 

changes. In this study, the frequency change index (FCI) is defined as: 
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where Fj’ and Fj are calculated from the frequencies of the damaged and undamaged 

j
th

 substructure as: 
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where fji’and fji  are the normalized damaged and undamaged i
th

modal frequency of 

the j
th

 substructure. i is the mode number ( i = 1, 2, …k). The normalized frequencies 

are calculated by: 
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where jif̂ and jif̂  are the predicted damaged and undamaged i
th

 modal frequency of 

the j
th

 substructure. 
minjif and 

maxjif are the maximum and minimum i
th

 modal 

frequency of the j
th

 substructure that used to train the ANN model. 

 

In the secondary ANN model, each substructure which is identified to have 

frequency change by the primary ANN model is represented by a new independent 

ANN model to predict the E values (Young’s modulus) of the elements in this 

substructure. The output of the primary ANN model, together with the mode shape 
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values of the full structure at nodal points corresponding to the substructure, are used 

as the input variables. The change of the stiffness parameter or the damage severity 

for each element is denoted by a SRF (Equation (4-7)). 

 

In both stages, the same ANN model configurations as in the previous chapters are 

applied.  

 

 

4.2.2 Design of primary ANN 

As mentioned above, the primary ANN is designed to detect the existence of damage 

in any substructure based on the frequency changes of each substructure. For this 

purpose, the ANN in this stage is used to predict the frequencies of every 

substructure from the modal parameters of the full structure. If further resolution in 

the damaged location is needed, the substructure can be further divided into smaller 

substructures, and this process can be repeated to any number of desired stages 

depending on the size of the substructure under consideration and the required 

accuracy of the identification results. For example, Figure 6-2 shows the two-stage 

primary ANN model. 

 

 

Figure 4-2: Schematic diagram of a two-stage primary ANN 
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In the figure, a two-stage primary ANN model is shown. In the first stage, the ANN 

(NN1S1) in used to predict the frequencies of two substructures based on frequencies 

and mode shapes of the full structure. The outputs of the ANN in the first stage 

(frequencies) supplemented by mode shapes of the nodal points of the corresponding 

substructure are used as the inputs to the ANN in the second stage. For this example, 

the first substructure is further divided into another two substructures and NN2S2 is 

used to predict their frequencies and allow their conditions to be examined. In other 

words, if a damaged substructure is identified in the first stage, another ANN model 

corresponding to the damaged substructure can be built in the second stage to 

increase the resolution of the damage location. At this stage, if needed, the 

measurement points can be refined by adding more measurement points focusing on 

the identified substructure. This process can be further extended to more stages. 

Since ANN models only need to be built for the damaged substructures, and the 

number of unknowns in each model can be kept to a minimum in the refinement 

process, this process will not substantially increase the computational time and the 

requirement for computer memory.  

 

 

4.2.3 Design of secondary ANN 

After determining the damaged substructures, the specific damage element and the 

damage severities are identified using the secondary ANN. Only the elements 

involved in the damaged substructure need to be taken as possible damage 

components in this network. Therefore, only ANN model for the identified 

substructure is built and trained using damage cases pertaining to the elements in the 

damaged substructure. 

 

The secondary ANN receives information from the primary ANN and determines the 

location and severity of the damage. The frequencies of the substructures from the 

primary ANN and the mode shapes of the corresponding substructure are used as the 

inputs to predict the E values of each element in the identified substructure. 

 

Figure 6-3 depicts the structure of the secondary ANN for substructure j. The input 

variables for ANN model (NNj) in the figure are modal frequencies ( j

n

j ss ...1  ) and 
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mode shapes ( j

n

j ss ...1 ) of substructure j and the output variables are the E values of 

m elements in substructure j ( j

m

j EE ...1 ). If more than one substructure is involved, 

each of them is represented by a different ANN model. Therefore, the ANN models 

can be designed independently. 

 

 
Figure 4-3: Schematic diagram of a secondary ANN 

 

 

4.2.4 Training data 

To ensure that the trained ANN model can accurately represent the behaviour of the 

system, the training samples should cover all possible combinations and ranges of 

input and output variation. To obtain the complete combination of damage cases in a 

large degree of freedom system, a large number of finite element simulations and 

training data are required. For example if there are k degrees of freedom in the 

system and there are two possible damage cases (damaged and undamaged), the total 

number of complete combinations of damaged and undamaged cases in each degree 

of freedom are 2
k
. Therefore, if a complete combination cases are considered, a large 

amount of training samples is inevitably required for a large degree of freedom 

system.  

 

The application of Latin hypercube sampling alone to generate the training data for a 

large degree of freedom system may result in the training data not representing the 

true interaction of damaged and undamaged cases in each degree of freedom. This is 
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because every element is assumed as damaged with uniformly distributed damage 

severities. Stein (1987) provides a detailed explanation regarding this phenomenon. 

As an alternative, the author suggested Orthogonal Array (OA) method to reduce the 

variation of damage cases while maintaining the effect of every damage case to the 

structure.  

 

According to Besterfield et al. (1995), OA can provide a systematic way of studying 

the effects of the individual factor on the outcome as well as how these factors 

interact. OA also provides a fully balanced experimental arrangement. The notation 

of OA(N, k, s, t) is used to represent an OA that has N number of experimental runs, 

k, factors (parameters) with s levels and a strength of t (Hedayat et al. 1999). The 

strength represents the number of columns where all the possibilities can be seen an 

equal number of times. In this study, the appropriate OAs are selected from a library 

of OA (Sloane 2007) and the strength are taken as 3. The efficiency of OA has been 

proven in many studies (Chang et al. 2000; Chang et al. 2002; Tang 1993). Using 

OA, only k(s-1) +1 or greater number of combinations are required for representing 

the complete combination of the sample space. If the number of parameter is less 

than the number of experiment in OA, not assigned experiment can be left empty. 

Therefore, in this study, the value of N implies the number of combinations 

considered to generate the training data.  

 

A four-step procedure suggested by Besterfield et al. (1995) to select the appropriate 

OA is applied. The steps are: (i) define k and s; (ii) determine N; (iii) select OA and 

(iv) consider any interactions. Latin hypercube sampling is used to make sure that the 

damage severities in each damaged element are uniformly distributed. 

 

The vibration properties for the full structure and the substructures are computed 

using finite element analysis. The same material properties are used for the full 

structure and the corresponding substructures, and hence, any changes of condition in 

full structure will affect the condition of the corresponding substructure. For training 

the ANN models the frequencies and the mode shapes are used as the inputs. The 

training data for the ANN at the first stage are directly obtained from the finite 

element model, while for the subsequent stages the frequencies are generated from 
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the ANN model in the previous stage to reduce the effect of duplication error 

propagation from the earlier stage on ANN prediction. The generated frequencies are 

then combined with the mode shapes to form a set of input variables for the second 

stage ANN model. The same procedure applies if more than two stages are needed.  

 

 

4.3 Numerical example 1 – Concrete slab 

A two-span concrete slab with dimension of 6400mm x 800mm x 100mm shown in 

Figure 6-4 is used as an example. The boundary conditions are idealized as pin 

supports at the middle span and at 200mm from left and right end of the slab. The 

material properties are: 2.0,/1045.2,/104.3 33210 vmkgmmNE . For 

damage detection purposes, the slab is divided to 32 segments as shown in Figure 6-

4.  

 

 

Figure 4-4: Segment of the slab 

 

Four damage scenarios are simulated to assess the ANN performance as listed in 

Table 6-1. It is assumed that the mode shapes are measured at every 200mm with 33 

measurement points on the centreline along the span length. Scenario 1 and 2 consist 

of damage at the middle of the first span (segment 7 & 8) with increasing damage 

severity. A severer damage case is simulated in scenario 3, where lower E values are 

applied to segments 5 to 10. In scenario 4, damage is assumed to occur in 16 

segments in both spans and at the middle support. The modal analysis is conducted 

using finite element analysis, and the first three frequencies for these simulated 

damage scenarios are listed in Table 6-2. 

 

32 @ 200mm 
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In this example, the ANN is applied to detect the simulated damages and for the 

purpose of comparison; the predictions of the conventional approach and the 

proposed technique are compared. The term ‘conventional ANN’ refers to the one-

stage ANN technique where the output variables consist of the E values of all the 

elements. 

 

Table 4-1: Damage scenarios 

Scenario 

 

Element 

number 

E value 

1 7 

8 

0.95  E 

0.95  E 

2 7 

8 

0.90  E 

0.90  E 

3 5 

6 

7 

8 

9 

10 

0.85  E 

0.85  E 

0.85  E 

0.85  E 

0.85  E 

0.85  E 

4 5 

6 

7 

8 

9 

10 

15 

16 

17 

18 

23 

24 

25 

26 

27 

28 

0.90  E 

0.90  E 

0.85  E 

0.85  E 

0.90  E 

0.90  E 

0.90  E 

0.90  E 

0.90  E 

0.90  E 

0.95  E 

0.95  E 

0.90  E 

0.90  E 

0.95  E 

0.95  E 

 

Table 4-2: First three frequencies of the undamaged and damaged structure 

 Undamaged Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Mode 1 18.540 18.481 18.417 18.028 17.928 

Mode 2 28.873 28.788 28.698 28.255 27.623 

Mode 3 73.646 73.554 73.454 72.472 72.157 
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4.3.1 Conventional ANN 

First, consider the one-stage ANN model for damage detection. The input variables 

for the ANN model are the first two modal frequencies and mode shapes of the slab 

and the outputs are E values of every element. An ANN model with one hidden layer 

is applied. The number of hidden neuron is determined by trial and error. Since there 

are 32 segments on the slab and two levels of damage (damaged and undamaged), 

the combination of damaged and undamaged cases over those elements is obtained 

by using OA33.32.2.3., as shown in Figure 6-5. The levels are indicated by 0 

(undamaged) and 1 (damaged). This OA has 33 rows representing the damaged and 

undamaged combinations and 32 columns for each segment. The severities of each 

damaged segment are uniformly varied between 0.2E and 1.8E using Latin 

hypercube sampling. There are 1650 and 330 damage cases generated for training 

and validation data respectively.  

 

Here, 62 input nodes are used in the input layer which consist of the first two modal 

frequencies and mode shapes. Mode shape values at all points are considered except 

3 points at the supports since they provided 0 values in every mode. 

 

Table 6-3 shows the training and validation performance of the one-stage ANN 

model with 4 to 13 hidden neurons. The training is conducted using a personal 

computer with Pentium 4 3.2GHz processor and 2GB memory. As indicated in the 

table, the training and validation performance improves when the number of hidden 

neurons increases, which means that higher numbers of hidden neurons are needed to 

successfully train this ANN model. However, increase the hidden neurons 

significantly increases the computational time and memory. When 10 or more 

neurons are introduced in hidden layer, it caused memory overflow of the computer 

system used in this study. This indicates that the current operating system memory is 

not sufficient to be used to train those ANN models. For a smaller number of hidden 

neurons (4, 6 and 9), the ANN models are trainable. However, the training 

performances are rather poor with relatively large MSE values. The training time 

also increases when the dimension of the ANN increases. 
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Figure 4-5: Orthogonal array (OA33.32.2.3) 
 

 

Table 4-3: Performance of one-stage ANN model 

Model Training 

performance 

(MSE) 

Validation 

performance 

(MSE) 

Elapsed 

time 

(Second) 

62-4-32 0.748 0.773 511.2 

62-6-32 0.671 0.754 671.5 

62-9-32 0.295 0.356 910.1 

62-10-32 Out of memory - - 

62-13-32 Out of memory - - 

 

Figure 6-6(a)-(d) illustrate the comparison between the actual and the predicted E 

values when the simulated damage scenarios are applied to ANN model (62-9-32). 

For scenario 1 and 2, the damage at segment 7 and 8 are undetectable. For scenario 3, 

the damage locations are detected, however their severities are underestimated. There 

are also some false predictions. For scenario 4, damage at the left span and at the 
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center support are correctly located but the severity is still poorly estimated. The 

damage in the right span is not detected and there are also some false damage 

identification. These results show that the trained ANN model does not reliably 

predict the simulated damage in the concrete slab. This is because the ANN model is 

insufficiently trained and the relationship between inputs and outputs is not well 

established. If the model is trained with more hidden neurons, its reliability in 

predicting damage will be improved, but the computational time and required 

computer memory prevent using more than 10 hidden neurons. This example 

demonstrates that a one-stage ANN model cannot be efficiently applied to estimate 

large number of parameters, because the large number of outputs will result in a large 

dimension of weights in the interconnected neurons, and that will lead to the 

requirement of more computational time and a large amount of computer memory. 

For this reason, many publications using an ANN model to detect structural damage 

limit the output parameter to a minimum number as discussed earlier.  
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(a) Scenario 1 

 
(b) Scenario 2 

 
(c) Scenario 3 

 
(d) Scenario 4 

Figure 4-6: One-stage ANN prediction results 
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4.3.2 Damage detection using multi-stage substructuring technique 

To apply the proposed approach, the slab is divided to 4 substructures. Each is 1.6m 

in length and consists of 8 elements, as illustrated in Figure 6-7. Two-stage ANN 

models are applied at the primary level to assess the condition of substructures. Then 

a secondary level ANN model is applied to substructures with detected condition 

changes in the primary level to predict the location and severity of damage in the 

substructure. Figure 6-8 shows the ANN architecture. All the simulated four damage 

scenarios are used as the testing data in this example. 

 

 
Figure 4-7: Substructures of the slab 

 

There are three ANN models in the primary level. NNP1 is used as an intermediate 

model to generate the frequencies for the ANN models in the second stage. The slab 

is firstly divided into two substructures, each of which is 3.2m in length. NNP1 is 

trained to predict the frequencies of these two substructures. The inputs of NNP1 are 

the first two modal frequencies ),(
21

fullfull ff  and mode shape values ),(
21

fullfull  of 

full structure. The outputs of NNP1 are the first three frequencies of the two 

substructures )...,...(
3

21

1

21

3

11

1

11 subSsubSsubSsubS ffff . The superscripts indicate the mode 

number. The subscripts indicate the stage number together with substructure number. 

At the second stage, the two substructures are further subdivided into four 

substructures. As shown in the figure, NNP2 and NNP3 are the ANN models at this 

stage. NNP2 is used to predict the frequencies of substructure 1 and 2 at the second 

stage )...,...(
3

22

1

22

3

12

1

12 subSsubSsubSsubS ffff , while NNP3 predicts the frequencies of 

substructure 3 and 4 )...,...(
3

42
1

42
3

32
1

32 subSsubSsubSsubS ffff . The inputs for the ANN 
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models at this stage are the frequencies predicted from the first stage ANN model 

(NNP1) and the mode shapes of the corresponding substructures. The mode shape 

values applied to NNP2 and NNP3 are the actual measured mode shape values of the 

corresponding substructures )...,...(
3

21

1

21

3

11

1

11 subSsubSsubSsubS . The outputs of the 

ANN model in this stage are the three modal frequencies of the four substructures. 

The conditions of those substructures are examined at this stage. For substructures 

with identified condition change, the secondary ANN model is built independently 

for each of those substructures to predict the location and severity of damage. In this 

example, the ANN models (NNS1…NNS4) in the secondary level are used to predict 

the simulated damage scenarios. The process used in the previous stage is applied 

again to form the input variables for the corresponding ANN model at this level. The 

outputs are the E values of each element )32...1( EE .  

 
Figure 4-8 : ANN architecture 

 

The ANN models in the primary stage are trained using the same training patterns as 

in the conventional ANN model. Table 6-4 lists the ANN models used in the primary 

stage together with their performances and elapsed time. It is observed that the MSE 

values for training and validation are low for all ANN models indicating that the 

relationship between inputs and outputs are established. Figure 6-9 shows the 
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calculated FCI values of substructures obtained from the primary ANN. The FCI 

values indicate condition changes in each substructure, and are used to select the 

substructures for which it is necessary to build the secondary level ANN models.  

 

Table 4-4: Performance of the primary ANN 

 

 

 

 

 

 

 

 

Figure 4-9: Output of primary ANN 

 

As shown in Figure 6-9, relatively high FCI values occur only at substructure 1 for 

damage scenario 1 and 2, while for scenario 3 the high FCI values are observed at 

both substructure 1 and 2. For scenario 4, the high FCI values occur at every 

substructure. These results indicate that the substructures that contain damage are 

correctly identified in the primary ANN stage. 

 

In the secondary stage, the ANN models are built corresponding to the damaged 

substructure identified in the primary stage. For scenario 1 and 2, only one ANN 

model involved (NNS1) in the secondary stage, since only substructure 1 is identified 

as damaged. For scenario 3, two ANN models are involved (NNS1 and NNS2), 

while for scenario 4, four ANN models are involved (NNS1 to NNS4) in the 

secondary stage. Since only 8 elements are involved in substructure 1, OA9.8.2.3 is 

used to generate the training cases for NNS1 in scenario 1 and 2. 900 and 270 cases 

Model Training 

performance 

(MSE) 

Validation 

performance 

(MSE) 

Elapsed time 

(Second) 

 

NNP1 

(62-20-6) 

0.0047 0.0067 327.7 

NNP2 

(48-15-6) 

0.0035 0.0047 235.3 

NNP3 

(48-17-6) 

0.0045 0.0053 296.2 
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are used for training and validation. For scenario 3, 1360 and 510 cases are used for 

training and validation of NNS1 and NNS2. OA17.16.2.3 is used to generate the 

training cases for the 16 elements in substructure 1 and 2 for scenario 3. For scenario 

4, the same training and validation cases as in the primary stage are applied since all 

the four substructures are identified as damaged. 

 

Table 6.5(a)-(c) lists the performance of the ANN models in the secondary stage for 

all cases. The table shows that the relationships between inputs and outputs for ANN 

model in all cases are established with low MSE values in training and validation 

process. It is also observed that the time required for training the ANN models in 

primary and secondary level is less than those given in Table 6-3 for the one-stage 

ANN model due to the smaller ANN dimension used.  

 

Table 4-5 : Performance of the secondary ANN 

(a) Case 1 and Case 2  

Model Training 

performance 

(MSE) 

Validation 

performance 

(MSE) 

Elapsed 

time 

(Second) 

NNS1 

(27-21-8) 

0.085 0.095 197.3 

(b) Case 3 

Model Training 

performance 

(MSE) 

Validation 

performance 

(MSE) 

Elapsed 

time 

(Second) 

NNS1 

(27-18-8) 

0.081 0.097 172.7 

NNS2 

(27-16-8) 

0.091 0.099 171.2 

(c) Case 4 

 

 

 

 

 

 

 

 

Model Training 

performance 

(MSE) 

Validation 

performance 

(MSE) 

Elapsed 

time 

(Second) 

NNS1 

(27-18-8) 

0.0745 0.0833 164.3 

NNS2 

(27-17-8) 

0.0832 0.0921 135.3 

NNS3 

(27-20-8) 

0.0623 0.0685 217.2 

NNS4 

(27-19-8) 

0.0914 0.0957 198.7 
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The comparisons between the actual and predicted SRF values for all the four cases 

are illustrated in Figure 6-10.  

 

From the results in Figure 6-10(a)-(d), it is seen that for Scenario 1 and 2 the damage 

locations are correctly identified with slightly underestimated SRF values and minor 

positive and negative false identification in other elements. Those errors may be due 

to the fact that the duplication errors are unavoidable because the errors in the output 

layer of each ANN model (frequencies) are added when the input values propagate to 

the upper level ANN model, so the final outputs have duplicated errors. 

 

For Scenario 3 and Scenario 4, where the damage occurred in multiple substructures, 

all the damaged elements are also correctly identified. However, it is also observed 

that the negative false identifications in the left and right elements and the 

underestimations of SRF are more obvious. The reason is that, besides the effect of 

duplicated errors in frequencies, another possible factor that adds to this occurrence 

especially when the damages occur in multiple substructures is the existence of 

uncertainty in mode shapes due to the damage in other substructures These 

uncertainties lead to a larger range of modal parameter variation in the training and 

testing data of each ANN. As a result, the ANN models are more likely to extrapolate 

the output instead of interpolate. The testing cases outside the range of the training 

data or inside large ‘holes’ of the training data may require extrapolation which result 

in a larger ANN prediction error as compared to interpolation (Bhagat 1990). 

Another possible factor that contributes to the errors is the numerical errors 

associated with nonlinearity caused by relatively large damage levels of structural 

elements, which may result in false identification, as mentioned by Xia et al. (2003).  

 

In comparison with the conventional technique, this approach provides better result 

in terms of damage location and severities. Moreover, by comparing the time 

required for training the ANN model and predicting the damage with the 

conventional one-stage ANN model, as given in Table 6-3, the presented multi-stage 

method significantly reduces the computational time.  
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(a) Scenario 1 

 
(b) Scenario 2 

 
(c) Scenario 3 

 
(d) Scenario 4 

Figure 4-10: Output of secondary ANN 
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4.4 Numerical example 2 – Two-storey frame 

To further demonstrate the efficiency of the purposed approach, a single span two-

storey frame as shown in Figure 6-11 is considered. The modulus of elasticity is 

taken as 2.8 10
10

 N/mm
2 

and the mass density as 2450 kg/m
3
. The cross section of 

the beams and columns are shown in the figure. Rigid connections between the 

beams and the columns are assumed, and the supports are assumed to be fixed. The 

frame is modeled with 24 elements and 23 nodes. Each element is 1500mm in length. 

Modal analysis is conducted using finite element analysis. Two damage cases are 

generated to demonstrate the proposed approach. Case 1 consists of damage at a 

second floor beam while for Case 2 the damage is at Joint 1 and 2. The damage 

severities together with the elements and substructures involved for each case are 

listed in Table 6-6. The first three frequencies for the undamaged and damaged cases 

are given in Table 6-7. To apply the proposed approach, the frame is divided into 

three substructures. Each substructure representing one floor consists of 8 elements.  

 

 

Figure 4-11: Finite element model of the frame 
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Only one ANN model is developed for primary ANN (NNP1) as shown in Figure 6-

12. The first three modal frequencies )(
31

fullfull ff   and mode shapes )(
31

fullfull   

are used as the inputs, and the outputs are the first three modal frequencies of each 

substructure )...,...,...(
3

31

1

31

3

21

1

21

3

11

1

11 subSsubSsubSsubSsubSsubS ffffff . The mode shapes 

used are specified by the x-translations of the columns and the y-translation of the 

beams. For training the primary ANN, training cases are generated based on 

orthogonal array OA25.24.2.3. For each damage case 42 different severities are 

generated using Latin hypercube sampling, resulting in 1050 training cases. For 

validation purposes, 240 damage cases are generated using the same method. Figure 

6-13(a)-(b) show the FCI values predicted from the primary ANN model for case 1 

and case 2. The higher FCI value occurred at the substructure that contains the 

damage, indicating the damaged substructures for both cases are correctly identified. 

 

Table 4-6: Damage cases for frame 

Case Structure Element E value Substructure 

1 Beam 11 

12 

13 

14 

0.90 E 

0.90 E 

0.90 E 

0.90 E 

 

2 

2  

Joint 1 

 

2 

3 

9 

0.85 E 

0.85 E 

0.85 E 

 

 

1,2 

 

 

 

 

Joint 2 

6 

7 

16 

0.85 E 

0.85 E 

0.85 E 

 

 

 

Figure 4-12: Primary ANN for example 2 
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(a)Case 1 

 
(b) Case 2 

Figure 4-13: Output of the primary stage 

 

For case 1, only one secondary ANN  model (NNS1) is developed for substructure 2 

to determine the damage, whereas for case 2, two secondary ANN models are 

developed for substructures 1 and 2 (NNS1 and NNS2). By using the method 

described earlier, ANN models for corresponding substructures are then trained and 

tested. The details of ANN models are shown in Table 6-7 and Table 6-8(a)-(b). 

Figure 6-14(a)-(b) show the identification results. From the figure, it is observed that 

the damaged elements for both cases are all correctly identified. However, the 

damage severities for both cases are underestimated and some minor positive and 

negative false identifications occur due to the reasons mentioned earlier. 

 

 

Table 4-7: Performance of the primary ANN 

Model Training 

performance 

(MSE) 

Validation 

performance 

(MSE) 

Elapsed 

time 

(Second) 

NNP1 

(66-17-9) 

0.0432 0.0882 211.1 
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Table 4-8: Performance of the secondary ANN 

(a) Case 1 

 

Model Training 

performance 

(MSE) 

Validation 

performance 

(MSE) 

Elapsed 

time 

(Second) 

NNS1 

(24-14-8) 

0.0432 0.0882 201.7 

 
(b) Case 2 

 

Model Training 

performance 

(MSE) 

Validation 

performance 

(MSE) 

Elapsed 

time 

(Second) 

NNS1 

(24-14-8) 

0.0603 0.0872 197.3 

NNS2 

(24-16-8) 

0.0741 0.0932 217.2 

 

 

 
(a) Case 1 

 
(b) Case 2 

Figure 4-14: Identification results 
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4.5 Sensitivity study 

More detailed studies are carried out in this section to investigate the sensitivity of 

the proposed method to different substructure sizes. At this stage, only the primary 

ANN is involved. The purpose of this study is to determine the reliability level of 

FCI of substructures for which a secondary ANN model needs be built for further 

analyses. Below this level of FCI the substructure is considered not damaged, and no 

subsequent analysis is needed.  

 

First, an analysis is conducted to define whether the detectability depends on the 

absolute value of the substructure length or the ratio of the substructure length to the 

span length of the structure. For this purpose, two simply supported concrete girder 

models with span length 4.8m and 8m are analysed. 400mm elements are used to 

model the structure and the modal parameters are obtained using finite element 

analysis.  

 

The material properties are: 2.0,/1045.2,/108.2 33210 vmkgmmNE . 

Figure 6-15(a)-(b) show the finite element model of the structures.  

 

 

 

(a) 4.8 m girder 

 

 

(b) 8.0 m girder 

Figure 4-15: Finite element model of the beams 

 

  1    2     3     4     5     6    7     8     9     10   11  12   13  14   15   16   17    18   19   20 
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The structure is divided into two substructures, i.e., the ratio of the substructure 

length to the span length is 0.5. Three damage levels are introduced to element 5 and 

6 in substructure 1. The damage levels are -15%, -10% and -5% in terms of SRF. The 

outputs of the primary ANN for both cases are shown in Figure 6-16(a)-(b).  

 

The output of the primary ANN for both cases shows that the FCI values are higher 

at substructure 1 than substructure 2, indicating the damaged substructure 1 for all 

levels is correctly identified. However, the FCI values of the 8m girder is about 30% 

less than the 4.8m girder. This indicates the detectability depends on the absolute 

length of the substructure, instead of the length ratio. When the damage is the same, 

increase the substructure length will dilute the damage effect on the substructure, 

thus reduce the FCI values. The results also indicate that a FCI value of 0.05 implies 

a possible damage of 5% in a length of 0.8m (two 400 mm elements) in a 

substructure of length 4m, whereas the FCI value becomes 0.075 when the 

substructure is 2.4m long.  

 

 
(a) Output for 4.8m span girder 

 
(b) Output for 8m span girder 

Figure 4-16: Primary ANN output for 4.8m and 8.0 m girder 
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In order to investigate the sensitivity of substructure size to damage level, an analysis 

is performed by varying the substructure size and damage severity. The same girder 

as above with a 16m span is used in the analysis. Three different substructure sizes 

are considered, namely, i) 8m, ii) 4m and iii) 2m. Damage is introduced to element 8 

(length 0.4 m) with SRF ranging from -5% to -50% at 0.5% intervals. Figure 6-17(a)-

(c) show the finite element model together with the element number and substructure 

size. When the substructure is 8m or 4m long, the simulated damage is in the first 

substructure. When it is 2m long, the damage is in the second substructure. Figure 6-

18(a)-(c) show the output of the primary ANN.  

 

 

 

Figure 4-17: Segmentation of the girder 
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8m 8m 

4m 4m 4m 4m 

2m 2m 2m 2m 2m 2m 2m 2m 

a) 8m substructure 

c) 2m substructure 

c) 4 meter substructure b) 4m substructure 
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(a) Output of 8m substructure 

 
(b) Output of 4m substructure 

 
(c) Output of 2m substructure 

Figure 4-18: Primary ANN output for 8m, 4m and 2m substructure 
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As indicated, the higher FCI values occurred at the damaged substructure, indicating 

that the damaged substructures are correctly predicted. It is observed the FCI values 

increase with damage level and reduce with the substructure size. However, some 

minor false identification occurs in the undamaged substructure for all the three 

cases. But this false FCI value is always smaller than the FCI values of the damaged 

substructure. 

 

The effect of boundary conditions and structure type on the relationship between 

substructure size and damage detectability is also investigated. Other than simply 

supported girder as demonstrated earlier, another cases considered are i) flexible 

support, ii) continuous support, and iii) slab structure. For the flexible support case 

the pin supports in the previous example are replaced with three parallel spring 

elements of Young’s Modulus 29 /109.1 mmN  to simulate the bearing stiffness of 

bridge structures. For the continuous support case, an extra pin support is placed at 

the middle of the girder span. For the slab, the support is considered as simply 

supported and the slab width is 800mm. The same damage levels as in the previous 

analysis are used and the same damage detection process is applied. Figure 6-19 

summarizes the numerical results obtained. The solid line is the relationship for the 

simply supported and continuous beam, and slab structure, while the dashed line is 

for the flexible support case. The area below and above those lines represent 

detectable and undetectable damage level respectively and the corresponding 

substructure size. The numerical results indicate that the relation between the 

substructure size and the detectable damage level is independent of the structure type 

and the structure indeterminacy because the results from the continuous beam and 

slab are similar to those obtained above. However, the flexible boundary conditions 

affect the relationship between the substructure size and the detectable damage level. 

The reason that a smaller substructure is needed to detect same level of damage in 

the flexible support case is because the spring elements are also damageable. 

Including spring elements in the substructure increases the number of variables in the 

analysis, which is equivalent to increase the number of elements in the substructure. 

If the spring is not considered as a variable in the analysis, the results will then be the 

same as the case with pin supports.  
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Figure 4-19: Primary ANN output for different structure condition 

 

Based on the above results, the detectability levels with respect to the ratio of 

damaged element size to substructure size can be calculated. Figure 6-20(a) 

illustrates the result for simply supported and continuous beam and slab, while 

Figure 6-20 (b) illustrates the results for beam with flexible supports. 

 

The vertical lines indicate the detectability limit of different ratio between damaged 

element size (
ell ) to substructure size (

subL ).The area at the right side of the lines 

represent the detectable damage level. This analysis indicates that for both cases, if 

all the elements in a substructure suffer damage, even a small damage can be 

detected with a large substructure. This is because the ratio lel/Lsub significantly 

affects the vibration frequencies of the substructure.  

 

The numerical results indicate that damage detectability depends on the substructure 

size, damage level and the size of the damaged elements in a substructure. It is 

independent of the structure type and boundary conditions. However, it should be 

noted that this observation is based on beam-like structures. Further analyses are 

needed for other structure types such as shell and plate structures. 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

0 -5% -10% -15%

SRF 
S

u
b

s
tr

u
c
tu

r
e
 s

iz
e
 (

m
)

Simply supported/Continuous/Slab

Flexible support



90 

 

 

 
(a) Simply supported beam, continuous beam and slab 

 
(b) Simply-supported beam with flexible supports 

 
Figure 4-20: Detectability of different ratios of damaged element 

size to substructure size 

 

 

4.6 Summary 

This chapter presented a new approach for applying ANN for damage identification. 

A substructuring technique is employed together with a multi-stage ANN to detect 

local damage in structures. A comparison with the conventional technique 

demonstrated the efficiency and reliability of the proposed approach. This study also 

demonstrated that using a one-stage ANN model for damage detection of large 

structures requires excessive computational time and a large amount of computer 

memory. The proposed approach is feasible in reducing the size of the required ANN 

models, and as a result the computational effort can be reduced substantially. The 

results show that by dividing the full structure into substructures and analysing each 

substructure independently, local damage can be better identified. The proposed 

approach can also be used to identify multiple damages in multiple substructures, 
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thus overcoming the difficulties present in the multiple stage method proposed by Ko 

et al. (2002), which requires expensive computation when multiple damage locations 

exist in the structure. In comparison with the work by Yun and Bahng (2000) and 

Mehrjoo et al. (2007), which requires other means such as visual inspection to 

approximately locate the damage before applying ANN, the proposed approach 

identifies damages in structures directly from the modal parameters of the structure.  
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CHAPTER 5  

MULTI-STAGE SUBSTRUCTURING TECHNIQUE FOR 

DAMAGE DETECTION USING STATISTICAL 

ARTIFICIAL NEURAL NETWORK  

5.1 Introduction 

The multi-stage substructuring technique proposed in the previous chapter is shown 

to be feasible in detecting damage in structures with large number of degrees of 

freedom. However, as mentioned earlier, the uncertainties in finite element model 

and measurement data will reduce the capability of ANN to detect damage, thus it is 

necessary to consider the uncertainties in damage detection. In previous studies 

involving the application of substructure technique using ANN model (Mehrjoo et al. 

2007; Qu et al. 2004; Yun and Bahng 2000), only numerical data which are noise 

free are used as examples. The application of the method to experimental data, which 

is inevitably contaminated with noise, cannot be found in the open literature yet. The 

finite element model of the tested structure in experiments or real structures also 

often consists of modeling errors as discussed in Chapter 5; this makes the 

application of the method to detect structure damages even more difficult. In this 

chapter the existence of uncertainties is considered and the reliability of the proposed 

substructure method with ANN model under the influence of uncertainties is 

analysed. 

 

The purpose of this study is to investigate the sensitivity of multi-stage 

substructuring method under the influence of uncertainties. Statistical ANN model as 

explained in Chapter 5 is used to determine the damage detectability under the 

influence of uncertainties in terms of the probability of damage existence (PDE).  

 

In this chapter, an analysis is performed to investigate the damage detectability of 

structures with different levels of noises in measured vibration data and errors in 

finite element model. A numerical example and an experimental example are used to 

demonstrate the method.  
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5.2 Methodology 

As mentioned earlier, the detectibility level is measured by PDE of substructure. As 

demonstrated in the previous chapter, the damage detectability decreases with the 

increase of the substructure size. Since the substructure size at the primary level of 

the multi-stage ANN model is the largest, the damage detectability very much 

depends on the sensitivity of the primary level ANN model. As the outputs of the 

primary ANN model are frequencies of each substructure, the PDEs are calculated 

from statistical distributions of FCI values. The Rossenblueth’s PEM as explained in 

Chapter 5 are used to obtain the statistics of FCI values. The upper and lower limits 

of FCI values are calculated based on the upper and lower limits of frequencies 

predicted by ANN models in the primary stage. Based on Equation (6-1) to (6-5), the 

upper and lower limits of FCI values for the j
th

 substructure are calculated as below: 
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where fji’++… fji’-- and fji ++...fji -- are the upper and lower limit of normalized 

damaged and undamaged frequency of the j
th

 substructure and i is the number of 

modes (i = 1, 2, …k). They are calculated as below: 
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Here jif̂ … jif̂ and 'ˆ
jif … 'ˆ

jif are the upper and lower limits of the predicted 

damaged and undamaged i
th

 modal frequency of the j
th

 substructure. 
minjif and 

maxjif

are the minimum and maximum of the i
th

 modal frequency of the j
th

 substructure 

used to train the corresponding ANN model. The upper and lower limits of the modal 

frequencies are obtained through statistical ANN model (primary) by applying mean 

plus one standard deviation and mean minus one standard deviation of each random 

variable in training and testing the ANN model. The training functions of the primary 

ANN models involved are listed in Table 7-1. Table 7-2 listed the testing variables 

for the corresponding primary ANN models and their corresponding outputs. 

 

Table 5-1: Training functions for primary ANN model 

 

 

 

 

 

 

 

Here 
n

j

n

j

n

j

n

j ffff ,,,  are the target outputs of the primary ANN models 

trained with different combinations of mean plus one standard deviation and mean 

minus one standard deviation of frequencies and mode shapes for the j
th

 segment. 

i
and 

i
are the standard deviation of the i

th
 frequency and mode shape. n is the 

ANN model number. 

 

 

 

 

 

Model 

n 
Training function 

1 ),(
00

ii ii

n

j fnf  

2 ),(
00

ii ii

n

j fnf  

3 ),(
00

ii ii

n

j fnf  

4 ),(
00

ii ii

n

j fnf  



96 

 

 

Table 5-2: Input and output variables for testing 

Testing variable 

Input Output 

ii

0ˆ ,
ii

0ˆ  
n

jf̂  

ii

0ˆ ,
ii

0ˆ  
n

jf̂  

ii

0ˆ ,
ii

0ˆ  
n

jf̂  

ii

0ˆ ,
ii

0ˆ  
n

jf̂  

 

 

Here i
ˆ  and i

ˆ  are the i
th

 frequencies and mode shapes for testing respectively. 

n

j

n

j

n

j

n

j ffff ˆ,ˆ,ˆ,ˆ  are the predicted frequencies of the n
th

 primary ANN 

model for the j
th

 substructure. Superscript ‘0’ represents the corresponding mean 

value. The means )(FCIE and standard deviations )(FCI are calculated as below: 
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The PDEs are calculated from statistical distributions of FCI values. For example, for 

substructure j, the lower bound is )(645.1)( jjFCI FCIFCIEL
j

if the confidence 

level is set to 95%, the healthy substructure falls in the range of 

]),(645.1)([ jj FCIFCIE  with E(FCIj) and σ(FCIj) are the mean and standard 

deviation of FCI values respectively. The PDEs are calculated with Equation (5-14) 

with the 
jFCIL terms substituted for 

j
L and 'FCIx is the mean value of FCI. The PDE 

of substructure j is calculated as below. 
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As in Chapter 5, the PDE ranges between 0 and 1, where if PDE of a substructure 

close to 1, then most likely the substructure is damaged; and on the other hand, if the 

PDE is close to 0, the substructure is less likely to be damaged. For secondary ANN, 

the same calculation as explained in section 5.2.4 is used. 

 

 

5.3 The effect of uncertainties on damage detectability with the multi-
stage ANN method 

 
In order to investigate the damage detectibility of the multi-stage ANN method under 

the influence of uncertainties, an analysis is conducted to detect structural damages 

with different levels of uncertainties. The same substructure sizes, structure types, 

boundary conditions and damage severities as in the sensitivity study in the previous 

chapter (section 6.5) are used. The substructure sizes are: i) 8m; ii) 4m and iii) 2m in 

length (refer to figure 6-16). Four different structure types and boundary conditions 

are: i) girder with simple support condition; ii) girder with flexible supports; iii) 

girder with continuous supports; and iv) simply-supported slab structure. Single 

damage is applied to element 8 with intensity ranging from -5% to -50% with a 5% 

interval in terms of SRF, resulting in ten levels of damage severities. Three levels of 

uncertainties are assumed in terms of C.O.V. for frequencies and mode shapes 

respectively, they are:  i) 0.5% and 5%; ii) 1% and 10%; and iii) 2% and 20%. In this 

analysis, the uncertainties are applied to testing data only; while the training data are 

assumed as noise free.  

 

Since the uncertainties are only applied to the testing data, only one multi-stage ANN 

model is involved in determining the PDEs. Based on Rossenblueth’s PEM, this 

ANN model is tested with mean plus one standard deviation and mean minus one 

standard deviation of each random variable in testing data to obtain the two upper 

limits (FCI++, FCI-+) and two lower limits (FCI--, FCI+-) of FCI of each substructure. 

This is followed by the calculation of the mean and standard deviation of FCI using 

the same procedure as outlined in 5.2.4. Those upper and lower limits, and mean and 
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standard deviation of FCI for different substructure size are obtained in the primary 

ANN. 

 

First an analysis is performed based on a simply supported girder. The same ANN 

model for simply supported girder in section 6.5 is used. As mentioned above, the 

ANN is tested with the ten levels of damage severities and the three levels of 

uncertainties. The simulated damage cases are in the first substructure when the 

substructure size is 8m and 4m. When the structure size is 2m, the damage is in the 

second substructure. The PDE of each structure corresponding to the different levels 

of uncertainties are illustrated in Figure 7-1(a)-(c) to 7-3(a)-(c). 

 

Figure 7-1(a)-(c) show the PDEs of substructures when the testing data are smeared 

with 0.5% noise in frequencies and 5% noise in mode shapes. It is observed that the 

damaged substructure is always associated with a higher PDE value than the 

undamaged substructure, indicating that the damaged substructure is detected with 

high confidence and the undamaged substructures are less likely to be falsely 

detected. It is also observed that the confidence level increases with the damage level 

and decreases with the substructure size. For example, when the substructure is 8m 

long, only damages with 30% or more reduction in stiffness are confidently detected 

with PDE more than 50%. When the substructure size is reduced to 4m long, the 

detectability level is increased where damages with 15% or more reduction in 

stiffness are confidently detected with a PDE value larger than 60%. When the 

substructure is 2m long, damages at all levels considered in this study are confidently 

detected. 

 

The same trend is also observed when the testing data is smeared with 1% noise in 

frequencies and 10% noise in mode shapes, as shown in Figure 7-2(a)-(c), and 2% 

noise in frequencies and 20% noise in mode shapes as shown in Figure 7-3(a)-(c). 

However, with the increase in the uncertainty level, the PDE values at the 

corresponding damage level and the same substructure size decreases, indicating the 

damage is detected with less confidence. For example, when the testing data is 

smeared with 1% noise in frequencies and 10% noise in mode shapes, for 8m long 

substructure, only damage with 50% are confidently identified (above 50% confident 
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level) while for higher noise (2% noise in frequencies and 20% noise in mode 

shapes) with the same substructure size.all the damages considered are not detected.  

 

From this result, it is clear that damage detectability of the proposed approach is 

influenced by the level of uncertainties.  

 

 
(a) 8m substructure 

 
(b) 4m substructure 

 
(c) 2m substructure 

Figure 5-1: PDE of simply supported girder with 0.5% noise in frequencies and 

5% noise in mode shapes 
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(a) 8m substructure 

 
(b) 4m substructure 

 
(c) 2m substructure 

Figure 5-2: PDE of simply supported girder with 1% noise in frequencies and 10% 

noise in mode shapes 
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(a) 8m substructure 

 
(b) 4m substructure 

 
(c) 2m substructure 

Figure 5-3: PDE of simply supported girder with 2% noise in frequencies and 20% 

noise in mode shapes 
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Figure 7.4(a) summarizes the damage detectable level of the simply-supported girder 

corresponding to the three uncertainty levels considered in this study. The damaged 

substructure is considered as detected if the confident level is 50% and above. The 

solid lines in the graph represent 50% confident level of damage detectability for the 

three uncertainty levels. The area below and above those lines represent detectable 

and undetectable damage level respectively and the corresponding substructure size. 

 

From the figure, it is clearly seen that the damage detectable level decreases as the 

uncertainty level increases. In other words, as expected, the higher is the uncertainty 

level, the smaller is the substructure in order to confidently detect a same level of 

damage. For example, at -15% damage in a substructure, if the uncertainty level is 

0.5% for frequencies and 5% in mode shapes,  a 6m long substructure can be used to 

identify damage confidently, when the uncertainties increase to 1% in frequencies 

and 10% in mode shapes, or 2% in frequencies and 20% in mode shapes, 

substructure sizes equal or less than 4.5m or 2m; respectively, are needed to detect 

the damage in the substructure with a 15% stiffness reduction confidently.  

 

The damage detectable levels with respect to the ratio of damaged element size to the 

substructure size under the influence of different levels of uncertainties are illustrated 

in Figure 7-4(b)-(d). The vertical lines indicate the detectability limit of different 

ratio between damaged element size (
ell ) to substructure size (

subL ). The area at the 

right side of the lines represents the detectable damage level. The results show that, 

at higher uncertainty levels, only severer damage can be detected confidently at the 

same 
sub

el

L

l
. 
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(a) Damage detectable level with respect to different uncertainties 

 
(b) 0.5% noise in frequencies and 5% noise in mode shapes 

 
(c) 1% noise in frequencies and 10% noise in mode shapes 

 

 
(d) 2% noise in frequencies and 20% noise in mode shapes 

 
Figure 5-4: Results of the simply supported girder 
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Figure 7-5(a)-(d), Figure 7-6(a)-(d) and Figure 7-7(a)-(d) show the result for the 

girder with flexible supports, for the continuously supported girder and the slab 

structure, respectively. These figures show that the detectability levels of the simply 

supported girder, continuously supported girder and the slab structure are similar, 

whereas the detectability level for the flexibly supported structure is lower. These 

observations are similar to those in section 6.5, where the detectibility level is 

independent of the structure type, but dependent on the boundary condition because 

flexible boundary conditions increase the number of variables in the analysis, which 

is equivalent to increase the number of elements in the substructure as discussed in 

section 6.5. Minor differences among the results for the simply supported girder, the 

continuously supported girder and the slab structure are due to ANN prediction 

errors. These results also show that the detectability level is dependent on the 

uncertainty level. 
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(a) Damage detectable level with respect to different uncertainties 

 
(b) 0.5% noise in frequencies and 5% noise in mode shapes 

 
(c) 1% noise in frequencies and 10% noise in mode shapes 

 
(d) 2% noise in frequenciesand 20% noise in mode shapes 

Figure 5-5: Results of the flexibly supported girder 
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(a) Damage detectable level with respect to different uncertainties 

 
(b) 0.5% noise in frequencies and 5% noise in mode shapes 

 
(c) 1% noise in frequencies and 10% noise in mode shapes 

 
(d) 2% noise in frequencies and 20% noise in mode shapes 

Figure 5-6: Results of the continuously supported girder 
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(a) Damage detectable level with respect to different uncertainties 

 
(b) 0.5% noise in frequencies and 5% noise in mode shapes 

 
(c) 1% noise in frequencies and 10% noise in mode shapes 

 
(d) 2% noise in frequencies and 20% noise in mode shapes 

Figure 5-7: Results of the slab structure 
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5.4 Numerical example 

The same slab structure as in section 6.3 is utilized as the numerical example in this 

section. The same substructure size and multi-stage ANN model as in section 6.3.2 

are also adopted here. All the four simulated damage cases are used as testing data. 

By assuming the uncertainty levels in the testing data are 1% for frequencies and 

10% for mode shapes, the PDEs in the primary and secondary ANN model are 

obtained using the probability method where the ANN models (Table 6.5(a)-(c)) are 

tested with testing data that is smeared with the specified random noise. The PDEs in 

the primary ANN model are based on the FCI value of each substructure, while in 

the secondary ANN model the PDEs are calculated based on the E value of every 

element in the damaged substructure. The calculated PDEs in the primary stage are 

given in Table 7-1. Figure 7-8(a)-(d) show the PDEs of elements obtained in the 

secondary stage. 

 

Table 5-3: PDE (%) of substructure (numerical) 

 Sub. 1 Sub. 2 Sub.3 Sub. 4 

Scenario 1 53.6 3.2 0.79 0.24 

Scenario 2 98.9 7.0 0.31 0.01 

Scenario 3 100.0 100.0 26.61 0.00 

Scenario 4 100.0 100.0 100.0 100.0 

 

From Table 7-1, it is seen that the highest PDE values occur at substructure 1 for 

scenario 1 and 2, for scenario 3 the highest PDEs are at substructure 1 and 2 and at 

every substructure for scenario 4, while the PDEs at others substructures are low. 

These results indicate that the damaged substructures are correctly identified with 

high confidence in the primary ANN level. Figure 7-8(a)-(d) show the PDEs 

obtained in the secondary ANN model for the four simulated damage scenarios. It 

can be seen that the highest PDEs occur at the damaged elements for every scenario 

while the PDEs of other undamaged elements are low, indicating that the damages 

are confidently detected and the undamaged elements are less likely to be falsely 

detected. In comparison with the deterministic method in Chapter 6 (refer to Figure 

6-10), it is noticed that by using the statistical method, more reliable results are 

obtained with less false identification. This may be due to the reasons that the 
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uncertainties in the frequencies due to error duplication and in mode shapes due to 

the effect of damage in other substructures are accounted for using the statistical 

method. This leads to a more reliable damage detection result than the deterministic 

approach. However, as shown, rather high PDEs in some undamaged elements such 

as element 20 in scenario 4 are still predicted, however, the values are substantially 

smaller than the PDEs of the true damaged elements. This is because of the nonlinear 

effect discussed previously. 
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(a) Scenario 1 

 
(b) Scenario 2 

 
(c) Scenario 3 

 
(d) Scenario 4 

Figure 5-8: PDE of element for scenario 1 to scenario 4 
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5.5 Experimental example 

To further demonstrate the applicability of the proposed method, the method is 

applied to detect the damages of the laboratory tested concrete slab described in 

Chapter 3. All the ten damage levels are used as the testing data in ANN model to 

predict damage. As the existence of modeling error and measurement error are 

inevitable, it is assumed that the uncertainties in the finite element model and the 

testing data are both 2% in frequencies and 15% in mode shapes. Based on 

Rossebleuth’s PEM, four multi-stage ANN models are used. Each of the ANN 

models is trained and tested with the combination of the mean plus one standard 

deviation and mean minus one standard deviation of the considered errors in the 

training and testing data. 

 

The slab is divided into 4 substructures and each substructure consists of 4 segments 

as shown in Figure 7-9. 1700 training data are generated based on OA17.16.2.3 to 

train the primary ANN models. Two stages of primary ANN model are considered to 

identify the damaged substructure. The same ANN structure as in Figure 6-8 is used.  

 

 

Figure 5-9: Segmentation of the slab 
 

Three ANN models are involved in the primary ANN stage which are NNP1 (14-17-

4), NNP2(8-14-4) and NNP3(8-14-4). These ANN models are trained and validated 

using 1700 and 400 data generated using OA17.16.2.3.3. The PDEs of every 

substructure for every damage level are given in Table 7-4. By comparing the PDEs 

of the substructures at every level in the table against the experimental results, it can 

be seen that the PDE values obtained are consistent with the observed damage 

Substructure 1 

Substructure 2 

Substructure 3 

Substructure 4 

1         2          3         4          5          6         7          8         9          10      11       12        13       14        15       16  

400mm @ 16 
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patterns in the experiment. The gradual increments of PDE values of substructure 1 

and 2 from level 1 to level 5 are consistent with the crack propagation at the left span 

of the slab with the increase of load. The increase of PDE values of substructure 3 

within those damage levels is due to the crack propagation at the middle support. The 

high PDEs of every substructure from level 7 to level 10 indicates that these 

substructures are very likely damaged, which also agrees with the damage observed 

in the experiment. 

 

Table 5-4: PDE (%) of substructure (experimental) 

 Sub. 1 Sub. 2 Sub.3 Sub. 4 

Level 1 0.14 14.11 13.45 3.65 

Level 2 42.99 38.70 28.97 1.22 

Level 3 67.26 56.84 31.62 0.14 

Level 4 75.31 56.50 39.49 0.02 

Level 5 81.09 62.91 49.59 0.06 

Level 6 78.85 57.46 68.11 40.68 

Level 7 85.16 57.85 98.20 68.20 

Level 8 95.22 82.96 96.65 70.96 

Level 9 98.24 93.11 98.82 81.30 

Level 10 100.0 99.73 99.05 81.01 

 

Based on the results of the primary ANN model, only secondary ANN models 

involving substructure 1 and 2 are built to detect damage at level 3 to 5, namely 

NNS1 and NNS2. These ANN models are trained and validated using 900 and 270 

training and validation data which are generated using OA9.8.2.3. The outputs of 

those NNS1 and NNS2 are E values for segment 1 to 4 and E values for segment 5 to 

8 respectively. These ANN models are tested with experimental data from level 3 to 

level 5, for the purpose of comparison, levels 1 and 2 which are identified as 

undamaged are also included in the testing data. 

 

For damage at level 6, three ANN models are built to detect damage in substructure 1 

to substructure 3 (NNS1, NNS2 and NNS3). These ANN models are trained and 

validated using 1200 and 400 data that generated using OA24.12.2.3. Only 
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experimental data for damage level 6 is used as the testing data. For level 7 to 10; 

ANN models for all substructures are built using the same data as in the primary 

ANN model. 

 

Figure 7-10(a)-(j) show the results of the ten damage levels obtained from the 

secondary ANN models in terms of PDE. Figure 7-10(a)-(e) show the PDEs of 

segment 1 to 8 for level 1 to 5. Figure 7-10(f) shows the PDEs of segment 1 to 12 of 

substructure 1 to 3 for level 6, while PDEs of corresponding segments  for levels 7 to 

10 ( segments 1 to 16) are shown in Figure 7-10(g)-(j). 

 

It is seen the identified damages are close to the observed damage in the experiment, 

indicated by high PDE values occur at the damage locations. The low PDEs 

predicted at level 1 and level 2 at segment 1 to segment 8 indicate that there is no 

significant damage detected. This agrees with the observations in the experiment for 

levels 1 and 2 when 6kN and 12kN loads were applied to the left span. At level 3, the 

highest PDE values are obtained at segments 4 and 5 which are at the middle of the 

left span. The PDE at other segments remains low. This is also the observed damage 

location when 18kN load was applied at the left span. The results for levels 4, 5 and 

6 show that the PDE values for segments 4 and 5 are remained almost at the same 

value as in the level 3, while the PDE value for segment 8 which is at the middle 

support is high. Again, these results agree with the observations in the experiment, 

when the load at the left span remained at 18kN, but the crack intensity increased at 

the middle support when the load at the right span increased from 3kN to 12kN.  

 

The trend of the predicted PDEs for levels 7 to 10 also agree with the crack 

propagation observed in the experiment, where the PDE values are observed high at 

the middle of left and right span and at the middle support. Those PDE values are 

also increased with the increment of loads at the left and right span. However, 

several inaccurate estimations still occur, such as, in damage level 7 and level 8, the 

PDE of segments 4, 5, 6 and 8 are lower compared to PDE values in level 6. This 

probably due to numerical errors in ANN predictions  
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These results demonstrate that, the damage is correctly identified using the proposed 

method. By comparing the current results with those in Chapter 5 (refer to Figure 5-

6) where multi-stage substructuring technique was not used, it is seen that most of 

the PDEs obtained are higher at every damage level. It should be noted that the PDE 

values obtained here are expected to be higher because the element size used in the 

analysis is smaller than that in Chapter 5. However, several inaccurate estimations 

still occur, such as, in damage level 7 and level 8, the PDE of segment 4, 5, 6 and 8 

are lower compared to PDE values in level 6 and the estimated PDEs at the same 

damage levels in Figure 5-7. This is probably due to numerical errors in ANN 

predictions. From the results, it can be said that by incorporating the probability 

method, the multi-stage ANN method can provide better damage identification 

results.  
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(a) Level 1 (6kN (left)-0kN(right)) 

 
(b) Level 2 (12kN (left)-0kN(right)) 

 

 
(c) Level 3 (18kN (left)-0kN(right)) 

 

 
(d) Level 4 (18kN (left)-3kN(right)) 

 

 
(e) Level 5 (18kN (left)-6kN(right)) 

 

 
(f) Level 6 (18kN (left)-12kN(right)) 

 

 
(g) Level 7 (18kN (left)-18kN(right)) 

 

 
(h) Level 8 (25kN (left)-25kN(right)) 
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5.6 Summary 

This chapter studies the effect of uncertainties on the damage detectability of ANN-

based substructuring technique proposed in Chapter 6. The applicability of 

probability method to consider uncertainties in finite element model and in 

measurement noise is also demonstrated through the statistical ANN approach 

described in Chapter 5. The results clearly showed that the damage detectability of 

the proposed method is dependent on the uncertainty level and substructure size. The 

damage detectability level decreases with the increase in uncertainty level and 

substructure size. The damage identification results from the statistical ANN model 

showed that by using the probability method, better results can be obtained because 

the method not only accounts for the uncertainty effect from the finite element 

modeling error and measurement noise, but also accounts for the uncertainties in 

frequencies due to duplication error in multi-stage ANN model and uncertainties in 

mode shapes due to the nonlinear effect of damage in other substructures. This 

observation agrees with the suggestion by Trendafilova et al. (1998) and the result in 

Yuen and Katafygiotis (2006) that damage identification using the substructure 

method should be treated in terms of probability of damage rather than deterministic 

determination of damage levels. 

 

 

 

 

 

 
(i) Level 9 (32kN (left)-26kN(right)) 

 
(j) Level 10 (38kN (left)-38kN(right)) 

Figure 5-10: PDE (%) for every segment of level 1 to level 10 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Summary and findings 

This study began with a review of vibration-based damage detection methods, 

emphasising ANN methods. Advantages and disadvantages of various methods have 

been compared and discussed. Due to several advantages, ANN has been extensively 

researched and widely accepted in the field of damage detection. However, its 

practical application is still limited owing to i) uncertainties in finite element model 

simulation that is usually used to train an ANN model and noises in measured data 

that is used to identify structural damage; and ii) enormous computational time and 

required computer memory when the number of structural degree of freedom is large.  

 

In this study the applicability of ANN in damage detection using frequencies and 

mode shapes as the diagnosis parameters has been investigated. A backpropagation 

ANN together with Levenberg Maquartd algorithm was applied to correlate modal 

parameters with structural parameters. The applicability of ANN in damage detection 

based on modal parameters has been demonstrated, and several techniques to deal 

with the existing problems have been proposed and demonstrated. 

 

Chapter 4 demonstrated that an ANN can effectively in detect damage from modal 

parameters. Single and multiple damage cases were considered using numerical 

examples. The influence of different combinations of input parameters and number 

of modes to ANN performance was also investigated. Using the frequency alone, 

mode shapes alone and the combination of both parameters led to the conclusion that 

the combination of frequencies and mode shapes as the input variables provides more 

reliable results. The parametric study of ANN performance under different number 

of modes indicated that it is more reliable when more modes are used as the input 

parameters.  
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An attempt to apply the deterministic ANN to identify damage using experimental 

data yielded poor results due to the existence of uncertainties in finite element 

modeling and measured data. 

 

The results using numerical and experimental examples have demonstrated that; 

i) The ANN can reliably identify structural damages when uncertainties in 

finite element model and measured data are considered using probabilistic 

method. 

ii) Structural damage can be more confidently identified by using the 

developed probabilistic ANN model than the deterministic ANN model. 

iii) Statistical ANN is more reliable in identifying damage if the difference 

between uncertainty level in training and testing data is small. 

 

Numerical results and parametric study demonstrate that: 

i) The proposed method is capable of identifying damaged and undamaged 

substructures and detecting local damages and their severities. 

ii) Computational effort can be reduced using the proposed method 

especially when involving multiple damage locations. 

iii) The reliability of the method is dependant on the substructure size, 

damage level and the size of damaged elements in a substructure but 

independent of the structure type. 

 

The effects of uncertainties on damage detectability of the proposed multi-stage 

substructuring method have been studied in Chapter 7. It is found that: 

i) The uncertainties reduce the detectability of the proposed technique in 

identifying damaged substructures. 

ii) The probability method provides more reliable results in detecting 

damage with the proposed multi-stage substructuring method. 

 

 

6.2 Contributions 

This study has three contributions to existing literature. They are as follows: 
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i) As mentioned in the literature review, the success of ANN in damage 

detection is limited to numerical examples and small controlled 

experiments only. Its application to experimental data in uncontrolled 

condition was less successful due to the uncertainties in finite element 

modeling and measured data. Adding to the existing literature, the present 

study introduced a new method that combines the probability technique 

and ANN to consider these uncertainties in damage detection.  

ii) This study adds to the limited current research in the use of substructure 

technique with ANN by introducing a multi-stage ANN method to detect 

damage in substructures. The proposed method reduces the training time 

and high computer memory requirement. Therefore, it makes the 

application of ANN in detecting damage in large civil structure possible. 

iii) This study adds to the growing research on ANN-based damage detection 

by providing a guideline in selection of efficient substructure size to 

identify the damaged substructure. Additionally, by applying the 

probability method to the multi-stage ANN substructure technique, the 

effects of uncertainties on the selection of substructure size have also 

been studied and a guideline in selecting the substructure size under 

various uncertainty levels are proposed. 

 

 

6.3 Recommendations 

Based on the literature review and the present study, several recommendations for 

future work are drawn below: 

i) This study did not compare the effect of different methods in preparing 

the training data. Since ANN performance is very much dependant on 

training sample, a comparison study on the ANN performance under 

different methods for training sample selection is recommended. 

ii) It has been realized that the number of measurement points and locations 

have a great influence on the accuracy of damage detection results. A 

detailed study regarding the influence of different number of 

measurement points and locations to ANN-based damage detection 

performance should be done. 
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iii) The application of ANN-based damage detection method to a real 

structure is limited. It is recommended that a real structure should be used 

as an example in the future work. 
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