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ABSTRACT 

This work investigates the high pressure adsorption and desorption of 
methane, ethane, propane and their mixtures on different types of adsorbents in both 
equilibrium and dynamic systems.  A treatment based on thermodynamic concepts 
was considered to further study the equilibrium system. Meanwhile, a 
thermodynamic modeling was performed to calculate the experimentally 
immeasurable adsorption quantities.  The results demonstrated that activated carbons 
provide better adsorption capacities than molecular sieve zeolites and silica gel due 
to their highly developed porosities.  Gas residual amount was observed to be related 
proportionally to gas molecular weights and bed temperature drop during desorption. 
Excess adsorption calculated for mixture on the basis of pure gases mole fractions 
was always higher than that obtained from the mixture within 10-30 % depending on 
adsorbent and gas mixture properties.  This was found to be raised from the 
competition behavior between dissimilar species in the mixture.  Methane maximum 
discharge rate of 5 L/min resulted in the most severe reduction in steady state 
delivery capacity, represented by a factor between 8.8-13.5 % compared to that 
delivered at 1 L/min.  This was due to the extremely high temperature drop of –51.3 
oC, a net drop of 78.3 oC, corresponding to an increase in drop range of about 40% 
compared to that at 1 L/min.  Ethane and propane have potential impacts on all types 
of delivery capacities within a reduction factor between 19.4 to 37.1 % for discharge 
rate of 1 L/min.  From the results of this work, it can be concluded that the presence 
of ethane and propane in the mixture substantially reduced the adsorption of 
methane.  In addition, temperature drop in the dynamic system is unavoidable even 
when the chamber is discharged at the lowest possible rate, causing an increase in 
gas retention and consequently loss in storage delivery capacity.  The introduction of 
the nonideality assumption into the conventional Kelvin equation has enhanced the 
applicability of the equation to describe the capillary condensation of subcritical 
gases at high pressures. 
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ABSTRAK 

Kerja penyelidikan ini tertumpu kepada penjerapan dan penyahjerapan 
bertekanan tinggi sampel metana, etana, propana serta campuran-campurannya, 
terhadap beberapa jenis penjerap di dalam keadaan keseimbangan dan sistem 
dinamik. Rawatan berdasarkan konsep termodinamik digunakan untuk mengkaji 
sistem keseimbangan. Sementara itu, model termodinamik digunakan untuk mengira 
kuantiti penjerapan yang tidak dapat diukur secara ujikaji. Keputusan kajian 
menunjukkan bahawa karbon teraktif mempunyai kapasiti penjerapan yang lebih 
tinggi berbanding penapis molekul zeolit dan gel silika, disebabkan oleh 
keliangannya yang lebih tinggi. Semasa penyahjerapan, jumlah gas tertinggal, di 
dapati berkadaran dengan berat molekul gas dan kejatuhan suhu pemadat. Lebihan 
penjerapan yang dikira bagi campuran berdasarkan pecahan mol gas-gas tulen adalah 
sentiasa lebih tinggi daripada nilai yang didapati secara ujikaji bagi campuran yang 
sama, dalam julat 10-30%, bergantung kepada sifat-sifat penjerap dan campuran gas. 
Perbezaan ini disebabkan oleh persaingan di antara spesis-spesis gas di dalam 
campuran. Kadar pengeluaran maksima metana pada 5 L/min menyebabkan 
penurunan kapasiti pengeluaran mantap yang paling ketara, dalam faktor 8.8-13.5% 
berbanding penurunan pada kadar pengeluaran 1 L/min. Ini disebabkan oleh 
kejatuhan suhu yang terlalu ekstrim, iaitu -51.3oC, kejatuhan bersih 78.3oC,
bersamaan dengan peningkatan kejatuhan sebanyak lebih kurang 40% berbanding 
pada kadar 1 L/min. Etana dan propana mempunyai potensi memberi kesan terhadap 
semua jenis kapasiti penghantaran dengan faktor penurunan di antara 19.4 hingga 
37.1% bagi kadar pengeluaran 1 L/min. Dari keputusan yang diperolehi daripada 
kajian ini, dapatlah disimpulkan bahawa kehadiran etana dan propana di dalam 
campuran amat mengurangkan penjerapan metana. Tambahan lagi, kejatuhan suhu di 
dalam sistem dinamik tidak dapat dielakkan walaupun pada kadar pengeluaran 
terendah yang boleh dicapai, mengakibatkan peningkatan gas yang tertahan dan 
seterusnya kejatuhan kapasiti penghantaran storan. Pengenalan terhadap andaian 
ketidak-unggulan di dalam persamaan konvensional Kelvin telah meningkatkan 
kebolehan persamaan tersebut untuk menerangkan kondensasi kapilari gas-gas 
subkritikal pada tekanan tinggi. 
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CHAPTER 1 

INTRODUCTION

1.1 Background

The development of an extensive traffic system such as the one existing today 

was only possible because of the discovery and exploitation of sufficient energy 

resources.  The current transportation systems are inconceivable without the 

widespread availability of liquid hydrocarbons.  But the fossil resources are finite 

and the environmental changes due to the release of the carbonaceous combustion 

products give causes to think about them.  A large number of alternative fuels, in 

either liquid or gaseous form, are being considered with increasing interest (Manoj, 

1994).

 The size of the carbon chain of the molecules determines the calorific power 

of the gas in an indirectly proportional rate.  Petroleum hydrocarbon gases are major 

source of fuel and they have been utilised widely in industry and automotives.  One 

of the main hydrocarbon fuel gases is natural gas which is used in vehicles as an 

automotive fuel in Italy since 1938.  Natural gas is clean burning since engines 

running on natural gas produce acceptance amounts of pollutants that do not 

significantly contribute to photochemical smog as shown in Table 1.1 which 

compares natural gas in compressed storage mode to petroleum liquid fuel.  

Furthermore, it is low in cost relative to both gasoline and diesel fuels in spark 

ignition engines without major modifications.  In many applications, the use of 

natural gas as a motor vehicle fuel offers, and is expected to continue to offer, 

substantial fuel cost savings to natural gas vehicle owners, as well as greater 
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efficiency of energy resource utilization and lower air emissions, than does 

conventional gasoline, methanol, or electric vehicles alternatives (Hay, 1985). 

Table 1.1 Full fuel cycle emissions in g/ mile for the 1995 Chrysler Mini Van 

operating on petrol and compressed natural gas (The emission standards for 

passenger cars and light trucks in the United Sate in 1996) (EIA, www.eia.doe.gov,

access: June 2004) 

Fuel Type NOx Non-methane 
Hydrocarbon 

CO Particulate 
Matter

SOx CO2

Natural Gas (CNG) 0.093 0.085 0.420 0.002 0.004 371 
Petrol 0.626 0.698 3.462 0.013 0.044 468 
Emission Standards 0.400 0.125 3.400 0.080 --- --- 

The major use of natural gas at present is for combustion in stationary 

applications, such as space heating.  Figure 1 shows the worldwide current energy 

consumption distribution and the expectation for the coming two decades.  

Furthermore, it shows the percentage of share taken by natural gas in world total 

energy consumption.  

Figure 1.1 World primary energy consumption by fuel type 

(EIA, www.eia.doe.gov, access: June 2004) 
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One of the most common hydrocarbon gases is Methane which is the major 

component in natural gas and can be found in many industrial hydrocarbon gases 

mixtures.  Methane is a supercritical gas that cannot be liquefied at ambient 

temperature.  Various approaches can be used to store methane (or natural gas) for 

use as a vehicular fuel, in order to increase the energy storage density at ambient 

temperature.  However, advancements in storage systems for natural gas are 

necessary because storage systems limit the vehicle’s driving range.  Two methods 

for storage of natural gas are common in use: Compressed natural gas (CNG) at 

pressure up to ~20 MPa is the currently used fuel storage technique for natural gas 

vehicle (Balassiano, 1997) while liquefied natural gas (LNG) is the conventionally 

large-scale natural gas storage at about atmospheric pressure and -162 oC (Hanlin, 

2006).  Although they are in use, these storage methods suffer from limitations due 

to their heavy and expensive instalations to maintain their extreme operating 

conditions (Elliott and Topaloglu, 1986; Horstkamp et al., 1997). 

From this point of view it is obvious that physical adsorption of light 

hydrocarbon gases and their mixtures on microporous materials measured at 

pressures above 0.1 MPa is of great practical importance not only for natural gas 

storage but also for industrial separation and purification processes.  In recent years, 

moderate and high pressures are more often used in different industrial adsorption 

processes utilising natural gas or its individual hydrocarbon gases (Salem et al.,

1998).

To design and maintain these adsorption and desorption base industrial units, 

adsorption predictive tools are essential.  The most basic common information 

required to obtain these predictive tools is the amount of pure gas (i.e. methane) 

adsorbed at a specified temperature and pressure.  In other words, the functional form 

of the adsorption isotherms (i.e. adsorbed density versus pressure at constant 

temperature) for a given system.  To gain a satisfactory representation, several 

theoretical issues must be taken into consideration regarding the influence of 

confinement induced by the adsorbent structure on adsorption, and the role of 

adsorbate molecular volume (i.e. molecular size) on adsorption behavior and 

capacity. Moreover, the use of thermodynamic concepts to explore the adsorption 
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phenomenon is a powerful tools and represents a solid ground for better 

understanding of the fundamental aspects involved in the system. 

For a particular hydrocarbon gas mixture such as natural gas, knowledge on 

the amount of each species adsorbed from the mixture to the solid is of great 

importance, or at least the ratios of the amounts adsorbed (i.e. the selectivity).  For 

the modeling and prediction of mixture adsorption, it is of basic information to figure 

out the role of the unequal adsorption affinities among the species on the adsorption 

(Kaminsky, 1993).  Knowing these aspects can provide sufficient information not 

only on adsorption but also on desorption.  The knowledge of desorption behavior of 

loaded adsorbents is of interest for characterisation of the adsorbate and for design of 

adsorbing plants (Seewald et al., 1984). 

1.2 Problem Statement 

Designs of adsorption processes for the separation and purification industrial 

units, heterogeneous chemical reactors and gas storage require extensive information 

on the adsorption equilibria.  One of the major obstacles to development of efficient 

design methods of adsorption processes is the lack of convenient and reliable 

equilibrium data at pressure above atmospheric pressure (moderate and high pressure 

ranges).  Pure gas equilibrium data at moderate and high pressures are of great 

importance since they are required for design purposes even when the adsorption 

system involves mixture of gases.  In the literature, attentions were paid on the 

adsorption of supercritical hydrocarbon gases (i.e. methane) only.  No records were 

found among those literatures regarding the adsorption of subcritical gases (i.e. 

ethane and propane) at moderate and high pressures that involves capillary 

condensation phenomenon.  Ethane and propane are the major species present in 

many hydrocarbon gases mixtures especially the petroleum ones such as natural gas.  

Therefore, the adsorption of subcritical hydrocarbon gases at moderate or high 

pressures is essential to understand the process of natural gas and other industrial 

hydrocarbon gases mixtures.   Natural gas as adsorptive media consists of mixture of 
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super- and subcritical gases that should be taken into account in studying natural gas 

adsorption and desorption. 

The most common case in adsorption industrial units is that the desired 

equilibria are for a mixed rather than for a pure gas since gas streams are almost 

carrying mixtures of gases with constant compositions coming in/out of units 

operating at steady state conditions (chemical reactors working at steady state 

conditions, natural gas production from the reservoir, effluent gases from petroleum 

refineries working at steady state conditions…etc.).  Unfortunately, limited attention 

has been paid for such conditions in previous studies.  Those studies had assumed, in 

predicting the adsorption equilibrium of gas mixture systems, that gas phase 

composition is varying in equipments operating in batch mode, which is valid only 

for limited industrial conditions.  No record among the author’s hands dealt with 

constant gas-phase composition approach in calculating mixed gas equilibria 

utilizing methane, ethane and propane as hydrocarbons gases as those gases are the 

common hydrocarbon components in many industrial hydrocarbon gases mixtures. 

Since constant gas phase composition mixtures are the most common 

conditions in effluent streams of different industrial units, it is therefore of 

considerable practical interest to use theoretical techniques for estimating the 

adsorption equilibria of pure gases from the known adsorption isotherms of gaseous 

mixture and vice versa.  The most attractive theoretical technique is the 

thermodynamic-based technique which is necessary to develop industrial adsorption 

devices.  Limited attention has been focused on the exact and absolute adsorption 

thermodynamic quantities at moderate and high pressures that are of great usefulness 

for thermodynamic-based equipment design.  The estimation of those exact and 

absolute thermodynamic quantities for mixtures involving supercritical (methane) 

and subcritical (ethane and propane) gases were not studied properly raising the need 

for a comprehensive investigation. 

The heart of any adsorption and desorption processes is the porous media 

itself.  Therefore, the influence of adsorbent properties of porosity, chemical nature 

of adsorbents surface and densities are crucial to draw a clear picture on the involved 

process and the feature of the applications.  However, no investigation on the 
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influence of adsorbents’ properties on light hydrocarbon gases mixtures (i.e. 

methane, ethane and propane) is available in the literature.  Furthermore, a 

considerable shortage in literature is found dealing with the influence of properties of 

light hydrocarbons gases mixtures on the adsorption and desorption processes 

behavior.  The incomplete information has led to unclear understanding of the 

adsorption of special gases mixtures such as natural gas.  

The adsorption of natural gas for the purpose of storage at moderate pressure 

could be expected to significantly widen the utilisation of natural gas as alternative 

fuel for vehicular usage.  This technology composes several problems related to 

residual amount of hydrocarbon gases left in the bed after each cycle leading to bed 

deactivation (residual amount can be as high as 30% of the storage amount (Mota et 

al., 1997a,b)) and heat fluctuation problems during operation.  Although a 

considerable number of studies can be found in the literature on natural gas storage, 

most of these studies focused on the preparation of adsorbents and their test for 

maximum storage capacities paying limited attention to the dynamic behavior of the 

system and the influence of gas composition and adsorbent properties on the 

dynamic performance of the system.  These shortages led to incomplete description 

of the dynamic conditions of charging and discharging of natural gas storage, which 

represent the major performance parameter in this application.   

The deactivation function of the adsorbent due to adsorption of heavy 

hydrocarbon gases is of great deal in refineries (thermal cracking of heavy 

hydrocarbon mixtures and gas separation filters) and natural gas storages by 

adsorption.  It holds an important role in adsorbent selection for any industrial unit 

involving adsorption process as desorption is a major part in their functional 

sequence.  Even though almost there was no study focused on the deactivation 

although many studies were investigating adsorbents performances.  These problems 

have a strong negative impact on the process performance by reducing the amount of 

gas that could be stored or delivered during operation cycles.  Unfortunately, random 

and limited studies on these systems could be found in the literatures leading to a 

shortage in information required to develop this technology.  Much research work is 

still needed before commercial utilisation can be realized for this promising 

technology.
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1.3 Objective and Scope 

The objective of this research is to study the adsorption and desorption 

equilibrium and dynamic processes of hydrocarbon gases mixtures at high pressures 

on different types of adsorbents and to evaluate the important equilibrium 

thermodynamic parameters.  In order to achieve this objective, the following scopes 

have been adopted: 

1- To design and construct a reliable experimental rig that provides the capability of 

measuring the desired parameters for high-pressure natural gas adsorption and 

desorption process in both equilibrium and dynamic operation modes. 

2- To study the adsorption and desorption equilibria of pure methane, ethane and 

propane on ten different adsorbents of activated carbons, molecular sieve zeolites 

and silica gel at moderate pressures.  This collection of adsorbents was chosen in 

such a way that covers a wide range of chemical and physical properties for 

conventional adsorbents used in different industrial applications. 

3- To study the adsorption and desorption equilibria of binary and ternary mixtures 

of methane, ethane and propane at moderate pressures on four selected different 

adsorbents of activated carbons, molecular sieve zeolite and silica gel.  The four 

adsorbents have close properties to the common industrial adsorbents which gives an 

interesting possibility for comparison. 

4- To study the effect of adsorbent porous structure, surface chemical nature, 

adsorbent density and particle size on the behaviors and characteristics of 

hydrocarbon gases mixtures adsorption and desorption equilibrium isotherms at 

moderate pressures. 

5. To investigate the influence of gas physical properties (in pure and mixed states) 

on the behavior of adsorption and desorption equilibrium isotherms. 
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6- To evaluate the enthalpy of adsorption of methane, ethane and propane on the four 

powder adsorbents on the basis of adsorption equilibrium isotherms measured at two 

different temperatures. 

7- To investigate the effect of gas type, adsorbent type and discharging flow rate in 

the dynamic adsorption and desorption cycles on the total delivered gas volume, 

pressure- and temperature-time dependency functions. 

8- To study the effect of gas and adsorbent types on adsorbent deactivation as a 

function of number of operation cycles at ambient temperature and moderate 

pressures.

9- To model the capillary condensation phenomenon occurring during adsorption in 

such systems, on the basis of thermodynamic concepts by re-deriving the original 

Kelvin equation for capillary condensation of vapors to be capable to describe the 

capillary condensation of subcritical gases at high pressures. 

10- To model the high-pressure adsorption and desorption equilibria of pure and 

mixed gases on the basis of thermodynamic concepts and evaluate different 

thermodynamic quantities of Gibbs residual, excess and absolute energies. 

1.4 Thesis Outlines 

As has been discussed in the previous sections, this work focused on the high 

pressure adsorption and desorption of methane, ethane and propane in their pure and 

mixture states on different porous adsorbents.  Theoretical description and 

experimental work that have been undertaken were specified in this thesis.  This 

thesis is organized as follows: an introduction of the process along with the problem 

statement and the objectives are presented in Chapter 1.  In Chapter 2 the basic 

theory of the solid-gas interface associated with some related aspects on adsorption 

phenomena, such as porous solids description, adsorption and interaction forces 

causing adsorption are presented.  Chapter 3 outlines the basic thermodynamic 



9

concepts of adsorption phenomenon taking into consideration the non-ideal phase 

behavior.  Chapter 4 reviews the previous studies on adsorption that dealt with 

adsorption and desorption of methane, ethane and propane on different types of 

adsorbents.  Equilibrium and dynamics adsorption studies are reviewed in this 

Chapter.  The experimental work including chemicals used, equipment description, 

experimental procedure and measurements are presented in Chapter 5.  The results 

and discussion of this thesis are divided into three chapters.  In Chapter 6 the results 

of adsorption equilibria for pure, binary and ternary systems are presented. Chapter 7 

discusses the results of the dynamic adsorption for pure and mixture systems.  

Thermodynamic modeling of capillary condensation and adsorption equilibria are 

presented in Chapter 8.  Finally, the conclusion from the current work and 

recommendations for further researches are gathered in chapter 9. 

1.5 Summary

Adsorption into solid adsorbents has a great industrial significance in 

separation and purification processes, and gas storage.  Adsorption of pure gases and 

their mixtures on porous solids at high pressures plays an important role in low-

energy separation processes and storage processes.  An understanding of the 

adsorption and desorption phenomena of these processes can be helpful in 

determining the mechanisms involved as well as in identifying further valuable 

applications.  Hydrocarbon gases mixtures are common in industry and cover a wide 

range of components and concentrations.  One of special interest hydrocarbon gases 

is natural gas.  The adsorption and desorption processes of natural gas and its 

individual gases on most common industrial adsorbents such as activated carbon, 

molecular sieve zeolite and silica gel, are not fully understood due to limited studies 

causing a delay in understanding of several aspects involved in high-pressure 

adsorption and desorption.  It is therefore, of great importance to study the high-

pressure adsorption and desorption processes of natural gas from both static and 

dynamic points of views.  This could provide promising hopes for more development 

regarding this area of research. 
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