THE CONSULTANCY FEE FOR STRUCTURAL DESIGN CHANGES OF REINFORCED CONCRETE BUILDINGS IN OMAN

AMUR SALIM HAMOOD AL-HARTHY

UNIVERSITI TEKNOLOGI MALAYSIA

THE CONSULTANCY FEE FOR STRUCTURAL DESIGN CHANGES OF REINFORCED CONCRETE BUILDINGS IN OMAN

AMUR SALIM HAMOOD AL-HARTHY

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > MARCH 2006

ABSTRACT

Design changes in reinforced concrete buildings have for long time been a topic of prolonged arguments and frequent disputes due to their common phenomena of incidents in the construction industry. Although design changes in many cases are essential, clients, consulting engineers and contractors all have become increasingly worried about the negative parts that are associated with them. Design changes do not only affect the reliability of design but also increase the possibility of contractual disputes due to unpredictable delay and cost overrun on the original scope of work. While the cost of modifying the construction scopes is well defined in normal contract documents, but the fee of engineering changes is yet to receive more attention. Therefore this research has been developed with the aim to investigate such issues and to develop an alternative approach in evaluating the fee of altering the original scope of design work. Extensive study was performed at the initial stage of this research work in term of interviews, case studies and questionnaire survey in order to identify the sources, causes and impacts of design changes on reinforced concrete buildings as well as to establish corrective actions and preventive measures to minimise the avoidable ones. Frequency analysis and non-parametric statistical technique employed in this research to analyse the qualitative and quantitative data. It was found that engineering design changes are common in the industry and, in many cases, lead to excessive claims and disputes due to lack of appropriate and practical methods to assess their associated fee. Although there are various methods being used for assessing the fee of design changes, this study identified their limitations for practical use. Consequently, an alternative method for assessing the fee of the structural design changes has been developed in this research based on designing various type and complexity of low rise RC buildings. The developed method has been verified by a panel of experts by means of questionnaire survey and found to be practical, suitable and effective. Set of guidelines for improving consultancy design documents with respect to design changes and another set of guidelines for managing their claims have been also developed. These guidelines have been validated by panel of experts using Delphi technique. The result of the validation process provides encouragement to recommend the guidelines for practical implementation.

ABSTRAK

Perubahan terhadap rekabentuk asal bagi pembinaan bangunan konkrit bertetulang (RC) sering berlaku dan isu ini telah sekian lama diperbahaskan. Ia juga sering menjadi punca perbalahan dalam industri pembinaan. Walaupun perubahan dalam rekabentuk dalam keadaan tertentu adalah perlu dilakukan tetapi kesan negatif akibat daripada perubahan yang dibuat juga turut mebimbangkan pihak yang terlibat seperti klien, jurutera perunding dan kontraktor. Perubahan terhadap rekabentuk bukan sahaja meninggalkan kesan terhadap kredebilitinya rekabentuk itu sendiri malah boleh mendorong kepada berlakunya perbalahan kontrak disebabkan oleh kelewatan kerja dan perubahan kos akibat daripada perubahan daripada skop asal kerja. Lazimnya kaedah penilain terhadap perubahan kos bagi kerja pembinaan akibat daripada perubahan skop kerja agak jelas mengikut peruntukan yang sedia ada didalam kontrak pembinaan. Walaubagaimana pun kaedah penialaian kos terhadap perubahan bagi kerja merebentuk tidak begitu mendapat perhatian para penyelidik. Oleh itu kajian ini telah dijalankan untuk mengenalpasti masaalah ini dengan lebih mendalam serta mengemukakan suatu kaedah alternatif bagi menilai kos perubahan bagi mengubahsuai rekabentuk asal yang dilaksanakan oleh pihak perunding. Pada peringkat awal kajian ini tela mengenalpasti punca, kesan dan kaedah penialain kos dalam proses membuat perubahan terhadap rekabentuk bagi sesabuah bangunan konkrit. Juga dikaji adalah kaedah yang boleh digunakan untuk mengurangkan keperluan membuat prubahan rekabentuk oleh pihak klien. Kaedah penyelidikan yang digunakan termasuklah sesi temubual, kajian kes dan menghantar borang soal selidik kepada responden. Kaedah analisa frekuensi dan kaedas Statistik Tak Berparametar telah digunakan untuk membuat analisa data kualitatif dan kuantitatif yang digunakan dalam penyelidikan ini. Hasil dari kajian mendapati bahawa perubahan terhadap rekabentuk adalah sesuatu yang lazim berlaku dan dalam banyak kes menyebabkan berlakunya tuntutan tambahan yang berlebihan yang dibuat oleh perunding akibat daripada tidak ada kaedah yang sesuai untuk membuat penialaian kos yang praktikal dan wajar digunakan. Lanjutan dari itu hasil dari penyelidikan ini telah membangunkan satu kaedah yang sesuai digunakan untuk sebagai kaedah alternatif untuk membuat penialaian apabila berlakunya perubahan atau pengubahsuaian terhadap rekabentuk asal terhadap struktur bangunan konkrit bertetulang sederhana tinggi. Kaedah ini telah dipersetujui sebagai sesuai digunakan oleh panel para professional yang mempunyai pengalaman yang luas dalam industri pembinaan di Oman. Selain dari itu penyelidikan ini turut membangunkan satu garispanduan yang sesuai diterapkan dalam kontrak untuk mengemaskini lagi proses membuat perubahan rekabentuk dan menguruskan tuntutan yang dibuat berkaitan dengan perubahan yang dibuat tersebut. Garispanduan ini telah dibuat pengesahan dengan panel yang berpengalaman dalam industri pembinaan di Oman dengan menggunakan kaedah Delphi.

TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

DE	CLARATION OF THE STATUS OF THESIS	
SUI	PERVISORS' DECLARATIONS	
TIT	'LE PAGE	i
DE	CLARATION	ii
DE	DICATION	iii
AC	KNOWLEDGEMENT	iv
AB	STRACT	v
AB	STRAK	vi
TA	BLE OF CONTENTS	vii
LIS	T OF TABLES	xiv
LIS	T OF FIGURES	xix
LIS	T OF SYMBOLS	xxii
LIS	T OF APPENDICES	xxiii
INT	CRODUCTION	1
1.1	Background and Rationale	1
1.2	Problem Statement	4
1.3	Aim and Objectives	5
1.4	Scope and Limitations of the Research	6
1.5	Brief Research Methodology	7
1.6	Justification of the Research	7
1.7	Significance of the Study	10
1.8	Research Contributions	10
1.9	Organization of the Thesis	10

2	DES	SIGN CHANGES	14
	2.1	Introduction	14
	2.2	Definitions of Design Changes	14
	2.3	Classifications of Design Changes	15
	2.4	Sources of Design Changes	17
	2.5	Causes of Design Changes	20
	2.6	Impact of Design Changes	28
		2.6.1 Impact of Design Changes on Cost	31
		2.6.2 Impact of Design Changes on Time	34
		2.6.3 Impact of Design Changes on Productivity	36
	2.7	Development for Improving the Management of Design Changes	41
	2.8	Chapter Summary	45
3		E PRINCIPLE OF CONSULTING GINEERING PRACTICE	48
	3.1	Introduction	48
	3.2	Definition of the Client	49
	3.3	Definition of the Consulting Engineer	49
	3.4	Reasons for Consulting Engineering Services	50
	3.5	Services Provided by Consulting Engineers	52
		3.5.1 Feasibility Study Phase	53
		3.5.2 Preliminary Design Phase	53
		3.5.3 Detailed Design Phase	54
		3.5.4 Tender Stage	54
		3.5.5 Supervision Phase	55
		3.5.6 Operation Phase	56
	3.6	Methods of Charging for Consulting Services	57
		3.6.1 Lump Sum Method	58
		3.6.2 Salary Cost Times Multiplier Plus Non-Salary Cost method	59
		3.6.3 Cost plus Fixed Amount Method	59
		3.6.4 Per Diem Method	60
		3.6.5 Percentage of Construction Cost	61
		3.6.6 Retainer Method	64

3.7	Chapte	er Summary	64
THI	E CONS	STRUCTION INDUSTRY IN OMAN	66
4.1	Introdu	uction	66
4.2	Oman	at a Glance	67
4.3	Brief I	Highlights on Oman Economy	67
4.4	The Co	onstruction Sector in Oman	68
4.5	Consu	lting Engineering Services in Oman	71
4.6		al Scope of Consultant Services in Standards	71
4.7		ssessment of the Design Changes in Standard	75
4.8	Chapte	er Summary	76
RES	SEARC	H METHODOLOGY	78
5.1	Introdu	uction	78
5.2	Literat	ure Review	79
5.3	Intervi	ews with Professionals	80
5.4	Case S	Studies	81
5.5	Questi	onnaire Survey	82
	5.5.1	Design of the Questionnaire	83
	5.5.2	Pilot Survey	85
	5.5.3	Main Survey Questionnaire	85
	5.5.4	The Population and the Distribution of the Questionnaire Survey	86
	5.5.5	Methods of Analysing the Questionnaire Survey	88
5.6	Metho	odology for Development of an Alternative od to Assess the Fee of Structural n Changes	92
	5.6.1	Design Parameters and Assumption for the Building Design	95
	5.6.2	Details and Classifications of the Selected Buildings	95
	5.6.3	Source of the Structural Design of the Buildings	96
	5.6.4	General Structural System for the Buildings of this Study	97

4

5

64

		5.6.5	The Principle of the Adopted Structural Design	97
5	.7	Questi	onnaire for Validating the Developed Method	99
		5.7.1	Design of the Questionnaire	99
5	.8	Develo	opment of the Guidelines	100
5	.9	The M	ethod of Validating the Developed Guidelines	102
		5.9.1	Background of the Delphi Method	102
		5.9.2	Selection of the Professionals for the Delphi Questionnaires	104
		5.9.3	Identifying the Number of Professionals for the Delphi Method	105
		5.9.4	Identifying the Number of Rounds for the Delphi Method	105
		5.9.5	Format of the Delphi Rounds for this Research	106
5	.10	Chapt	er Summary	106
D	DA]	ГА СО	LLECTION	108
6	.1	Introd	luction	108
6	.2	Interv	iews with Professionals	109
		6.2.1	Discussions of the Interviews' Results	109
		6.2.2	The Occurrence of Design Changes	109
		6.2.3	The Causes and Sources of Design Changes	118
		6.2.4	The Impact of Design Changes	119
		6.2.5	Existing Methods for Assessing the Fee of Design Changes and their Limitations	119
6	.3	Case S	Studies Results	121
		6.3.1	Case Study One	121
		6.3.2	Case Study Two	123
		6.3.3	Case Study Three	125
		6.3.4	Causes of Design Changes	126
		6.3.5	Sources of Design Changes	128
		6.3.6	Impact of Design Changes on Cost	129
		6.3.7	Impact of Design Change on Schedule	130
		6.3.8	Existing Methods for Assessing the Structural Design Changes	131
6	.4	Quest	ionnaire Survey Result	132

6

	6.4.1	Causes	of Design Change Due to Clients	132
	6.4.2	Causes	of Design Change Due to Consultants	135
	6.4.3	Causes	of Design Change Due to Contractors	137
	6.4.4	Sources	of Design Changes	139
	6.4.5	Impacts	of Design Change	141
	6.4.6	Measure	ive Actions and Preventive es to Minimize the Avoidable Changes	144
	6.4.7	Method	nces of Using the Existing s for Assessing the Fee gn Changes	149
	6.4.8	Limitati	ons of the Existing Methods	150
		6.4.8.1	Limitations of the Man-Hours Method	151
		6.4.8.2	Limitations of the Percentage of Construction Method	153
		6.4.8.3	Limitations of the Area Unit Rate Method	154
		6.4.8.4	Limitations of the Lump-Sum Method	157
6.5	Chapte	er Summa	ıry	158

7 DEVELOPMENT OF THE PROPOSED METHOD 160 TO ASSESS THE FEE OF THE STRUCTURAL DESIGN CHANGES IN RC BUIDLINGS

7.1	Introduction		160
7.2	Prelim	Preliminary Structural Design Phase	
	7.2.1	Locations of the Structural Members	161
	7.2.2	Load Calculations	162
	7.2.3	Sizing the Structural Members	163
	7.2.4	Miscellaneous Structural Elements	166
7.3	Detail	ed Structural Design Phase	166
7.4	Preliminary Structural Drafting Phase		
7.5	Detail	ed Structural Drafting Phase	170
7.6	Gener	al Approach for Developing the Proposed Method	170
7.7	Desig	n by Manual Method	172
	7.7.1	Preliminary Design and Drafting for One Floor Buildings	172

	7.7.2	Detailed Design and Drafting for One Floor Buildings	176
	7.7.3	Preliminary Design and Drafting for Two Floors Buildings	181
	7.7.4	Detailed Design and Drafting for Two Floors Buildings	185
	7.7.5	Preliminary Design and Drafting for Three Floors Buildings	189
	7.7.6	Detailed Design and Drafting for Three Floors Buildings	194
	7.7.7	Preliminary Design and Drafting for Four Floors Buildings	197
	7.7.8	Detailed Design and Drafting for Four Floors Buildings	202
	7.7.9	Comparison of the Preliminary Design for the Four Types Buildings	205
	7.7.10	Comparison of the Detailed Design for the Four Types Buildings	206
	7.7.11	Comparison between the Preliminary and Detailed Design	208
7.8	Design	n Based on STAAD Pro. Software	210
	7.8.1	Preliminary Design and Drafting by STAAD Pro for One Floor Buildings	211
	7.8.2	Detailed Design and Drafting by STAAD Pro for One Floor Buildings	216
	7.8.3	Preliminary Design and Drafting by STAAD Pro for Two Floors Buildings	220
	7.8.4	Detailed Design and Drafting by STAAD Pro for Two Floors Buildings	224
7.9		sted Method for Assessing the Fee of the aral Design Changes	228
7.10	Illustra	ation for Using the Proposed Method	231
	7.10.1	Example 1, One Floor Building	231
	7.10.2	Example 2, Two Floors Building	234
7.11	The Re	esult of the Validation	238
7.12	Chapte	er Summary	240

8		VELOPMENT OF THE GUIDELINES R MANAGING DESIGN CHANGES	242
	8.1	Introduction	242
	8.2	Initial List of Guidelines for Improving Consultancy Design Documents	242
	8.3	Initial List of Guidelines for Managing the Claims of Design Changes	245
	8.4	Validation of the Developed Guidelines	246
	8.5	The Delphi Round One Questionnaire	247
		8.5.1 The Result of the Delphi Round One Questionnaire	247
	8.6	The Delphi Round Two Questionnaire	248
		8.6.1 The Result of the Delphi Round Two Questionnaire	248
	8.7	The Delphi Round Three Questionnaire	252
		8.7.1 The Result of the Delphi Round Three Questionnaire	253
	8.8	Chapter Summary	254
9	CO	NCLUSIONS AND RECOMMENDATIONS	245
	9.1	Introduction	255
	9.2	Conclusions	256
	9.3	Contributions of the Research	263
	9.4	Suggestions for Further Research	263
REFEREN	CES		265
Appendices	5 A - C	G	277 - 353

xiii

LIST OF TABLES

TABLE	NO. TITLE	PAGE
2.1	Actual Causes of Changes in the UK	18
2.2	Importance Indexes of Sources of Changes in Saudi Arabia	19
2.3	Sources of Changes, In Botswana, Gabrone	20
2.4	Causes of Changes in Hong Kong Building Projects	24
2.5	Causes of Changes in Botswana	27
2.6	Effects of Changes on Projects	30
2.7	Project Size and Changes Measurer	32
2.8	Causes and Cost of Changes	34
2.9	Quantitative Effect of Disruptions	38
3.1	Converted Building Scale for Structural Works in Buildings Expressed As A % of Building Cost	63
4.1	No. of Building Permits, Estimated Cost and Type of Building	70
4.2	Consulting Firms Grades	72
5.1	Ranking System for the Questionnaire of this Study using Likert (Ordinal) Scale	89
5.2	Basic Buildings Details	96
6.1	Result of the Interviews with Consultants	110
6.2	Result of the Interviews with Contractors	112
6.3	Result of the Interviews with Clients	114

6.4	Result of the Interviews – Comparisons of Respondents	116
6.5	Case Study One - Causes, Sources and Fee of Changes	122
6.6	Case Study Two - Causes, Sources and Fee of Design Changes	124
6.7	Case Study Three - Causes, Sources and Fee of Design Changes	127
6.8	Case Studies - Impact on Cost	130
6.9	Case Studies - Impact on Schedule	131
6.10	Main Scores (MS) and Ranks (R) for Causes of Design Changes Due to Clients	133
6.11	Test for Agreement on the Ranking for Causes of Design Changes Due to Clients	134
6.12	Main Scores (MS) and Ranks (R) for Causes of Design Changes Due to Consultants	136
6.13	Test for Agreement on the Ranking for Causes of Design Changes Due to Consultants	137
6.14	Main Scores (MS) and Ranks (R) for Causes of Design Changes Due to Contractors	139
6.15	Test for Agreement on the Ranking for Causes of Design Changes Due to Contractors	139
6.16	Main Scores (MS) and Ranks (R) for Sources of Design Changes	140
6.17	Test for Agreement on the Ranking for Sources of Design Changes	141
6.18	Main Scores (MS) and Ranks (R) for Impacts of Design Changes	142
6.19	Test for Agreement on the Ranking for Impacts of Design Changes	143
6.20	Main Scores (MS) and Ranks (R) for Corrective Actions and Preventive Measures to Minimize the Avoidable Design Changes	145

6.21	Test for Agreement on the Ranking for Corrective Actions and/or Preventive Measures to Minimize the Avoidable Design Changes	149
6.22	Main Scores (MS) and Ranks (R) for Preference of Existing Methods for Assessing the Fee of Design Changes	150
6.23	Main Scores (MS) and Ranks (R) for Limitation(s) of the Man-Hours Method	151
6.24	Main Scores (MS) and Ranks (R) for Limitation(s) of the Percentage of Construction Cost Method	153
6.25	Main Scores (MS) and Ranks (R) for Limitation(s) of the Area Unit Rate Method	155
6.26	Main Scores (MS) and Ranks (R) for Limitation(s) of the Lump-Sum Method	157
7.1	Times, in Minutes, and Percentage of Time for Preliminary Structural Design (One Floor Buildings)	172
7.2	Times, in Minutes, and Percentage of Time for Preliminary Structural Drafting (One Floor Buildings)	173
7.3	Percentage of Time for Preliminary Structural Design and Drafting (One Floor Buildings)	174
7.4	Times, in Minutes, and Percentage of Time for Detailed Structural Design (One Floor Buildings)	177
7.5	Times, in Minutes, and Percentage of Time for Detailed Structural Drafting (One Floor Buildings)	178
7.6	Percentage of Time for Detailed Structural Design and Drafting (One Floor Buildings)	179
7.7	Times, in Minutes, and Percentage of Time for Preliminary Structural Design (Two Floors Buildings)	182
7.8	Times, in Minutes, and Percentage of Time for Preliminary Structural Drafting (Two Floors Buildings)	183
7.9	Percentage of Time for Preliminary Structural Design and Drafting (Two Floors Buildings)	184
7.10	Time, in Minutes, and Percentage of Time For Detailed Structural Design (Two Floors Buildings)	186

7.11	Time, in Minutes, and Percentage of Time for Detailed Structural Drafting (Two Floors Buildings)	187
7.12	Percentage of Time for Detailed Structural Design and Drafting (Two Floors Buildings)	188
7.13	Times, in Minutes, and Percentage of Time for Preliminary Structural Design (Three Floors Buildings)	190
7.14	Times, in Minutes, and Percentage of Time for Preliminary Structural Drafting (Three Floors Buildings)	191
7.15	Percentage of Time for Preliminary Structural Design and Drafting (Three Floors Buildings)	192
7.16	Times, in Minutes, and Percentage of Time for Detailed Structural Design (Three Floors Buildings)	194
7.17	Times, in Minutes, and Percentage of Time for Detailed Structural Drafting (Three Floors Buildings)	195
7.18	Percentage of Time for Detailed Structural Design and Drafting (Three Floors Buildings)	196
7.19	Times, in Minutes, and Percentage of Time for Preliminary Structural Design (Four Floors Buildings)	198
7.20	Times, in Minutes, and Percentage of Time for Preliminary Structural Drafting (Four Floors Buildings)	199
7.21	Percentage of Time for Preliminary Structural Design and Drafting (Four Floors Buildings)	200
7.22	Times, in Minutes, and Percentage of Time for Detailed Structural Design (Four Floors Buildings)	202
7.23	Times, in Minutes, and Percentage of Time for Detailed Structural Drafting (Four Floors Buildings)	203
7.24	Percentage of Time for Detailed Structural Design and Drafting (Four Floors Buildings)	204
7.25	Time, in Minutes, and Percentage of Time for Preliminary and Detailed Structural Design and Drafting	208
7.26	Times, in Minutes, and Percentage of Time for Preliminary Structural Design based on STAAD Pro Design Software (One Floor Buildings)	212

7.27	Percentage of Time for Preliminary Structural Design and Drafting Based on STAAD Pro Design Software (One Floor Buildings)	213
7.28	Times, in Minutes, and Percentage of Time for Detailed Structural Design based on STAAD Pro Design Software (One Floor Buildings)	216
7.29	Percentage of Time for Detailed Structural Design and Drafting based on STAAD Pro Design Software (One Floor Buildings)	217
7.30	Times, in Minutes, and Percentage of Time for Preliminary Structural Design based on STAAD Pro Design Software (Two Floors Buildings)	220
7.31	Percentage of Time for Preliminary Structural Design and Drafting based on STAAD Pro Design Software (Two Floors Buildings)	221
7.32	Times, in Minutes, and Percentage of Time for Detailed Structural Design based on STAAD Pro Design Software (Two Floors Buildings)	224
7.33	Percentage of Time for Detailed Structural Design and Drafting based on STADD Pro Design Software (Two Floors Buildings)	225
7.34	Percentage of Time for Preliminary Structural Design and Drafting (One Floor to Four Floors Buildings)	229
7.35	Percentage of Time for Detailed Structural Design and Drafting (One Floor to Four Floors Buildings)	230
7.36	Questionnaire Result for the Validation of the POF Method	239
8.1	Delphi Round Two Results: Relative Importance Level of each Guideline for Improving the Consultancy Design Documents	249
8.2	Delphi Round Two Results: Relative Importance Level of each Guideline for the Claims of the Design Changes	251

LIST OF FIGURES

FIGURE	NO. TITLE	PAGE
1.1	Research Methodology Flow Chart	8
2.1	Causes of Changes in Hong Kong	25
2.2	Planned and Actual Loading Curves	36
2.3	Effects of Change within Phase	39
2.4	Construction Change and Construction Productivity	39
2.5	Design Change and Design Productivity	40
3.1	Stages in Projects' Design Cycle	52
3.2	Median Basic Fees as a Percentage of Net Construction Cost	62
5.1	Type of Organization Represented	87
5.2	Distribution Profiles of Work Experience of the Three Groups of Survey Respondents	88
7.1	Percentages of Time for the One Floor Buildings at Preliminary Design Stage based on Manual Method	176
7.2	Percentages of Time for the One Floor Buildings at Detailed Design Stage based on Manual Method	181
7.3	Percentages of Time for the Two Floors Buildings at Preliminary Design Stage based on Manual Method	185
7.4	Percentages of Time for the Two Floors Buildings at Detailed Design Stage based on Manual Method	189
7.5	Comparison between the Estimated Percentages of Time to Design Main Structural Members for the Three Buildings of Three Floors each at Preliminary Design Stage	193

7.6	Comparison between the Estimated Percentages of Time to Design Main Structural Members for the Three Buildings of Three Floors each at Detailed Design Stage	197
7.7	Comparison between the Estimated Percentages of Time to Design Main Structural Members for the Three Buildings of Four Floors each at Preliminary Design Stage	201
7.8	Comparison between the Estimated Percentages of Time to Design Main Structural Members for the Three Buildings of Four Floors each at Detailed Design Stage	205
7.9	Comparisons between Percentages of Time to Design Main Structural Members for the Four Buildings at Preliminary Design Stage	206
7.10	Comparisons between Percentages of Time to Design Main Structural Members for the Four Buildings at Detailed Design Stage	207
7.11	Comparison between Percentages of Time for Preliminary and Detailed Design Stages	209
7.12	Percentages of Time for the One Floor Buildings at Preliminary Design Stage based on STAAD Pro Design Software	214
7.13	Comparison between Manual Design Vs. STAAD Pro Design Software for One Floor Buildings at Preliminary Design Stage	215
7.14	Percentages of Time for the One Floor Buildings at Detailed Design Stage based on STAAD Pro Design Software	218
7.15	Comparison between Manual Design Vs. STAAD Pro Design Software for the Three Buildings of One Floor each at Detailed Design Stage	219
7.16	Percentages of Time for the Two Floors each at Preliminary Design Stage based on STAAD Pro Design Software	222
7.17	Comparison between Manual Design Vs. STAAD Pro Design Software for the Three Buildings of Two Floors each at Preliminary Design Stage	223
7.18	Percentages of Time for the Two Floors Buildings at Detailed Design Stage based on STAAD Pro Design Software	226

7.19	Comparison between Manual Design Vs. STAAD Pro Design Software for the Three Buildings of Two Floors each at Detailed Design Stage	227
7.20	Original Plinth (Ground) Beams Plan	232
7.21	Modified Plinth (Ground) Beams Plan	232
7.22	Original Roof Slabs/Beams Plan	233
7.23	Modified Roof Slabs/Beams Plan	233
7.24	Original Ground Floor Roof Slabs/Beams Plan	235
7.25	Modified Ground Floor Roof Slabs/Beams Plan	235
7.26	Original First Floor Roof Slabs/Beams Plan	236
7.27	Modified First Floor Roof Slabs/Beams Plan	236

LIST OF SYMBOLS

di	-	The different between the rank given by one group and the rank given by another group
f	-	frequency of responses to each score for each factor
fn	-	Total number of factors ranked by any two groups for any given category
OCC	-	Original Contract Fee
MS	-	Mean Score
Ν	-	Number of responses
Nf	-	total number of responses
NMM	-	Number of the Modified structural Members
TNM	-	Total Number of the structural Members
S	-	Score given to each factor as ranked by the respondents

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Extract from Standard Form of Agreement and Conditions for Consultancy Services for Building and Civil Engineering Works (1987)	277
В	Questionnaire Survey – Second Stage	284
С	Architectural Plans and Elevations	296
D	Typical Structural Design and Detail	321
Е	Questionnaire for Validating the POF Method	330
F	Round One Delphi Questionnaire Survey	340
G	Round Three Delphi Questionnaire Survey	346

CHAPTER 1

INTRODUCTION

1.1 Background and Rationale

Engineering design changes and their consultancy design fee assessment for reinforced concrete buildings' design have, for long time, been a topic of prolonged discussions and frequent disputes between clients and their appointed consulting engineers. Design changes in their simple term are defined as any addition, omission or modification to the original scope of work in which a contract was signed (Akinsola *et al.*, 1997) or an adjustment to the completed design that may leads to change the original contract design fee (Baxendale and Schofield, 1996). These design changes might have great effect especially on cost and time and are likely to be a cause of claims and disruptions. In general, consulting engineers provide the necessary effort to develop the concept of the design to fulfil the intended use of the projects under design to their client's requirements. An approval to preliminary design principle sets the basis for subsequent detailed design and for production of technical specification and construction documents.

It is common in the construction industry for almost all projects to go through various degrees of modifications at the design stage and more commonly during the construction. These changes are mostly caused by clients, in favour of getting new ideas or cost reduction on projects (Federal Construction Council, 1983; Kelvin, 1996). Design members have been also the main contributors of the design changes in the construction industry. They originate the changes to rectify their mistakes and to improve or optimize their design (Hibberd, 1982; Choy and Sidwell, 1991). Contractors may also introduce changes to adopt alternative construction methods that are of more familiarity (McDermott and Dodd, 1984; Yogeswaran, 1998) and suppliers, in order to meet the manufacturer's recommendation to use a specific material (Emmitt, 2001).

The most common reasons that necessitate design changes are financial (Ssegawa, *et al.* 2003), clients' new requirements (Wilson, 1982), coordination problems (Bubshait *et al.*, 1998), unclear scope of work (Austin *et al.*, 2002), design errors (Leonard, *et al.*, 1988), unexpected site conditions (Essex, 1996) and insufficient design information at the design stage (Ogunlana, *et al.*, 1996). The possible changes could be minor related to design development which have no or relatively low cost effect on overall agreed design fees and could be major related to new ideas or changing the principle of the original design which, in turn, required replanning and re-designing that leads to a major cost effect.

There are numerous impact caused by design changes that influence the outcome of a project. Any inferior assessment, determination, misunderstanding or unavailability of relevant information or knowledge during the design stage leads inevitably to less than an optimum design that can be unnecessarily expensive and difficult to correct/alter at later stages of a project life cycle (Hashimoto, 1993). A successful project means that the project has met the required quality level, completed on time and within the allocated budget (Chan and Kumaraswamy, 1994; Frimpong *et al.* 2003). Design changes usually divert these fundamental aims in the construction industry. These changes lead to great disruption on design and construction activities which, in turn, increase the chances for errors, increase cost, delay and decrease productivity.

Although design changes in many cases are essential for, as example, design development; clients, consulting engineers and contractors all have become increasingly worried about their magnitude and their impact that are associated with them. Design changes do not only affect the reliability of the design but also increase the possibility of contractual disputes due to the unpredictable delay and cost overrun on the original scope of work. The three case studies that have been

carried out from the construction industry in the Sultanate of Oman and were part of this research investigation have shown that the engineering consultancy fee can be as high as 189.8 percent of the original fee and the engineering consultancy time can increase by 195 percent.

While the cost of modifying the construction scopes is well defined in normal contract documents, the fee of engineering changes is yet to receive more attention. Clients are not always willing to accept the variation charges set by consulting engineers mainly because they feel they are unjustifiable and consultants, on the other hand, feel that clients unreasonably reject or reduce the claimed amount. This can be predicted to some extend since the design changes are not easily quantified.

They are various methods in which consulting engineers have been using to assess the consultancy design fee associated with design changes These methods have been identified from the result of the interviews with the professionals working in the construction industry, from the case studies and from the questionnaire that all were carried out at the initial stage for this research work. These methods are the Man-Hours method, Percentage of Construction Cost method, Area Unit Rate method and the Lump-Sun method. However the result of the interviews with the professionals working in the construction industry; the case studies; and the questionnaire survey that have been conducted as part of this research revealed that each one of these methods has various degrees of difficulties and limitations for implementation to the point where it becomes unpractical to adopt anyone of them. To avoid the possible disputes arising from the lack of an affective way to evaluate the engineering consultancy fee of design changes, there is a need to develop a practical method for fee assessment of the structural design changes when they arise. The primary aim of this research work is to develop an alternative method for assessing the consultancy design fee as a result of modifying the original structural design; to highlight suggestions for minimizing the avoidable design changes; and to provide guidelines for improving the consultancy design documents with respect of managing design changes

1.2 Problem Statement

Many articles have been written on the general subject of design changes. Much of that research have focused on their nature and extend such as causes, sources and impacts, where others have concentrated on their legal aspects such as claims and disputes. Although design changes in many cases are essential for, as examples, design developments, design improvements, rectification of mistakes and resolution of problems related to unexpected circumstances, nevertheless, clients, consulting engineers and contractors all have become increasingly worried about the negative parts that are associated with design changes, and the poor recovery of the actual fee associated with their settlements (Jergeas and Hartman, 1994). Nevertheless, design changes are still an ongoing problem that continues to raise the concerns in the construction industry. Such concerns stimulated this research and others to produce a series of reports, for example Latham report (1994) where variations have been identified as one of the main problems challenging the construction industry.

Almost all projects go through different level of modifications not only at the design stage but also during the construction. Previous studies such as the one by Anderson and Tucker (1994) reveals that about one third of architectural/engineering projects missed cost and schedule targets as a result of design changes. Burati *et al.* (1992) have shown that design changes increased the construction cost by an average amount of 12.4 percent of the total cost of the projects in the United Kingdom. Chang (2002) reported that an engineering consultancy fee increased on an average of 24.8 percent based on four sampled projects in Taiwan as a result of design changes.

Delays have been identified as a key factor that increase the construction cost of the projects worldwide (Kartam, 1999). Design changes are one of the main causes that lead to such construction delays. Arditi *et al.* (1985) found that 3.54 percent of the delays in public projects in Turkey were caused by design changes. In the UK, 49 percent of the delays are caused by factors related to design changes (Sullivan and Harris, 1986). In Nigeria, this percentage is reported to be as high as 71 percent (Okpala and Aniekwu, 1988).

Consulting engineers are familiar with the methods of pricing their consultancy design services at the tender stage. These methods are well developed and well documented as it will be seen in the next chapter. When changes are introduced, there is a lack of an affective method to assess their fee. Normally consulting engineers either estimate their extra design fee for modifying the original design in a lump-sum basis or alternatively predict the most likely man-hours that are needed to carry out the change; or keep record of the man-hours they spend to execute the changes. The consulting engineers then submit the man-hours to their clients for payments. Clients, on the other hand, do not always accept the submitted man-hours because they feel the man-hours are overestimated due to lack of trust. At the same time, there is no well accepted alternative methods that might be used to quantify the design changes and hence to assess their fee. Such situations may increase the possibility of contractual disputes, affect the relationships and lead to dissatisfaction and disappointment to both the clients and the consulting engineers. Recognizing these facts, there is an obvious need for in depth study to address these issues and to find a practical solution that might be used to assess the fee of modifying the original design changes. This research is a step toward satisfying this need.

1.3 Aim and Objectives

It is a well known fact that many design changes are most likely inevitable during the life cycle of the projects. These changes might be minor so that no major claims on fee or time extension takes place or might be major in which it results in main claims. While the original consultancy design fee is normally stated in the contract documents based on the tender submission and negotiation, there is no practical and acceptable method yet to assess the fee of modifying the original design. The primary aim of this research work is to formulate practical procedures for the assessment of the structural design changes so that an enhancement can be made to the existing practice. The result of this study will put forward practical means of avoiding and resolving the disputes caused by the lack of appropriate method of assessing the fee of design changes. The review and investigation of this research work are to be carried out with the following objectives:

- (1) To identify the sources, the causes, and the impacts of the design changes on reinforced concrete buildings;
- (2) To establish corrective actions and preventive measures to minimise the avoidable design changes;
- (3) To identify and evaluate the various methods for assessing the fee of the structural design changes and to identify their limitations;
- (4) To develop an alternative method to assess the fee of the structural design changes for low rise RCC buildings;
- (5) To develop guidelines to improve the consultancy design documents; and
- (6) To develop guidelines to manage the design changes when they occur

1.4 Scope and Limitations of the Research

In this study, the proposed method for assessing the fee of the structural design changes is based on designing 12 number small scale low rise reinforced concrete buildings consisting of one floor to four floors. These buildings have already been constructed in the Sultanate of Oman prior to this study. The buildings under this research work have been designed using both manual calculations and STAAD Pro 2003 software and have been drafted by AutoCAD 2000 software. The investigation and the scopes of this study were carried out in the Sultanate of Oman and hence limited to the typical standard details and normal practice in the country. The finding can only be applied to these types of projects.

1.5 Brief Research Methodology

Research methodology provides a general plan and necessary steps to execute the research in a scientific manner. It is a logical model for collecting the information, analysing the data and interpreting the findings of the research. It is also the necessary methods that lead to achieve the aim and the objectives of the research. To this end, Figure 1.1 outlines a flow chart for the methodology of this research. A more detailed research methodology is discussed in Chapter 5.

1.6 Justification of the Research

The idea of this work came from the past experience and knowledge on the extent of the problems and the size of the claims associated with the structural design changes. In many cases, design changes lead to disputes due to lack of proper guidelines to manage them and lack of appropriate methods on their fee variation assessment. The topic went through progressive refinement taken into consideration the interest in the area of the study, findings of previous works as well as the professional opinion from the industry in order to explore areas of dissatisfaction. As a result of this initial investigation, the topic of this research is advanced to the state that it is delineated sufficiently for the aim and objectives of the research and importantly to make significant contribution to the subject.

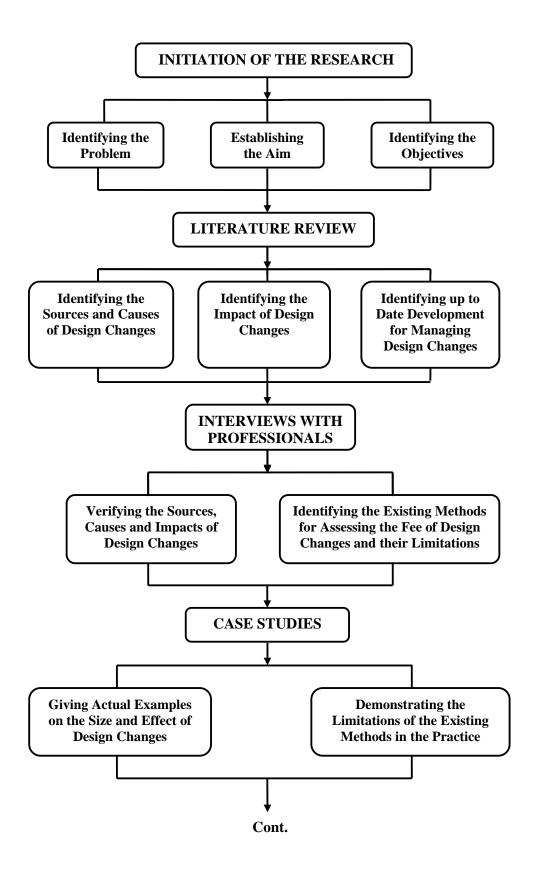


Figure 1.1 : Research Methodology Flow Chart

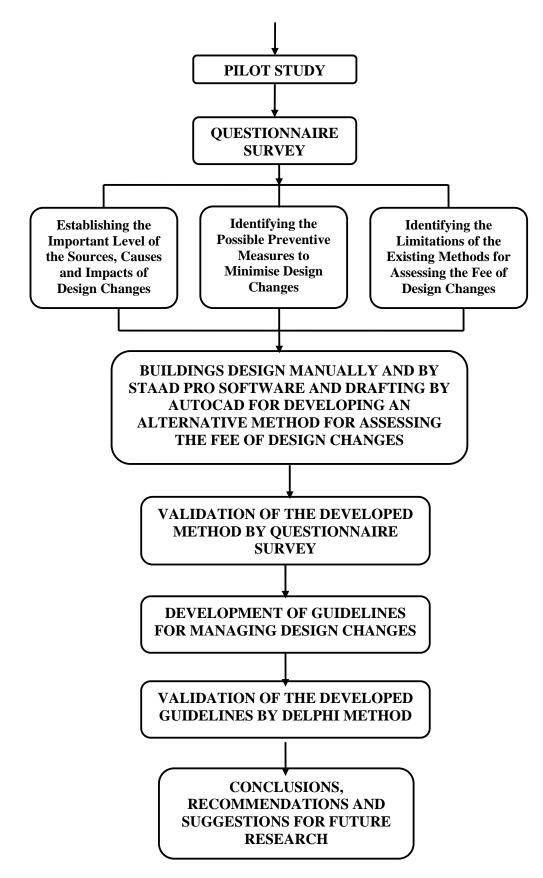


Figure 1.1 : Research Methodology Flow Chart (Continue)

1.7 Significance of the Study

The study is unique in the sense that no previous attempts have been made on the subject in spite of wide spread dissatisfaction associated with design changes, their impact and their fee assessment on reinforced concrete buildings. Surely it will improve the industry's understanding on the negative aspects that are related to design changes and help to reduce the possible disputes in this regard. The study will improve the efficiency, effectiveness and satisfaction in the construction practice and it will make a contribution to the construction industry in general and especially to the consulting engineering firms by developing a practical method of charging for design changes. The study will help define the related issues and directions that need to be addressed in the future.

1.8 Research Contributions

The main contribution of this study to the body of knowledge falls on the following aspects: Firstly, the study gives emphasis on identifying the sources, causes and impacts of design changes on reinforced concrete buildings as well as on establishing corrective actions and/or preventive measures to minimise the avoidable ones. This study has developed practical and reliable method for fee variation assessment that might be implemented by professionals to assess the fee of changing or modifying the original design of reinforced concrete buildings. In addition, it is anticipated that the study will provide set of guidelines to improve the current design contract documents with respect to design changes and another set of guidelines to manage their claims

1.9 Organization of the Thesis

This thesis comprises four major components which can be summarized as follows:

- Providing background, identifying the problems of design changes and reviewing their associated issues through literature searching;
- Investigating and validating the main topics related to this research work through interviews with the professionals working in the construction industry, case studies and a questionnaire survey;
- Making a contribution to the body of knowledge by developing an alternative method to assess the fee of the structural design change when they occur; and
- Providing practical guidelines to manage design changes.

The four main components of the research are presented in nine chapters and are briefly described as follow:

Chapter 1 introduces the background of the research, its aim and objectives. It also discusses the brief research methodology used; the research justification; the significant of the study; the contributions; the scope of the research and a brief summary on the structure of the thesis.

Chapter 2 presents the findings from the literature review. It focuses on the issues of design changes which include the following:

- definitions and classifications of the design changes;
- sources, causes and impacts of the design changes; and
- new developments for managing design changes

Chapter 3 focuses on the discussion related to the principle of consulting engineering practice. The emphasis is given to these issues:

- the definitions of the clients and the consulting engineers
- the reasons for consulting engineering services
- the services provided by the consulting engineers

• the method of charging for consulting engineering services

Chapter 4 presents an overview of the construction industry in the Sultanate of Oman from which the majority of the data for this study has been carried out. It gives basic information about Oman as a country; brief highlights on Omani economy; the construction sector in Oman and the consulting engineering services in the country.

Chapter 5 discusses the methodology adopted for this research. It starts by discussing the method used to justify the need for this research through the interviews with the professionals, case studies and questionnaire survey. Then it discusses the method used for data collection. An explanation was given to each method in term of their relation to the study, selection criteria and the anticipated result of each method.

Chapter 6 presents the data collection for the initial investigation to establish the extent of the problems associated with design changes and to justify the need for this research as perceived by the professionals in the industry. Interviews with professionals, three case studies and two stages questionnaire survey have been conducted and their results were presented in this chapter. In the interviews and in the case studies, the main problems of design changes have been identified as well as their causes, sources and impacts on the projects. From the results of the questionnaire survey, the significant level of the causes, sources and impacts of design change were identified along with the possible corrective measures to minimise them. The limitations of the existing methods are presented in this chapter as well.

Chapter 7 presents the development of the proposed method to assess the fee of the structural design changes in RCC buildings. It starts by highlighting the general approach that has been adopted for generating the data. The results have been shown in tables and illustrated graphically for comparisons. From the obtained data, a method for assessing the fee of the structural design changes has been developed. Practical examples to illustrate the use of the proposed method are provided. The

chapter also provides the result of the questionnaire survey that has been conducted for validating the developed method.

Chapter 8 discusses the development of guidelines to manage design changes. It also provides in details the findings from the Delphi study that has been used as a method to validate the developed guidelines.

Chapter 9 concludes the results of the research. Discussions are made on the achievement of the objectives of the study, on the contribution of the research to the existing knowledge and recommendations are made for future research on the subject.

REFERENCES

- Abd Majid, M. Z. and Mccafer R. (1997). Discussion of Assessment of Work Performance of Maintenance Contractors in Saudi Arabia. Journal of Management in Engineering, ASCE, 13(5): 91-92.
- Abd Majid, M. Z. (1997). Non-Excusable Delays in Construction. PhD. Thesis. Department of Civil and Building Engineering, Loughborough University Loughborough, Leicestershire, UK.
- Abou-zeid, A., Russell, J., Hanna, A. and Park, S. (1995). Data Flow Model for Communications between Project Participants in Highway Bridge Project. Canadian Journal of Civil Engineering, Ottawa, Canada, Vol. 22: 1224-1234.
- Adler, M. and Ziglio, E. (1996). *Gazing into the Oracle: The Delphi Method and its Application to Social Policy and Public Health*. Jessica Kingsley Publishers, Bristol, London pp358-362
- **Al-Dubaisi**, A. H. (2000). *Change Orders in Construction Projects in Saudi Arabia*. MSc Thesis, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.
- **Al-Husaini,** M. K. (2005). *The Construction Sector: The Actual and Expectation*. Oman Chamber of Commerce and Industry, Sultanate of Oman
- Akinsola, A. O., Potts, K. F., Ndekugri, I. and Harris, F. C. (1997). Identification and Evaluation of Factors Influencing Variations on Building Projects. International Journal of Project Management, 15(4): 263-267.
- **Al-Momani**, A. H. (2000). *Construction Delay: a Quantitative Analysis*. International Journal of project Management, Vol. 18: 51-59.
- American Consulting Engineers Council, ACEC, (1982).
- American Society of Civil Engineers (1985). ASCE, New York, NY, USA.
- American Society of Civil Engineers, Manual and Reports on Engineering Practice No. 45, (1988). Consulting Engineering: A Guide for the Engagement of Engineering Services. ASCE, New York, NY, USA.
- Anderson, S. D. and Tucker, R. L. (1994). Improving Project Management of Design. Journal of Management Engineering, 10(4): pp35-44.
- Anumba, C. J. (2000). Integrated Systems for Construction: Challenges for the Millennium. Proceedings of the International Conference on Construction Information Technology, Hong Kong, 8-92.

- Arditi, D., Akan, G. T. and Gurdamar, S. (1985). *Reasons for Delays in Public Projects in Turkey*. Construct Management Economics, Vol. 3: UK, 171-181.
- Assaf, S. A., AlKhalil, M. and Al-Hazml, M. (1995). *Causes of Delay in large Building Construction Projects*. Journal of Management in Engineering, ASCE, Vol. 11, No. 2, pp45-50.
- Association of Consulting Engineers Malaysia, (1998). *Explanatory Guide to the Use of BEM Forms and Scale of Fees*. Kuala Lumpur, Malaysia.
- Austin, S. A., Baldwin A. N., Li, B. and Waskett, P. (2000). *Analytical Design Planning Technique: A Dependency Structural Matrix Tool to Schedule the Building Design Process*. Construction Management Economics, Vol. 18, pp173-182.
- Austin, S. A., Baldwin A. N. and Steele, J. L. (2002). *Improving Building Design through Integrated Planning and Control*. Engineering, Construction and Architectural Management, Vol. 1.9, No. 3, pp 249-258.
- **Baldwin,** A. N., Austin, S. A., Hassan, T. M. and Thorp, A. (1999). *Modelling Information Flow During Conceptual and Schematic Stages of Building Design*. Construction Management Economics, Vol. 17, pp155-167.
- **Baxendale,** A. T. and Schofield, T. J. (1996). *Planning and Progressing Project Variations in Langford and Retik.* The Organization and Management of Construction: Shaping theory and practice, Vol. 2, E & FN SPON, UK.
- **Beech**, B. (1999). *Go the Extra Mile-Use Delphi Technique*. Journal of Nursing Management, Vol. 7, pp 281-288.
- **Biech**, E. (1999). *Business of Consulting*. Jossey-Bass/Pfeiffer, San Francisco, CA, USA.
- **Blockley**, D. I. (1986). *Report of the Working Group on Error Control strategies: Modelling Human Error in Structural Design and Construction*. National Science Foundation, Washington, D.C. USA.
- **Borcherding,** J. D. (1976). *Improving Productivity in Industrial Construction*. Journal of the construction Division, Proceeding of The American Society of Civil Engineers, 102(C04): USA.
- **Bramble**, B. B. and Cipollini, M. D. (1995). *Resolution of Disputes to Avoid Construction Claims*. Transportation Research Board, National Research Council, Washington D.C. USA.
- **Brockhaus**, W. L. and Mickelsen, J. F. (1977). An Analysis of Prior Delphi Applications and some Observations on its Future Applicability. Technical Forcast. Social Change, Vol. 10, pp. 103-110

- **Bromilow**, F.J. (1970). *The Nature and Extend of Variations to Building Contracts*. The Building Economist, Vol. 9, No. 3, pp 93-118.
- **Bryman,** A. (1996). *Quantity and Quality in Social Research*. Routledge, London, pp201-212
- **BS, 8110,** British Standard, Part 1: (1997). *Structural use of Concrete, Code of Practice for Design and Construction.*
- Bubshait, A. A., Al-Said, F. A. and Abolnour, M. M. (1998). Design Fee Versus Design Deficiency. Journal of Architectural Engineering, ASCE, Vol. 4, No. 2 pp 44- 46.
- **Burati,** J. L., Farrington, J. J. and Led, W. B. (1992). *Causes of Quality Deviation in Design and construction*. Journal of Construction Engineering and Management, ASCE, Vol. 118, No.1, pp 34-49.
- **Burgess**, R. G. (1984). *In the Field: an Introduction to Field Research*. London, Allen and Unwin, UK, pp 23-37
- **Caballero**, A. A., Ahmed, S. M., Azhar, S. and Barcala, M. (2002). *Development* of An Information Model to Enhance Integration and Coordination in the *Construction Projects*. Florida International University, 10555 W. Flagler Street, Miami, Florida 33174, USA.
- **Cariappa**, A. (2000). *The Effects of Contract Changes on Performance of Construction Projects*. MSc Thesis, The University of New Brunswick, Canada.
- **Chan**, D. W. and Kumaraswamy, M. M. (1994). A Survey of Time-Cost *Relationships in Hong Kong Construction Projects*. Building Technology and Management Journal, Vol. 20: 54-72.
- Chan, D. W. and Kumaraswamy, M. M. (1995). *Determinants of Construction Duration*. Construction Management and Economics, Vol. 13, No. 3, pp209-217.
- **Chan**, D. W. and Kumaraswamy, M. M. (1996). *An Evaluation of Construction Time Performance in the Building Industry*. Building and Environment, Vol. 31, No. 6, pp569-578.
- Chang, A. S. (2002). Reasons for Cost and Schedule Increase for Engineering Design Projects. Journal of Management in Engineering, ASCE, Vol. 18, No. 1, pp 29-36.
- Charles, T. J. and Andrew, M. A. (1990). Prediction of Cost-Overrun Rates. Journal of Construction Engineering and Management, ASCE, Vol. 116, No.3, pp 74 -81.
- Choy, W. K. and Sidwell, A. C. (1991). *Sources of Variations in Australian Construction Contracts*. The Building Economist, pp25-30.

- **Cockman**, P., Evans, B. and Reynolds, P. (1992). *Client-Centred Consulting*. Mcgraw-Hill Book Company Europe, England.
- **Cohen**, S. (1982). *Consulting Engineering Practice Manual*. Mcgraw-Hill, Inc. New York. USA.
- **Construction** Engineering Council, (1993). *The Procurement of Professional Services*. Thomas Telford Services LTD, USA.
- **Construction** Industry Institute (CII), Publication 6-10, (1990). *The Impact of Changes on Construction Cost and Schedule*. The University of Texas at Austin, Texas, USA.
- **Construction** Industry Institute (CII), Special Publication 43-1, (1994). *Project Change Management*. The University of Texas at Austin, Texas, USA.
- **Construction** Industry Institute (CII), Publication 43-2, (1995). *Quantitative Effects* of project Change. The University of Texas at Austin, Texas, USA.
- **Contractors'** Directory (1991). Oman Chamber of Commerce and Industry. Sultanate of Oman
- **Corotis,** R., Fox, R. and Harris, J. (1981). *Delphi Methods: Theory and Design Load Application*. Journal of the Structural Division, ASCE, Vol. 107, No. 6, pp 95-105.
- **Cox,** R. K. (1997). *Managing Change orders and Claims*. Journal of Management in Engineering. January/February Issue, ASCE, 24-29.
- **Dalkey**, N. C., Rourke, D. L., Lewis, R. and Sayder, D. (1972). *Studies in The Quality of Life*. Lexington Books, Lexington, Mass, USA
- **Defence** Construction Canada, DCC, *Administration Manual*, (DND, 1992). pp 23-24.
- **Delbeeq**, A. L. and Gustafson, D. H. (1975). *Group Techniques for Programme Planning: A Guide to Nominal Group and Delphi Process*. Scott Foresman Publishers, Glenview, ILL, USA.
- **Demkin**, J. A. (2002). *The Architect's Handbook of Professional Practice*. 13th Edition, John Wiley & Sons, Inc. USA.
- **Dickey**, J. and Watts, T. (1978). *Analytic Techniques in Urban and Regional Planning*. McGraw-Hill, New York. pp 87-94.
- **Dietz**, T. (1987). *Methods for Analysing data from Delphi Panels: Some Evidence from a Forecasting Study*. Technology Forecasting, Social Change, Vol. 31, pp79-85.

- **Diekmann,** J. E. and Nelson, M. P. (1992). *Super Change: Expert System for Analysis of Change Claims*. Journal of Construction Engineering and Management, ASCE, Vol. 111, No.1, pp 74-81.
- **Draft**, R. L. (1986). *Organization Theory and Design*. 2nd Edition, West Publishing Co., St. Paul, Minnesota, USA, pp120-131.
- **Dreger**, G. T. (1993). *Design-Build Procurement: Strategies for Success*. Proceeding of CIB W-65 on Organization and Management of Construction: The Way Forward, University of the West Indies, Port of Spain, Trinidad, Spain, pp749-757.
- Eddy, M. R. and Amlan, M., (2003). *Modeling the Construction Management Process to Support Situational Simulations*. Journal of Computing in Civil Engineering, ASCE, Vol. 17, No. 4, Pp273-280.
- **Eisenhardt,** K. M. (1989). *Building Theories from Case Study Research*. Academic Management Rev. Vol. 14, No.4, pp532-550.
- **Eldin,** N. N. (1991). *Management of Engineering/Design Phase*. Journal of Construction Engineering and Management, ASCE, Vol. 117, No.1, pp163-175.
- **Elinwa,** A. U. and Buba, S. A. (1993). *Construction Cost Factors in Nigeria*. Journal of Construction Engineering and Management, ASCE, Vol. 119, No.4 pp698-713.
- **Emmitt,** S. (2001). *Observing the Act of Specification*. Design Studies, ASCE Vol. 22, No.5, pp397-408.
- Essex, R. J. (1996). *Means of Avoiding and Resolving Disputes During Construction*. Tunnelling and Underground Space Technology, Vol. 11, pp27-31
- Federal Construction Council (1983). Consulting Committee on Contract Management, Technical Report No. 74. *Managing Changes in the Construction Process*. National Academy Press. Washington D.C. USA.
- **Fellows**, R and Liu, A. (1997). *Research Methods for Construction*. Blackwell Science Ltd, UK.
- Finke, M. R. (1998). A Better Way to estimate and Mitigate Disruption. Journal of Construction Engineering and Management, ASCE, Vol. 124, No.6, pp490-497.
- **Fisk**, E. R. (2000). *Construction Project Administration*. 6th Edition, Prentice Hall Upper Saddle River, New Jersy, Columbus, Ohio. USA, pp456-475.
- Frimpong, Y., Oluwoye, J. and Crawford, L. (2003). Causes of Delay and Cost Overruns in Construction of Groundwater Projects in a Developing Countries; Ghana as a Case Study. International journal of Project Management, Vol. 21, pp321-326.

- Ganeshan, R., Garrett, J. and Finger, S. (1994). A Framework for Representing Design Intent. Design Studies, Vol. 15, No.1, pp59-84.
- Garrat, S. (1991). *How to become a Consultant*. Gower Publishing Company Limited, U.K.
- Gilbreath, R. D. (1992). Managing Construction Contracts. Second Edition, John Wiley & Sons, Inc., New York, USA, 179-180.
- Gil, E., Lucchesi, E., Tauber, G. and Onderdonk, D. (1983). *Working with Consultants*. American Planning Association., Chicago, IL, USA.
- **Goldfisher**, F. (1992). *Modified Delphi: A Concept for New Product Forcasting*. Journal of Business Forecasting, Vol. 11, No. 4, pp 10-15
- **Goldstein**, N. (1975). *In the Delphi Techniques and Applications*. Addison Wesley, Reading, MA, USA, pp210-226.
- **Granovetter**, M. (1985). *Economic Action and Social Structure: The Problem of Embeddedness*. American Journal of Sociology, Vol. 9, No. 13, pp481-510.
- Gunhan, S. and Arditi, D. (2005). International Expansion Decision for Construction Companies. Journal of Construction Engineering and Management, ASCE, Vol. 131, No. 8, pp928-937.
- Hanna, A. S., Russell, J. S. and Gotzion, T. W. (1999). Impact of Change Orders onLabour Efficiency for Mechanical Construction. Journal of Construction Engineering and Management, ASCE, Vol. 125, No. 3, pp176-183.
- Hashimoto, T. (1993). Problem on Design Production for Building Construction: Sharing Roles and Information Among Designers and Builders. Forum for Japanese System, pp49-56.
- Hartman, F. T. and Baldwin, A. (1995). Using Technology to Improve Delphi *Method*. Journal of Computing in Civil Engineering, ASCE, Vol. 9, No. 4, pp244-249.
- Hess, G. R. and King, T. J. (2002). Planning Open Spaces for Wildlife I: Selecting Focal Species using Delphi Survey Approach. Landscape and Urban Planning, Vol. 58, USA, pp25-40
- Hester, W. T., Kuprenas, J. A. and Chang, T. C. (1991). *Construction Change Orders: Their Magnitude and Impact*. Construction Industry Institute, The University of Texas at Austin, Texas, USA.
- Hegazy, T., Zaneldin, E. and Grierson, D. (2001). *Improving Design Coordination* for Building Projects. I: Information Model. Journal of Construction Engineering and Management, ASCE, Vol. 127, No. 4, pp322-329.

- Hew, K. P., Fisher, N., and Awbi, H. B. (2001). Toward an Integrated Set of Design Tools Based on Common Data Format for Building and Services Design. Automation in Construction, Vol. 10, pp459-476
- **Hibberd**, P. R. (1982). *Building Contract: Variations*. MSc Thesis. The Victoria University of Manchester, Manchester, UK
- Hoon, L. P. (1979). Criteria for Selecting of Consultants with Special Reference to Water Resources Development Study/Project. Seminar on Appointment of Consultants, Kuala Lumpur, Malaysia.
- **Hurley,** M. W. and Touran, A. (2002). *Cost Structure and Profitability of Design Services Industry*. Journal of Management in Engineering, ASCE, Vol. 18, No. 4, pp167-172.
- **Ibbs**, C. W. and Allen, W. E. (1995). *Quantitative Impacts of Project Change*. Source Document 108, Construction Industry Institute, The University of Texas at Austin, Texas, USA.
- **Ibbs**, C. W. (1997). *Quantitative Impact of Project Change: Size Issues*. Journal of Construction Engineering and Management, ASCE, Vol. 123, No. 3, pp308-311.
- Jehn, K. A., and Shah, P. P. (1997). Interpersonal Relationships and Task Performance: An Examination of Mediating Process in Friendship and Acquaintance Group. Journal of Personality and Social Psychology, Vol. 72, No. 4, pp775-790
- **Jergeas**, G. F. and Hartman, F. T. (1994). *Contractors' Construction-Claims Avoidance*. Journal of Construction Engineering and Management, ASCE, Vol. 120 No. 3, pp553-561
- **Kartam,** S. (1999). *Generic Methodology for Analyzing Delay Claims*. Journal of Construction Engineering and Management, ASCE, Vol. 125, No.6, pp409-419.
- Kelvin, Y. (1996). *Project Control: Cost/Schedule/Progress Management*. Cost Engineering, Vol. 38, UK
- Kirby, J. G., Furry, D. A. and Hiks, D. K. (1988). *Improvements in Design Review Management*. Journal of Construction Engineering and Management, ASCE, Vol. 114, No.1, pp69-82
- **Kolarevic** B. Schmitt, G. Hirschberg, U. Kurmann, D. and Johnson, B. (2000). *An Experiment in Design Collaboration*. Automation in Construction, Vol. 9. pp 73-81.
- Kometa, S. T. Olomolaiye, P. O. and Harris, F. C. (1995). An Evaluation of Clients' Needs and Responsibilities in the Construction Process. Engineering, Construction and Architectural Management, Vol. 2, No. 1, pp57-76

- Krishnamurthy, K. and Law, K. (1995). A Data Management Model for Design Change control. Concurrent Engineering Research and Applications, Vol. 3, No. 4, pp329-343
- Kubr, M. (1993). *How to Select and Use Consultants*. International Labour Office, Geneva.
- Kumarasivam, K. (1979). *Remuneration and Conditions of Contracts*. Seminar on Appointment of Consultants, Kuala Lumpur, Malaysia.
- Kuprenas, J. A. (2003). Project Management Actions to Improve Design Phase Cost Performance. Journal of Management in Engineering, ASCE, Vol. 19, No. 1, pp 25-32
- Latham, M. (1994). Constructing the Team. HMSO, London, UK.
- Leonard, C. A. (1987). *The Effect of change orders on Productivity*. Revay and Associates, LTD., Montreal, Canada
- Leonard, C. A. Fazio, P. and Moselhi, O. (1988). *Construction Productivity: Major Causes of Impact.* AACE Transactions, New York, NY, ppD10.1-D10.7
- Ling, Y. Y. Ofori, G. and Low, S. P. (1997). Developing a Model for Selection of Consultants by Design-and-Build Contractors: A Pilot Study. Proceeding of 1st International Conference on Construction Industry Development: Build the Future Together. National University of Singapore, Singapore, pp374-382.
- Ling, Y. Y. and Tan, Y. W. (2001). Relevance of Network Factor in Selection of Consultants. Journal of Professional Issues in Engineering Education and Practice". Vol. 127, No. 4, pp 190-195
- Linstone, H. and Turoff, M. (1975). *The Delphi Method: Techniques and Applications*. Addison Wesley, Reading, MA, pp.3-12
- Loo, K. (1979). *Remuneration and Conditions of Contracts*. Seminar on Appointment of Consultants, Kuala Lumpur, Malaysia.
- Love, P. E., Holt, G. D., Shen, L.Y., Li, H. and Irani, Z. (2002). Using System Dynamics to Better Understand Change and Rework in Construction Project Management Systems. International Journal of project Management, Vol. 20 pp425-436
- Lutz, J. D., Hancher, D. H. and East, E. W. (1990). *Framework for Design* -*Quality- Review Data-Base System*. Journal of Management in Engineering, ASCE, Vol. 6, No. 3, pp 296-311
- Mason, J. (1996). *Qualitative Researching*. SAGE Publications Ltd, 6 Bonhill Street, London, EC2A 4PU, UK, pp35-47

- Mayer, R. R. (1980). *The Design of social Policy Research*. Printice-Hall, Inc., Englewood Cliffs, N.J. 07632, USA, pp8-17
- McDermott, P. and Dodd, J. (1984). *The Sources, Causes and Effects of Variations on Building Contracts.* Final Report of a Study Supported by Science and Engineering Research Council, Construction Study Unit, Brunel University, Uxbridge, UK.
- Meyers, J. (1994). *Changes Resulting from Delays*. Construction Change Order Claims, John Wiley and Sons, Inc., Somerset, NJ, USA, pp213-220.
- **Mendenhall**, W., Reimuth, J. and Beaver, R. (1993). *Statistics for management and Economics*. 7th edition, Duxbury Press. Belmont, CA, USA
- Merrill, W. E. (1982). *Air Force Construction Contract Disputes*. Report No. LSSR 88-82, U.S Department of Commerce, USA
- Mitchell, J. C. and Eschenbach, T. G. (1999). *Compensation of Consulting Engineers: Legalities and Realities*. Journal of Management in Engineering, ASCE, Vol. 15, No. 1, pp 66-73
- **Mitchell**, V. W. (1991). *The Delphi Technique: An Exposition and Application*. Technical Analysis Strategy Management, Vol. 3, No.4, pp333-358
- **Mobbs**, G. N. (1989). *The Influence of Global investment or the decline of the British Commercial imperialism.* Public Lecture Series in Estate Management, Collage of Estate Management, Reading, UK
- Mokhtar, A. H. (1998a). An Information Model for Managing design Changes in a Collaborative Multi-Disciplinary Design Environment. PhD Thesis, Concordia University, Montreal, Quebec, Canada.
- Mokhtar, A., Bedard, C. and Fazio, P. (1998b). *Information Model for Managing Changes in a Collaborative Environment*. Journal of Computing in Civil Engineering, ASCE, Vol. 12, No. 2, pp82-92.
- Mokhtar, A. H. M. (2002). *Coordination and Customizing Design Information through the Internet*. Engineering Construction and Architectural Management, Vol. 9, No. 3 pp222-231
- Moony, R. (1995). A call for Quality in Engineering Business. Journal of Computing in Civil Engineering, ASCE, Vol. 9, No. 3, pp191-193
- Morgan, D. L. (1998). *The Focus Group Guidebook*. Focus Group Kit 1, Sage, Beverly Hills, CA.
- Moselhi, O., Leonard, C. and Fazio, P. (1991). *Impact of Change Orders on Construction Productivity*. Canadian Journal of Civil Engineering, Vol. 18, No.3, pp 481-492.

- **Mosley**, W. H., Bungey, J. H. and Hulse, R. (1999). *Reinforced Concrete Design*. 5th Edition, Palgrave, New York, USA, pp220-241
- Newcombe, R., Langford, D. and Fellows, R. (1996). *The Sources, Causes and Effects of Variations on Building Construction Study Unit.* Brunel University, Uxbridge, UK
- **Nordin**, B. (1979). *Procedure and Criteria for Selecting and Appointment of Consultants*. Seminar on Appointment of Consultants, Kuala Lumpur, Malaysia.
- **Ogunlana,** S. O., Promkuntong, K. and Jearkjirm, V. (1996). *Construction Delays in a Fast-Growing Economy: Comparing Thailand with other Economies*. International Journal of project Management, Vol. 14, No. 1, pp37-45
- **Okpala**, D. C. and Aniekwu, A. N. (1988). *Causes of High Costs of Construction Projects in Nigeria*. Journal of Construction Engineering, Vol. 114 No. 2, pp233-244
- Oman Chamber of Commerce and Industry (2005). Sultanate of Oman
- **Patton**, M. Q. (1987). *How to Use Qualitative Methods in Evaluation*. SAGE Publications Ltd, 6 Bonhill Street, London, EC2A 4PU, UK, pp7-22
- **Peltonen**, H., Mannisto, T., Alho, K. and Sulonen, R. (1993). *An Engineering Document Management System*. Proceeding of American Society of Mechanical Engineers, Winter Annual Meeting, New York, USA
- Pena-Mora, F., Sriram, D. and Logcher, R. (1995). Design Rationale for Computer- Supported Conflict Mitigation. Journal of Computing in Civil Engineering, ASCE, Vol. 9, No. 1, pp57-72
- **Pocock**, J.B., Liu, L. Y. and Kim, M. K. (1997). *Impact of Management Approach on Project Interaction and Performance*. Journal of Construction Engineering and Management, ASCE, Vol. 123, No. 4, pp411-418.
- **Ramanath**, A. (1979). *Criteria for Selecting of Consultants and Position of Foreign Consultants*. Seminar on Appointment of Consultants, Kuala Lumpur, Malaysia.
- Ray, S. S. (1995). Reinforced Concrete Analysis and design. First edition, Black well Science Ltd, Australia, pp215-292
- **Reynolds**, C. E. and Steedman, J. C. (1988). *Reinforced Concrete Designer's Handbook.* 10th Edition, Rupa Paperback, India, pp 206-216
- **Rezgui**, Y. and Debras, P. (1995). *An Integrated Approach for a Model Based Document Production and Management*. Electronic Journal of Information Technology in Construction, www/itcom.org
- **Robinson**, J. B. L. (1991). *Delphi Technology for Economic Impact Assessment*. Journal of Transportation Engineering, Vol. 117, No. 3

- Sinha, S. N. (2002). Reinforced Concrete Design. Second Edition, Tata McGraw -Hill Publishing Company Limited, New Delhi, India, pp301-391
- Smith, M. A. (1996). Construction Insurance, Bonding & Risk Management. McGraw-Hill, New York, USA
- Soh, C. K. and Wang, Z. (2000). Parametric Coordinator for Engineering Design. Journal of Computing in Civil Engineering, ASCE, Vol. 14, No. 4, pp233-240
- Southgate, T. (1988). *Cost Planning a New Approach*. Chartered Quantity Surveyors, Journal of the RICS, Vol. 9, No. 10, pp32-38.
- Spooner, D. and Hardwick, M. (1993). Using Persistent Object Technology to Support Concurrent Engineering System. Concurrent Engineering: Methodology and Applications, P. Gu and A. Kusiak, eds., Elsevier Science, Amsterdam, pp205-234
- Ssegawa, J. K., Mfolwe K. M., Makuke, B. and Kutua, B. (2003). Construction Variations: A Scourge or a Necessity?. Civil Engineering Department, University of Botswana, Gaborone, Botswana, pp81-90.
- Stanley, C. M. (1982). The Consulting Engineer. Second Edition, John Wiley & Sons, Inc. USA
- Statistical Year Book (August 2002). Ministry of National Economy, Sultanate of Oman
- Statistical Year Book (August 2003). Ministry of National Economy, Sultanate of Oman
- Statistical Year Book (October 2004). Ministry of National Economy, Sultanate of Oman
- Sullivan, A. and Harris, F. C. (1986). Delays on Large Construction Projects. International Journal of Operation Prod. Management, Vol. 6, No. 1, pp25-33
- Teicholz, P. and Fisher, M. (1994). Strategy for Computer Integrated Construction Technology. Journal of Construction Engineering and Management, ASCE, Vol. 120, No. 1, pp117-131
- **The Institute of Civil Engineers**, (1996). Civil Engineering Procedure, Fifth Edition, Thomas Telford, UK, pp49-61
- **The Standard** Form of Agreement and Conditions of Engagement for Consultancy Services for Building and Civil Engineering works, Sultanate of Oman (1987)
- Thomas, H. R. and Napolitan, C. L. (1995). Quantitative Effects of Construction Changes on Labor Productivity. Journal of Construction Engineering and Management, ASCE, Vol. 121, No. 3, pp290-296

- Thomas, H. R., Korte, Q. C., Sanvido, V. E. and Parfitt, M. K. (1999). Conceptual Model or Measuring Productivity of Design and Engineering. Journal of Architectural Engineering, ASCE, Vol. 5, No. 1, pp1-7.
- Trickey, G. and Hackett, M. (2001). *The Presentation and Settlement of Contractor's Claims*. Spon Press, London, UK, pp311-320
- Turner, D. (1984). Standard Contracts for Building. George Godwin, England
- **Valkenburg**, R. C. (1998). *Shared Understanding as a Condition for Team Design*. Automation in Construction, Vol. 7, pp111-121.
- Vries, B. and Somers, L. (1995). *Message Exchange in the building Industry*. Automation in Construction, Vol. 4, pp91-100
- Williams, A. P. O. and Sally, W. (1994). *Competitive Consultant*. The Macmillan Press LTD. UK.
- Williams, P. L. and Webb, C. (1994). *The Delphi Technique: A Methodological Discussion*. Journal of Advanced Nursing, Vol. 19, pp180-186.
- Wilson, R. L. (1982). *prevention and Resolution of Construction Claims*. Journal of Construction Division Vol. 108, No.CO3 pp390-405
- Yeung, I. Y. and Tung, R. L. (1996). Achieving Business Success in Confucian Society: The Important of Connections. Organizational Dyn., Vol. 25, No., 2, pp 54-65
- **Yogeswaran**, K. (1998). Sources, Causes and Minimisation of Contractual Claims in Civil Engineering Projects in Hong Kong. PhD Thesis, The University of Hong Kong Hong Kong.
- Zaki, M. K. and James, E. D. (1987). Concurrent Delays in Construction Projects. Journal of Construction Engineering and Management, ASCE, Vol. 113, No. 4, pp120-126
- Zaneldin, E., Hegazy, T. and Grierson, D. (2001). Improving Design Coordination for Building Projects. II: A Collaborative System. Journal of Construction Engineering and Management, ASCE, Vol. 127, No. 4, p330-336.
- **Zeitoun**, A. and Oberlender, G. (1993). *Early Warning Signs of Project Changes*. Oklahoma State University, CII Source Document No. 91. USA
- Zhang, X. (2004). Concessionaire Selection: Methods and Criteria. Journal of Construction Engineering and Management, ASCE, Vol. 130, No. 2, pp235-244