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ABSTRACT 

 
 
 
 

The aim of deregulation in the electric power industry is to optimize the 

system welfare, by introducing competitive environment, mainly among the 

suppliers.  Developing fair and equitable real and reactive power allocation method 

has been an active topic of research, particularly in the new paradigm, with many 

transactions taking place at any time.  This thesis suggests two new methodologies to 

allocate real and reactive power output of individual generators to system loads and 

flows. Both allocation procedures presented can be used independently in 

deregulated power systems.  It is based on current operating point of the system, 

computed through AC load flow program.  The proposed reactive power allocation 

methodology adopts current tracing, instead of power tracing.  Based on solved load 

flow and the network parameters, the method converts power injections and line 

flows into real and imaginary current injections and flows.  These currents are then 

represented independently as real and imaginary current networks.  Since current 

networks are acyclic lossless networks, proportional sharing principle and graph 

theory is used to trace the relationship between current sources and current sinks.  

From this relationship of current components of individual generators, it is possible 

to find reactive power contribution of each generator.  This current tracing method 

can also be applied for real power allocation, with a few modifications.  The second 

method is mainly applied for real power allocation.  The method first clusters the 

system into small groups of buses.  Then an appropriate conventional power flow 

tracing procedure is adopted to obtain the contribution factors within each cluster of 

buses. The choice of the chosen algorithm depends on their limitations and 

suitability.  The advantages of the proposed methodologies are demonstrated on 

commonly used test systems and actual TNB 222 bus system.  The proposed 

methodologies provide better reliability and minimize the limitations of conventional 

real and reactive power allocation methods. 
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ABSTRAK 

 
 
 
 

Matlamat penyahaturan industri kuasa elektrik adalah untuk mengoptimum- 

kan kebaikan sistem tersebut, dengan memperkenalkan suasana yang kompetitif, 

terutamanya kepada para pembekal. Pembangunan kaedah peruntukan kuasa aktif 

dan reaktif yang adil dan saksama telah menjadi tajuk penyelidikan yang aktif, 

terutamanya di dalam paradigma baru, dengan banyak transaksi  pada sesuatu masa. 

Tesis ini mencadangkan dua kaedah baru untuk memperuntukkan kuasa keluaran aktif 

dan reaktif daripada setiap penjana kepada beban dan aliran sistem.  Kedua-dua kaedah 

tersebut boleh digunakan secara berasingan di dalam sistem kuasa ternyahaturan.  Ianya 

berdasarkan kepada titik operasi semasa sistem tersebut yang dikira melalui aturcara 

aliran beban AU.  Kaedah peruntukan kuasa reaktif yang dicadangkan menggunapakai 

pengesanan arus dan bukannya pengesanan kuasa.  Berdasarkan kepada aliran beban 

yang telah diselesaikan dan parameter rangkaian, kaedah tersebut menukarkan suntikan 

kuasa dan aliran talian kepada suntikan dan aliran arus.  Arus ini kemudiannya diwakili 

secara berasingan sebagai arus rangkaian sahih dan khayal.  Disebabkan rangkaian arus 

adalah rangkaian bukan kitaran tanpa kehilangan, prinsip perkongsian yang berpatutan 

dan teori graf digunakan untuk mengesan perkaitan di antara sumber dan destinasi 

arus.  Daripada perkaitan komponen arus bagi setiap penjana tersebut, sumbangan 

kuasa reaktif daripada setiap penjana boleh didapati.  Kaedah pengesanan arus boleh 

juga digunakan untuk peruntukan kuasa aktif dengan beberapa pengubahsuaian.  

Kaedah kedua pula khususnya digunakan untuk peruntukan kuasa aktif.  Pertamanya 

kaedah ini merungkaikan sistem tersebut kepada kumpulan-kumpulan bas yang kecil. 

Kemudian, prosedur pengesanan aliran kuasa konvensional yang sesuai digunapakai 

untuk memperolehi faktor sumbangan di dalam setiap kumpulan bas.  Pilihan  sesuatu 

algoritma bergantung kepada batasan dan kesesuaiannya. Kelebihan kaedah yang 

dicadangkan ditunjukkan dengan sistem ujian yang biasa digunakan dan sistem TNB 

222 bas.  Kaedah yang dicadangkan memberikan keboleharapan yang lebih baik dan 

meminimumkan had kaedah peruntukan kuasa aktif dan reaktif konvensional.   
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 

 
1.1 Motivation  

 
 
The electricity supply industry (ESI) throughout the world, which has long 

been regarded as the largest regulated monopoly, is undergoing enormous changes.  

The ESI is evolving into a distributive and competitive industry, with the aim to 

improve system efficiency and reduce energy cost, through increased competition 

among the industry participants. 

 

Technology improvement, market pressure, politics and legislative initiatives 

are the driving forces that facilitate the modern deregulation and reform in the ESI.  

The primary steps undertaken in the deregulation process are functional unbundling 

of generation, transmission and distribution segments.  There are, in addition, major 

developments underway to bring about full competition in many sectors of electricity 

business, including the implementation of nondiscriminatory transmission open 

access and unbundling of ancillary services to name a few.  The experience gained 

since last decade and the recent movements unveils the success of the deregulation 

process. But this success is achieved not without crisis and challenges. 

 

Deregulation and unbundling of major entities and services in the ESI 

worldwide has given rise to new problems.  Many new concepts and terminologies in 

the field of power systems had to be reevaluated.  A major criticism of the early 

models was that it did not address crucial issues such as the use of system charges 

and transmission losses on a sound engineering basis.  Indeed, at that time of 

deregulation, the issue was deemed as too complicated to have a viable solution [1]. 
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Since the new regime is still young, many technical and economical issues 

are yet to be solved.  It is the unbundling and transmission open access that provides 

the motivation for the work of this research. 

 

This thesis focuses on the allocation of unbundled services in the multi 

transaction power systems.  The three services addressed in the thesis are reactive 

power support service, transmission usage and real power loss.  Besides, it also 

contributes to the development of new tools for analysis of the above mentioned 

services. 

 
 
 
 

1.2 Power System Deregulation:  A Global Perspective 
 
 
Historically, the electricity industry was a monopoly industry with a vertical 

structure.  In such a structure, when consumers wanted to buy electrical energy, they 

had no choice.  Consumers had to buy it from the utility that held the monopoly for 

the supply of electricity in the areas where they were located.  This means that, the 

utility that generated the electrical energy, transmitted it from the power plant to the 

load centers and distributed to the individual customers.  Such utility companies 

could be state owned or private, and they are classified as vertically integrated utility 

(VIU).  The rates of the VIUs were set by the regulatory agencies and were cost-

based.   

 

Electric utilities operating under this model made truly remarkable 

contributions to the economic activity and quality of life.  For several decades, the 

amount of energy delivered by these networks doubled about every eight years and in 

many parts of the world, an average customer of electricity deprived from the service 

has been dropped to less than 2 minutes per year [2]. 

 

Until last decade, it was almost unimaginable that the ESI could be anything 

other than a vertical monopoly.  The economies of scale of large power plants, the 

integrated nature of power systems and the fact that electricity, unlike other 

commodities, could not be stored, all pointed to the logic of having only one 
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vertically integrated service provider to perform all industry functions (other than 

perhaps local level distribution).  A vertical monopoly barred customer choice, the 

transaction costs of a multiplicity of rival and independent players competing against 

each other in a market. 

 

In the 1980s, some economists started arguing that the monopoly status of the 

ESI had run its cause.  They said that the monopoly status of the ESI removed the 

incentive to operate efficiently and encourage unnecessary investments.  There are 

other different forces that have driven the power market towards the deregulation.  It 

include changes in generation technologies, availability of advanced information and 

communications technologies, improvement of transmission technologies, customer 

demand for greater reliability and better and more innovative service, and politics 

[2]. 

 

Despite an early attempt by Chile in 1982, the tsunami of ESI deregulation 

stems from United Kingdom in 1989.  Under the Electricity Act of 1989 Central 

Electricity Generating Board was split into four companies: the National Grid 

Company (NGC), PowerGen, National Power, and Nuclear Electric.  Among these 

new companies, transmission facilities and functional operation of the grid were 

transferred to NGC; generation assets were transferred to the other three firms.  The 

Office of Energy Regulation (OFFER) was organized as the UK electricity industry 

regulator, in April 1990.  The operation mode of the new model was a mandatory 

pool market. 

 

On January 1st, 1999, the roles of OFFER and the Office of Gas Supply 

merged in the formation of the Office of Gas and Electric Markets.  Under the new 

authority, the New Electricity Trading Arrangements (NETA) was adopted, 

fundamentally changing the wholesale trading of electricity in England and Wales, to 

promote competition so that lower prices might prevail.  The NETA went live on 

27th March 2001 [3]. 

 

At the same time, a second country, Norway, restructured its electricity 

market towards deregulation.  The Norwegian Energy Act, which became effective 

in 1991, introduced third party access to the retail market and competition in 
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electricity production.  This act created competition for the sale and purchase of 

electricity and allowed customers to buy from any generator, trader or the electricity 

pool.  The Swedish deregulation that was decided in October 1995, led to the 

establishment of a common Norwegian–Swedish Exchange (Nord Pool).  This first 

electricity market completely open to trade across national borders, has been in 

operation since January 1996.  Finland joined the common market in October 1998; 

Jutland (West Denmark) in July 1999; and in the course of 2000 Zealand (East 

Denmark) also joined the common Nordic market.  The Nordic electricity market is 

presently the only truly international electricity market.  This is a power market, 

which includes both bilateral and voluntary pool modes [4]. 

 

The primary impetus for more fundamental restructuring and competition 

initiatives in United States can be traced to electricity policy debates that began in 

California and a few states in the Northeast (Massachusetts, Rhode Island, New 

York, Pennsylvania, Maine, and New Jersey) in the mid 1990s.  This was combined 

with supporting transmission and wholesale market rules and regulations (e.g. Orders 

888 and 889) issued by Federal Energy Regulatory Commission (FERC) at about the 

same time.  The major development is the introduction of independent system 

operator (ISO) concept and setting up such entities in different regions including 

California, Pennsylvania- New Jersey-Maryland and New England.  However, the 

power market deregulation has followed different paths in the numerous states which 

have their own separate markets [5]. 

 

Despite the unfortunate California's energy crisis in 2001 due to inconsistent 

price regulation and insufficiency in local generation, most of the states in the 

Northeast, some in the Midwest, Texas, and FERC were committed to moving 

forward with the development of competitive wholesale and retail markets and to 

making them work well. 

 

The most recent evolution in USA’s ESI is the desire of FERC for the 

introduction of a standard market design (SMD) by all the deregulated markets [6].  

The SMD should result in common transmission rules over all the states, thereby the 

power trading, by market participants who aim to transport power across different 

states, will be simplified. 
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Most Asian countries have introduced some degree of competition in 

generation by allowing independent power producers (IPP) to sell to established 

government utilities, most of which have attained the status of state owned 

corporations.  Many are in transition to privatizing their electric utilities and 

introducing competition in wholesale and retail electricity supply.  These include 

Thailand, Philippines, Indonesia, South Korea, and Malaysia [7]. 

 

In Thailand, despite the delay in implementation due to the financial crisis, 

the government has contracted seven IPP projects and privatized generation 

subsidiaries of Electricity Generating Authority of Thailand (EGAT). The 

restructuring of the power industry in the privatization master plan is divided into 

three stages which led to the introduction of wholesale competition from 2003-2004, 

privatizing EGAT, and separating generation from transmission [7]. 

 

Despite the central controlled economy in China, the power sector has 

experienced a reform since mid 1980s.  In the first phase, private investment in 

generation has been allowed.  In 2002, all the state-owned energy enterprises were 

transformed in commercial companies.  However, there are no eligible consumers 

yet.  The World Bank supports financially the government’s five year plan, from 

2001 to 2005, in restructuring the electricity industry [8].  

 

The Indian power sector is presently going through a process of reform and 

restructuring, as is the trend in many other countries in the region.  Independent 

regulatory commissions are being set up, and vertically integrated utilities are being 

unbundled into corporate entities. Efforts are also being made to facilitate 

competition wherever feasible, and the choice of an appropriate power market model 

assumes significance in this context.  India is not yet ready for a major electricity 

restructuring.  The first and main restructuring problem is the gap between demand 

and generation, irrational and un-remunerative tariff structure and inaccessibility of 

electricity to households [9]. 

 

Meanwhile, Singapore and Japan have introduced limited retail competition 

by allowing large electricity consumers to choose their own power supplier.  In 

Singapore, from July 2001, electricity customers with power requirements of at least 
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2 MW can choose their power supplier and can buy electricity in the wholesale 

market at spot prices.  However, retail market liberalization is still in its early stages.  

Full retail competition has been proposed, and is under implementation in three 

phases.  Phase 2 started in December 2003, targeting non-domestic low-tension 

consumers with an average monthly consumption of 10,000 kWh or more.  The rest 

of the one million consumers, which use 25% of the total electricity, will become 

contestable in final phase [10].  In Japan, from April 2005, an estimated amount of 

over 8000 electricity consumers who use more than 50 kW are able to choose their 

supplier.  Japan’s electricity market is served by 10 privately owned vertically 

integrated utilities and IPPs that have been present since 1995. Full liberalization 

including residential customers will be proactively discussed beginning in April 2007 

[11]. 

 

Malaysia opened its electricity market to IPPs in 1994, and 15 licenses were 

issued.  As of 1998, nine of these with a combined capacity of 4.3 GW were in 

operation. Like most of its neighbors in Southeast Asia, Malaysia expects to 

introduce wholesale and retail competition in its electricity market. However, 

especially after the California's debacle, the Malaysian deregulation path was 

redirected by introducing the Malaysian Managed Market (M3) in 2001.  The 

country has no definite plans or targets towards real deregulation and restructuring 

[12]. 

 

The power sector restructuring in Oceania also has a long history.  In 1987, 

the government of New Zealand began the reform of power sector by setting up the 

Electricity Corporation of New Zealand (ECNZ).  The task of ECNZ was to own and 

operate the facilities of the Ministry of Energy.  In 1988, the system operator, 

Transpower, was set up by ECNZ.  After some years of initial restructuring, a 

voluntary wholesale electricity market was founded in New Zealand.  Its 

performance to date brings the New Zealand’s market among the most successful 

paradigms of power sector deregulation.  The most recent issue is the introduction of 

the financial transmission rights, as a tool for hedging transmission congestion costs 

and giving incentives for grid expansion investments [13].  In neighboring Australia, 

the Industry Commission recommended reforms, in 1990, that included the state 

owned electricity industry.  In 1994, in the state of Victoria, a pool market was 
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established.  The same market form was introduced in New South Wales in 1996. 

These two markets were the founders of National Electricity Market of Australia in 

1998.  The implementation of a wholesale spot market may be considered as key 

achievement of Australia's electricity market.  The next step of the reform process is 

the replacement of the present mixed federal and state regulatory structure with a 

national energy regulator [14]. 

 

Africa and the Middle East have lagged behind other regions in implementing 

reforms to power sectors, except for the concessioning of utility management of 

private operators (usually a foreign power utility) in some francophone countries. 

Algeria, Côte d'Ivoire, Egypt, Ghana, Kenya, Morocco, Senegal, and Tanzania have 

attracted one or more IPPs.  Zambia has privatized a generation station and its local 

transmission grid in the copper-belt area, whereas Togo has privatized its small 

power utility without restructuring under a 20 year concession.  Africa appears to be 

catching up to other regions, because many more African countries are considering 

reforms to their power sectors, mainly along the lines of privatization.  This approach 

would be supported by the ongoing developments to form regional power pools in 

the southern, eastern, and western areas of the continent, which would help 

compensate for the small size of the national power markets [15]. 

 
 
 
 

1.3 Transmission Open Access 
 
 
The transmission system is the most crucial element that connects the 

suppliers and loads.  It is an integrated network that is shared by all market 

participants and a medium that generators compete to supply their customers.  In the 

context of deregulated environments, transmission business is taken as a separate 

service that provides condition for competition.  It is treated separately and funded 

independently irrespective of the ownership of the wires.  Transmission system is 

responsible to provide capacity to transmit power, offer adequate standards of 

security and quality of supply. 
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With the present technology, neither the transmission nor the distribution can 

be classified as a perfect or contestable market.  Transmission, because of lumpy 

investment, environmental constraints and the need for redundancy to meet the 

security requirements, is recognized as part of the chain where there are economies 

of scale [16]. 

 

It is important to note that the principle technical considerations of the 

transmission system under open access are same as in the vertical integrated utility 

environment.  The physical characteristic of the electric transmission system remains 

unchanged under open access.  The system must be protected against violations of its 

physical, operational and technical limits. Therefore in order to provide 

nondiscriminatory open access, competitive market necessitates an independent 

operational control of the grid.  The control of the grid cannot be guaranteed without 

establishing the ISO.  The ISO administers the transmission price, system security, 

transmission right, coordinate scheduling etc.  The disintegration of the ownership 

and handing over the operational duties to ISO had gained popularity and it is most 

widely accepted concept for provision of nondiscriminatory open access. 

 

For both reliability and commerce, bulk power systems require certain 

services to facilitate the secure and efficient transmission of electricity. These 

services are called ancillary services.  According to FERC, ancillary services are 

necessary to support the transmission of power from sellers to buyers, given the 

obligation of control areas and transmission utilities, to maintain a reliable operation 

of the interconnected transmission system [17].  The FERC rule defined six ancillary 

services for open access transmission as listed below: 

 

• Scheduling, system control and dispatch, 

• Reactive supply and voltage control from generation sources service, 

• Regulation and frequency response service, 

• Energy imbalance service, 

• Operating reserve – spinning reserve service, and 

• Operating reserve – supplemental reserve service. 
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These services are mostly provided by generating sources.  A transmission customer 

must purchase from the transmission provider or self provide these services. 

 
 
 
 
1.4 Objectives and Scope 
 
 

The active and reactive power transfer and transmission usage allocation are a 

central issue of the new cosmos of the deregulated electricity markets.  The increased 

requirements for fair and transparent allocation and pricing scheme in the 

competitive environment, as well as the complexity introduced by unbundling the 

services, point out why these issues are of great importance and require urgent 

solutions. 

 

The primary objective of the work reported in the thesis is to develop 

allocation schemes for unbundled services under transmission open access that are 

appropriate and provide meaningful results.  The main objectives focused in thesis 

are listed below: 

 

• To develop fair and accurate scheme to allocate reactive power output of 

individual generators to system loads. It can be done by tracing the path of 

current flow from generators to loads. The key intension of this scheme is to 

avoid the limitations of conventional reactive power allocation methods based 

on power flow tracing. 

 

• To formulate a transmission real power usage allocation method based on 

current tracing scheme developed for reactive power allocation. In 

deregulated power system operation it is vital to know the role of each 

generator to system wires as it may be used for congestion management and 

transmission pricing. 

 

• To develop an alternative transmission real power usage allocation method by 

clustering the power systems into manageably small groups. The aim of this 
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methodology is to avoid large matrix calculation and improve the limitations 

of conversional usage allocation methods based on power flow tracing. 

 

• To identify individual generator contributions to system real power losses and 

real power transfer to the loads. It can be done by utilizing the developed 

usage allocation methods. 

 

• To create and compile the associated algorithms and routines into a user 

friendly simulation tool.   Since no free software programs can perform the 

above mentioned allocation analysis in power system, effort is required to 

develop such a simulation tool.  

 

A common feature of all the allocation schemes developed in this thesis is 

that they are use based and implicitly take into account the interaction with the 

transmission network.  However the schemes do not provide economic justification 

since the developed methodologies are based on electrical engineering concepts, and 

not on the theories of economics. 

 

The scope of this thesis can be summarized as follows: 

 

• To study and analyze the conventional real and reactive power allocation 

methods.  Many methods are cited in the literature to answer the allocation 

problems.  However, determining accurate allocation could be difficult due to 

non linear power flow.  This fact necessitates using approximate models, 

sensitivity indices, or tracing algorithms to determine an allocation scheme. 

In general, since different methods adopt different techniques it is important 

to acknowledge their pros and cons. 

 

• To investigate the role of generator's real power output.  Knowing whether or 

not, and to what extent, each generator contributes to the usage of a particular 

system component, requires the deregulated power system to operate 

economically and efficiently and guarantee of open access to all generators. 

This analysis will also help to estimate the generator's share to real 
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transmission losses and the amount they need to purchase or self generate to 

compensate for losses. 

 

• To investigate the role of generator's reactive power output.  Since a 

generator produces both real and reactive power and can operate either as a 

producer or a consumer of reactive power, it can be speculated that a 

generator may not always fulfill the reactive power support service. 

 

• To develop and test the proposed methods.  The proposed methods should be 

tested and compared with the traditional methods.  Such a study will help to 

verify the validity and performance of the method for the real life application. 

 

• To discuss the practical consideration and constraints of the proposed 

methods.  Testing the proposed methods on a large power system could 

reveal the problems in practical use.  The limitation of the proposed method 

will be discussed. 

 

• To demonstrate the capability of the developed program. A considerable 

portion of this research endeavor was performed on the software created on 

MATLAB platform. Therefore its performance will be discussed.   

 
 
 
 
1.5 Thesis Outline 
 
 

The organization of this work is as follows.  In Chapter 2, first the nature and 

characteristics of reactive power in electric power systems is provided.  The sources 

of reactive power are introduced.  The importance of reactive power service is shown 

through the literature review of previous and on going research activities in its kind.  

Allocation and pricing of reactive power by various researchers are discussed and 

pros and cons of those approaches are highlighted.  In addition, a detailed discussion 

on an engineering approach for real and reactive power allocation and pricing known 

as tracing methods are given. 
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In Chapter 3, a new scheme to allocate reactive power output of individual 

generators is suggested.  The importance of proper system element modelling is 

highlighted and recommends some system element models to suit tracing procedure 

proposed in this thesis.  Since the method is based on current tracing, a mathematical 

justification of proportional sharing principle in current flow networks and a proof of 

acyclic property of current flow networks are presented.  Finally, a complete step by 

step procedure to allocate reactive output of generators is shown with a simple 4 bus 

system. 

 

In Chapter 4, a review of current methodologies that are developed for 

allocating real power transmission usage and power transfer allocations is discussed 

and the general characteristics   that must be included in such a scheme is identified.  

This is followed by two alternative methods for the real power allocation.  The first 

method is an extension of the method that is developed for reactive power allocation 

in Chapter 3.  The second approach is based on concept of network clustering and 

reducing the system into manageably small systems. 

 

In Chapter 5, the software tools which have been developed for the 

simulations reported in this thesis are described.  The program is suitable to run load 

flow analysis, transmission usage allocation, real power loss allocation and, real and 

reactive power transfer allocation analysis.   Moreover, the program is also linked to 

the GRAPHVIZ program [18] to represent power system topology.  GRAPHVIZ 

application to power systems visualization is one of the novelties of the package.  

Step by step simulation procedure and the capability of the program are finally 

shown with the WSCC (Western Systems Coordinating Council) 9 bus system. 

 

In Chapter 6, the proposed real and reactive power allocation methods have 

been tested and analyzed for IEEE 14, IEEE 30, and IEEE 118 and TNB 222 bus 

systems.  For validation, the results of the proposed methods are compared with well 

known conventional methods and tested on actual large systems such as TNB 222 

bus system. 

 

In Chapter 7, the conclusions of this research work can be found. Moreover, 

some suggestions on the extensions to potential topics for future research are 
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presented.  Network data and load flow results for all test cases used in this thesis are 

reported in Appendices A and B. Publications during the research work of this thesis 

also given in Appendix C. 
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