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CARBON DIOXIDE REFORMING OF METHANE TO SYNGAS:
MODELING USING RESPONSE SURFACE METHODOLOGY

AND ARTIFICIAL NEURAL NETWORK

NOR AISHAH SAIDINA AMIN1, KHAIRIYAH MOHD YUSOF2

& RUZINAH ISHA3

Abstract. 1wt% of Rhodium (Rh) on Magnesium Oxide (MgO) catalyst have been investigated
for carbon dioxide reforming of methane (CORM) with the effect of oxygen. The effect of temperature,
O2/CH4 ratio and catalyst weight on the methane conversion, synthesis gas selectivity and H2/CO ratio
were studied. With the help of experimental design, two mathematical approaches: empirical polynomial
and artificial neural network were developed. Empirical polynomial models correlation coefficient, r,
was above 85%. However, the feed forward neural network correlation coefficient was more than 95%.
The feed forward neural network modeling approach was found to be more efficient than the empirical
model approach. The condition for maximum methane conversion was obtained at 850°C with O2/
CH4 ratio of 0.14 and 141 mg of catalyst resulting in 95% methane conversion. A maximum of 40%
hydrogen selectivity was achieved at 909°C, 0.23 of O2/CH4 ratio and 309 mg catalyst. The maximum
H2/CO ratio of 1.6 was attained at 758°C, 0.19 of O2/CH4 and 360 mg catalyst.

Keywords: Synthesis gas, carbon dioxide reforming of methane, rhodium, MgO, experimental
design, feed forward neural network

Abstrak. Kesan oksigen terhadap mangkin 1% berat Rhodium di dalam Magnesium Oksida
(MgO) dikaji untuk proses pembentukan semula metana dengan menggunakan gas karbon dioksida
(CORM). Kesan tiga parameter utama: suhu, nisbah reaktan (O2/CH4) dan berat mangkin terhadap
penukaran metana, kememilihan gas sintesis dan nisbah H2/CO diselidiki. Dengan bantuan reka
bentuk eksperimen, dua pendekatan matematik: polinomial empirik dan rangkaian saraf buatan
diterbitkan. Pekali kolerasi model polinomial empirik yang diterbitkan, r, adalah melebihi 85%.
Walau bagaimanapun, pekali kolerasi untuk suapan hadapan rangkaian saraf pula melebihi 95%. Oleh
itu, suapan hadapan rangkaian saraf adalah lebih efisen daripada model polinomial empirik. Penukaran
metana tertinggi sebanyak 95% dihasilkan pada suhu 850°C dengan nisbah O2/CH4 sebanyak 0.14
dan 141 mg mangkin. Kememilihan hidrogen secara maksima sebanyak 40% boleh dicapai pada suhu
909°C, nisbah O2/CH4 sebanyak 0.23 dan 309 mg mangkin. Nisbah maksima H2/CO sebanyak 1.6
dihasilkan pada suhu 758°C dengan nisbah O2/CH4 sebanyak 0.19 dan 360 mg mangkin digunakan.

Kata kunci: Gas sintesis, pembentukan semula metana menggunakan gas karbon dioksida, rhodium,
MgO, reka bentuk eksperimen, suapan hadapan rangkaian saraf
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1.0 INTRODUCTION

Synthesis gas, a composition of carbon monoxide and hydrogen, can be used to
produce high purity hydrogen streams and chemical products with higher added
values such as hydrocarbons, oxygenated compounds and polycarbonates. Several
processes can be applied to produce synthesis gas such as partial oxidation (POM),
steam reforming (SRM) and carbon dioxide reforming of methane (CORM). The
commercial process to produce synthesis gas is via steam reforming of natural gas,
although this process is very expensive due to high heat demand [1]. Many researchers
such as Choudhary et al. [2] studied the alternative routes to convert natural gas to
synthesis gas by combining POM, SRM and CORM reaction routes. The reaction
network in all cases is very complex. The reaction steps are described in Equations (1)
- (6). The overall reaction of Partial Oxidation and CORM process is described in
Equation (7).

CH4 + CO2  2CO + 2H2 (CO2 reforming) ∆Ho
R,298K(kJ/mol)=247 (1)

CH4 + ½O2  CO + 2H2 (Partial oxidation) ∆Ho
R,298K(kJ/mol)=-36 (2)

CH4 + 2O2  CO2 + 2H2O (Combustion) ∆Ho
R,298K(kJ/mol)=-802 (3)

CO2 + H2  CO + H2O  (Water-gas shift) ∆Ho
R,298K(kJ/mol)= 41 (4)

2CO  C + CO2 (Boudouard reaction) ∆Ho
R,298K(kJ/mol)=-172 (5)

CH4  C + 2H2 (CH4 decomposition) ∆Ho
R,298K(kJ/mol)= 75 (6)

2CH4 + CO2 + ½O2  3CO + 4H2 ∆Ho
R,298K(kJ/mol)=211 (7)

The main objective for combining the reforming reaction is to produce varied H2/CO
ratios, which are appropriate for the production of oxygenated compounds, heavy
hydrocarbons by Fisher Tropsch synthesis and carbon monoxide for synthesis of
polycarbonates [3]. Furthermore, the combinations of natural gas reforming reactions
are energetically favorable. For example, POM is highly exothermic, the temperature
control may be difficult at certain condition, leading to hot spot formation particularly
in large scale process. Thus, the addition of carbon dioxide can significantly improve
the reactor temperature control and reduce the risk of hot spot development since
CORM is an endothermic process. In addition, the oxygen feed to CORM can reduce
the carbon deposition and increase methane conversion [2]. With addition of oxygen,
a small amount of carbon deposition occurred on the oxygen unexposed part of Pt/
ZrO2 catalyst as reported by O’Connor et al. [3]. Besides, this combined process may
also reduce the cost of production because CO2 is cheap, abundant and a greenhouse
gas [4].
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The catalysts commonly used for synthesis gas production are based on the VIII
metal transition group including Rh, Ru, Pt, Pd, Ni and Co, supported on metalic
oxides such as TiO2, ZrO2, Al2O3, SiO2 and MgO. Rh on MgO support shows
remarkable catalyst performance and stability compared to other Rh catalyst on other
support [5]. In addition, Liao and Zhang [6] proved that Rh metal on support catalyst
is the most efficient catalyst for methane dissociation in the reaction of methane and
oxygen. Therefore, Rh on MgO support catalyst was chosen in this report.

The application of experimental design and a mathematical modeling technique as
a mathematical tool to represent the reaction is essential. Experimental design is a
proven technique that continues to show increasing use in chemical industries. Response
surface methodology (RSM) is a method to determine the optimum condition of a
process. RSM is a set of technique designed to find the optimum value of the response
and the influencing factors. It has similarity with regression analysis. In regression
analysis, empirical mathematical model is derived from the experiment data. RSM
method of optimization of a medium composition is efficient, relatively simple, and
time and material saving in their studies of optimization [7-9]. However, there is
increasing interest in the artificial neural network modeling in different field of materials
science recently. Artificial neural network (ANN) modeling is a relatively new non-
linear statistical technique. It can be used to solve problems that are not eligible for
conventional statistical methods. ANN can be used to model properly the kinetics of
different catalytic reactions under different reaction conditions, being an alternative
for mechanism-based kinetics models. The modeling of catalytic reaction by neural
networks (black box models) has been proven and the influence of experimental
dispersion in fitting data has been also estimated, tolerating reasonable degrees of
error [10].

The purpose of this study is to utilize statistical technique, RSM, and ANN in CORM
process with the addition of oxygen using 1wt% of Rh/MgO catalyst in order to obtain
an optimum condition for maximum methane conversion, maximum hydrogen yield
and H2/CO ratio near to one. Two models were developed and analyzed; polynomial
empirical model and feed forward neural network model.

2.0 EXPERIMENTS

2.1 Catalyst Preparation

Magnesium Oxide (MgO) with minimum 97% purity supplied by Merck was used as
a support. For impregnating rhodium into the supports, a dilute solution of Rhodium
(III) nitrate (0.003M) was slowly added to the MgO slurries (3g/l, 353K) over a period
of 12 hours. Subsequently, the slurry was stirred for an additional 60 hours in order to
achieve homogeneous distribution of Rh throughout the support. The samples were
dried in the oven at 120°C and calcined for 5 hours at 800°C. Additional pretreatment
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of the catalyst was performed by heating the catalyst to 550°C over a period of one
hour in the flow of pure nitrogen (100 ml/min) before testing the catalyst.

2.2 Apparatus

The experimental rig was set up as shown in Figure 1. The fixed-bed vertical quartz
tube reactor (ID of 9.1 cm and length of 30 cm) and catalyst (above 65 mesh size) were
preheated with N2 gas for one hour at 550°C. The gaseous products were analyzed by
a GC (Agilent 6890 series) with Thermal Conductivity Detector (TCD) that was
equipped with molecular sieve and PORAPAK Q column. Calibration of the GC
using Scott gas standard (cat-89779) resulted in a mole/area ratio for each gas.
Chemstation software was used to calculate the integration of the peak area. GC samples
were analysed every 30 minutes with the GC operating condition: 21.0 ml/min He as
carrier gas, TCD detector at TDet = 200°C, t1 = 5 minutes for T1 = 40°C, heating rate,
r1 = 12°C/min to T2 = 200°C and finally cooled to T3 = 40°C. The sample was injected
to the GC every 30 minutes. The injection was automatically controlled by programmed
sequence provided by Chemstation.
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2.3 Experimental Design

The experimental conditions were defined using central composite design techniques,
one of the tools in RSM. The experimental plan was proposed in order to detect the
possible existence of minimum points on the response factor surfaces. Three
independent experimental variables, namely, operation temperature (x1), O2/CH4 ratio
(x2) and catalyst weight in 100 ml/min total flow rate (x3) were selected as controlled
factors. Their experimental range and levels used in this work are given in the Table 1.
The upper, center and lower point of the design were coded as +1, 0 and -1 while α is
called star point resulting a total of 16 experiments.

Table 1 The levels of variables chosen for trials

-ααααα -1 0 +1 +ααααα

Temperature (xxxxx1), °C 581.82 650.00 750.00 850.00 918.18

O2/CH4 ratio (xxxxx2), mol/mol 0.07 0.10 0.15 0.20 0.23

Catalyst weight (xxxxx3), mg 31.82 100.00 200.00 300.00 368.18

The CH4 and CO2 conversion and H2 and CO yield were calculated, based on
Equations (8) - (10).

Methane conversion, XCH4 = 100%
inletreactant  of mole

reactant reacted of mole × (8)

H2 selectivity, 
2H

S = 100%
 CH from reacted atomhydrogen  of mole

H producedin  atomhydrogen  of mole

4

2 × (9)

and

H2/CO product ratio = 
2% mole H in effluent gases

% mole CO in effluent gases
 (10)

The polynomial empirical models were used to analyze the influence of the process
variables on the response factors. Second order polynomial models were used to
verify the linear and quadratic effects of the process variables and their linear and
quadratic interactions. Response surface methodology was applied to the methane
conversion and hydrogen yield using a commercial stat software version 6. Each
response Y can be represented by a quadratic model of the response surface, here
with three independent variables is given as follows:

β β β β
= < =

= + + +∑ ∑ ∑
3 3

2

1 1
i o j j ij i j ij j

j i j j

Y x x x x  (11)
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where Yi is the predicted response, βo is the offset term, βj is the linear effect, βij is the
interaction effect and βjj is the squared effect.

A feed forward ‘black box’ neural network models were developed using 16
experiments data planned by central composite design as training data and 6 other
experiments data as generalized data. The independent experimental variables were
operation temperature (x1), O2/CH4 ratio (x2) and catalyst weight in 100 ml/min total
flow rate (x3). The outputs were CH4 conversion, H2 yield and H2/CO ratio. Process
inputs for neural network models were inconsistent in term of their magnitudes. Thus,
these input data were scaled within a consistent range (e.g. 0 to 1) before introducing
them to the input layer of the network to ensure that each data is given fair contribution
in determining the network output.

The data scaling method employed in this research is shown as followed:

min

max min

i i
is

i i

X X
X

X X
=  (12)

where, Xis is the scaled input and Xi is the actual input before scaling whereas Ximin
and Ximax are the minimum and maximum values of the inputs respectively. The
maximum and minimum values of the input are selected based on data set available
for training.

The structure of feed forward neural network process estimator consisted of a set of
Multi-Input Single-Output (MISO) network as shown in Figure 2. Log-sigmoid transfer

Figure 2 Feed forward hierarchical neural network architecture
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function and purelin transfer function were used in the network. Neural network package
in Matlab 6.1 was used to design and simulate the network. The networks were trained
using Levenberg Marquardt Learning Algorithm. Trial and error search method was
applied to select the optimum topology of the classifiers. The information was
propagated forward to the output layer where the output variable was calculated and
compared to the actual value in order to generate a prediction error. When the structure
of the neural network is selected, the values of weights associated to each connection
between neurons of adjacent layers were obtained so that the root mean sum of squares
errors (RMSE) was minimized. The RMSE is defined as:

( ) −
 =
  

∑ 2
Predicted Observed

No. of data
RMSE (13)

3.0 RESULT AND DISCUSSION

3.1 Experimental result

The process of carbon dioxide reforming of methane with the effect of oxygen led to
methane conversions ranging from 56 to 94%, hydrogen selectivity ranging from 13.31
to 35.55% and H2/CO mole ratio of 0.6 to 1.46, as shown in Table 2.

It was verified that the Rh/MgO catalyst has an outstanding catalyst reactivity and
stability when was tested for 16 hours at 900°C with O2/CH4 ratio equal to 0.17 and
catalyst weight at 261mg in 100ml/min of total flow rate. As shown in Figure 3, constant
performance of 94% methane conversion and 1.43 H2/CO ratio were obtained after 60
minutes. Not only methane conversion and H2/CO ratio constant, the hydrogen and
carbon monoxide yields were unchanged through out the study. It can be deduced
that Rh/MgO catalyst was stable with excellent catalyst reactivity at high temperature
for 16 hours. This catalyst characteristic was important for commercial catalyst that
can be used in Fisher-Tropsch process. The stability of Rh/MgO was due to strong
interaction between Rh and MgO that formed magnesium rhodium oxide (MgRh2O4)
after a high temperature calcinations, which was reduced with higher difficulty than
rhodium oxide (Rh2O3) [5].

3.2 Polynomial Empirical Model

The polynomial empirical model obtained to describe the experimental methane
conversion (%) data in term of variables was:

2 2 2
1 1 1 2 2 3 3

1 2 1 3 2 3

88.16 9.61 3.77 3.23 3.47 2.04 2.79

0.11 1.91 0.41

Y x x x x x x

x x x x x x

= + − + − + −
− − +  (14)
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Table 2 Factorial central composite design with observed and predicted value

No. Variables Y1 Y2 Y3

X1 X2 X3 ObservedPredicted Observed Predicted ObservedPredicted

1 650 0.10 100 56.70781 61.21027 13.31 13.64 0.78 0.63
2 650 0.20 100 65.35150 69.04179 18.70 17.80 1.04 0.92
3 650 0.10 300 64.97570 68.28542 20.63 21.39 0.68 0.72
4 650 0.20 300 76.89498 77.77107 21.93 22.15 1.21 1.11
5 850 0.10 100 80.92184 84.48946 25.70 25.00 1.18 1.15
6 850 0.20 100 90.73479 91.86879 33.70 32.45 1.46 1.28
7 850 0.10 300 83.15977 83.91320 30.28 30.69 1.24 1.24
8 850 0.20 300 93.00541 92.94667 35.55 34.74 1.45 1.48
9 582 0.15 200 65.73237 60.51436 16.05 15.57 0.60 0.73
10 918 0.15 200 93.91720 92.85085 34.55 35.71 1.42 1.48
11 750 0.15 32 81.58118 76.05646 23.54 24.79 0.85 1.09
12 750 0.15 368 83.67197 82.91232 33.80 33.23 1.37 1.33
13 750 0.07 200 79.53462 74.46247 17.78 17.07 0.67 0.71
14 750 0.23 200 89.85640 88.64418 22.58 23.97 0.99 1.15
15 750 0.15 200 88.20754 88.29504 30.89 30.38 1.31 1.29
16 750 0.15 200 87.30430 88.29504 29.98 30.38 1.30 1.29

X1 = Temperature (°C) Y1 = Methane conversion
X2 = O2/CH4 ratio Y2 = H2 selectivity
X3 = Catalyst weight (mg) Y3 = H2/CO ratio
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which led to a linear correlation coefficient of 0.922. The temperature and O2/CH4
ratio were the main variables affecting the methane conversion. The methane conversion
increases with increasing operating temperature and oxygen in the reaction system.
This could be already as expected due to the increase of combustion efficiency as
reported by Souza and Schmal (2003) [11].

However, the empirical model representing the experimental hydrogen (H2)
selectivity (%) data is as follows:

= + − + − + −
+ − −

2 2 2
2 1 1 2 2 3 3

1 2 1 3 2 3

30.38 5.99 1.67 2.05 3.49 2.51 0.48

0.82 1.51 0.85

Y x x x x x x

x x x x x x  (15)

The linear correlation coefficient achieved is 0.987. The temperature shows the highest
influence on hydrogen selectivity, followed by the O2/CH4 ratio and the catalyst weight.
Higher hydrogen selectivity was obtained at higher temperature and catalyst weight.
However, when O2/CH4 ratio in a range of 0.15 to 0.23 and temperature >900°C,
lower selectivity of hydrogen was observed. This is probably due to the existence of
secondary parallel reactions in which the hydrogen probably reacts with oxygen in
carbon dioxide to form water.

CO2 + H2  CO + H2O ∆H°=41 kJ/mol  (16)

In addition, the experimental H2/CO ratio was described by the polynomial empirical
model with a linear correlation coefficient of 0.860 was as follow:

2 2 2
3 1 1 2 2 3 3

1 2 2 3

1.29 0.22 0.07 0.13 0.13 0.08 0.03

0.04 0.03

Y x x x x x x

x x x x

= + − + − + −
− +  (17)

The temperature and O2/CH4 ratio are the most influential process variables. The H2/
CO ratio increase from 0.6 to 1.46 with increasing of temperature and O2/CH4. Like
hydrogen selectivity result, the ratio of H2/CO decrease from 1.46 to 1.42 at higher
temperature (>900°C). The same observation was also attained when O2/CH4 increase
from 0.15 to 0.23. This was influenced by carbon dioxide reforming and partial oxidation
of methane reaction. Mo et al. (2003) [12] also reported the same result for Pt/CoAl2O4/
Al2O3 and the H2/CO ratio varies from 1.05 to 1.68 as O2/CH4 ratio increased from
0.08 to 0.67.

3.3 Feed Forward Neural Network Model

In this work, all ANN models were developed in MATLAB environment. A designed
training data sets are more desirable than random experimental sets, due to their
higher orthogonality [13,14]. Central composite design is applied to design the training
data set.
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Three neural network models have been developed with three input nodes, one
hidden layer and one output. The models were trained using back propogation
algorithm with the Levenberg Marquardt method to optimize the weight and biases.
The process of ANN modeling includes following steps:

(1) database collection,
(2) analysis and pre-processing of the data,
(3) design and training of the neural network,
(4) test of the trained network, and
(5) use of the trained NN for simulations and predictions.

The neural network model was able to predict the methane conversion, hydrogen
selectivity and H2/CO ratio precisely. Three neural network models have been
developed with each models consists of three input nodes, a four nodes hidden layer
with sigmoid function as activation function and one output with purelin function as
activation function. The value of predicted and experimental values, for all reaction
conditions, is shown in Table 3.

Table 3 Experimental results and predicted result from neural network model for training data

No. Variables Y1 Y2 Y3

X1 X2 X3 Observed Predicted ObservedPredicted Observed Predicted

1 650 0.10 100 56.71 56.71 13.31 13.31 0.78 0.79
2 650 0.20 100 65.35 65.27 18.70 18.69 1.04 1.01
3 650 0.10 300 64.98 64.89 20.63 20.63 0.68 0.67
4 650 0.20 300 76.89 76.80 21.93 21.94 1.21 1.21
5 850 0.10 100 80.92 80.89 25.70 25.70 1.18 1.18
6 850 0.20 100 90.73 90.57 33.70 33.69 1.46 1.46
7 850 0.10 300 83.16 83.13 30.28 30.28 1.24 1.25
8 850 0.20 300 93.01 93.17 35.55 35.55 1.45 1.45
9 582 0.15 200 65.73 65.64 16.05 16.04 0.60 0.60
10 918 0.15 200 93.92 93.92 34.55 34.55 1.42 1.03
11 750 0.15 32 81.58 81.64 23.54 23.54 0.85 0.85
12 750 0.15 368 83.67 83.50 33.80 33.80 1.37 1.37
13 750 0.07 200 79.53 79.41 17.78 17.78 0.67 0.67
14 750 0.23 200 89.86 89.82 22.58 22.58 0.99 1.02
15 750 0.15 200 88.21 87.78 30.89 30.44 1.31 1.31
16 750 0.15 200 87.30 87.78 29.98 30.44 1.30 1,31

X1 = Temperature (°C) Y1 = Methane conversion
X2 = O2/CH4 ratio Y2 = H2 selectivity
X3 = Catalyst weight (mg) Y3 = H2/CO ratio
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A model equation of a single neuron can be written as follow:

( )
1

n
l
pi ij ij j

i

y w a b
=

= +∑  (18)

where wij, aij and bj represent weight, input and bias of i row in j layer. Once the node
is calculated, it passes the result to the transfer function, f(y). The functions used in this
study were sigmoidal function and purelin function. Thus, the complete node
calculation for a sigmoidal function is:

( ) 1

1 yf y
e−=

+
 (19)

and for purelin function is:

yyf =)(  (20)

3.4 Evaluation of Models Fitness

The quality of models fitness (polynomial empirical and ANN) can be checked by
several criteria. In this study, the coefficient of correlation, r and Analysis of Variance,
ANOVA are considered to verify the fitness of the model.

The polynomial empirical model coefficients of correlation value, r, for the methane
conversion (Y1), H2 selectivity (Y2) and H2/CO ratio (Y3) were 0.960, 0.993 and 0.927
respectively indicating fairly good agreement between the experimental and predicted
values from the models. The values of r2 for Y1, Y2 and Y3 are 0.922, 0.986 and 0.860
respectively indicating that 92.2%, 98.6% and 86.0% of the total variation in the three
responses are attributed to the experimental variables.

Nevertheless, the r value for neural network models is higher than polynomial
empirical models. The r value for methane conversion (Y1) and H2 selectivity (Y2)
were 0.9998 and 0.9997 respectively, while the r value of H2/CO ratio (Y3) was 0.8950.
The values indicate good agreement between the experimental and predicted values
of each feed forward neural network models. As a result, the values of r2 for Y1, Y2
and Y3 were 0.9997, 0.99995 and 0.9987 respectively. It denoted that 99.97%, 99.95%
and 99.87% of the total variation in the three responses are attributed to the experimental
variables. By comparing the r and r2 values of each models developed, it clearly
shows that feed forward neural network model fitness were greater than the polynomial
empirical model.

Figures 4 and 5 show the observed value versus predicted value from polynomial
empirical model and neural network model developed. It is clearly shown that both
developed models can represent the process quite satisfactorily because both model
approaches, correlations coefficients were above 85% accuracy. However, the neural
network coefficient of correlation, rnn, for neural network was higher than coefficient
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Figure 4 Comparison of predicted and experimental value for training data. (  Polynomial Empirical
model,  Neural Network model)

Figure 5 Comparison of predicted and experimental value for validation data. (  Polynomial
Empirical model,  Neural Network model)
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correlations of polynomial empirical model, rem. Improving this, unlike predicted
and observed values of polynomial empirical models, the predicted value for feed
forward neural network models are placed almost equal to the observed value for
both training and validation data. Thus, it can be deduced that feed forward neural
network do have better performance compared to polynomial empirical model even
though there were limited data available.

Each fitted model was further checked with the analysis of variance (ANOVA) as
shown in Table 4. In this case, the adequacy of fitted model was tested using static F
value. The F-value for the regression is defined as Mean Squares regression divided
by Mean squares residual. The F-value is compared to the Statistical Table value
F(p-1, N-p, α). If F-value is greater than F-value (p-1, N-p, α) from Statistical Table, the
hypothesis is accepted and null hypothesis is rejected at the α level of significance. So,
the F-value (p-1, N-p, α) from Statistical Table for 95% confidence level or the a value of
0.05 is 3.37. The hypothesis of this work is the developed model is a good predictor of
the experimental data to represent the process.

From the ANOVA analysis in Table 4 for polynomial empirical model, the F value
of Y1, Y2 and Y3 are 7.98, 47.98 and 4.30 respectively and greater than F(p-1, N-p, α)
value. This indicates that the hypothesis is true with high significant at 95% confidence
level (α = 0.05).

The capabilities of feed forward neural networks models representing the process
were also checked with the analysis of variance (ANOVA) as shown in Table 4. In
this case, same hypothesis as polynomial empirical model analysis was assumed. As
presented in Table 4, the ANOVA values for feed forward neural network model, the
F value for Y1, Y2 and Y3 are 2477, 1243.43 and 40 respectively and tremendously
greater than F(p-1, N-p, α) value of Statistical Table. This clearly shows that the hypothesis
is true with high significant at 95% confidence level (α = 0.05).
By comparing the F values for polynomial empirical model with ANN model, it is
clearly shown that the F values for neural networks models were larger than the F
values for polynomial empirical model. It is suggested that modelling via neural network
is more precise and reliable in predicting the value compared to polynomial empirical
model. We can conclude that the ANN based model with the help of design of
experiments shows high correlation between observed and predicted value for training
even though being developed using fewer number of input variables. The same
observation was also reported by Lanouette et al. (1999)[15].

3.5 Optimization

Since it had been demonstrated that the neural network was able to effectively predict
the methane conversion, hydrogen yield and H2/CO ratio of the experiments, a final
network with the optimum architecture was used for the optimisation purpose. The
optimisation was performed by a grid search algorithm, exploring the region defined
by the experimental design extremes, dividing each factor in 40 intervals. Therefore, a
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total of 403 situations were evaluated, simulating the corresponding response factors
of the neural network. A similar method was also approached by Marengo et al. [14].

The optimum conditions were obtained with the maximum response factors. The
results from Multiple Input Single Output (MISO) Feed forward neural network
optimisation result are tabulated in Table 5.

From Table 5, the optimum point for methane conversion is 95.06% when 0.1416 of
O2/CH4 ratio and 141.07 mg catalyst used in the reaction at 850°C. However, optimum
hydrogen selectivity achieved at 39.56% when the reaction temperature performed at
909.6° with 0.2298 of O2/CH4 ratio and 309.17 mg catalyst used. In order to get the
optimum H2/CO ratio of 1.72, with 0.1878 O2/CH4 ratio and 359.6 mg catalyst is
needed to react at 758°C.

4.0 CONCLUSION

Central Composite Design tool in RSM is a powerful tool to plan the experiments.
With the help of experimental design, empirical modeling and ANN modeling are
developed for CORM with a presence of oxygen. Empirical modeling and ANN
modeling can be used to represent this reaction. However, ANN modeling is more
appropriate in predicting the output than empirical modeling although a small number
of training data available. It was definitely observed that the operating temperature,
O2/CH4 ratio and catalyst weight in 100 ml/min of total flow rate are significant effect
on the response factors.
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