Universiti Teknologi Malaysia Institutional Repository

NN speech recognition utilizing aligned DTW local distance scores

Sudirman, Rubita and Salleh, Sh-Hussain and Chee, Ming Ting (2005) NN speech recognition utilizing aligned DTW local distance scores. In: Proceeding of the 9th International Conference on Mechatronics Technology, 5-8 December 2005, Kuala Lumpur.

[img]
Preview
PDF
96Kb

Abstract

This paper presents the neural network (NN) speech recognition using processed LPC input features. But NN has a limitation that the network must have a fixed amount of input nodes. The input feature processing method will use frame matching based on Dynamic Time Warping (DTW) algorithm to fix the input size to a fix amount of input vectors. The LPC features are aligned between the input frames (test set) to the reference (training set) using our DTW fixing frame (DTW-FF) algorithm. This proper time normalization is needed since NN is designed to compare data of the same length, whilst same speech can varies in their length. By doing frame fixing or also known as time normalization, the test set and the training set frames are adjusted so that both sets will have the same number of frames according to the reference set. The neural network with backpropagation algorithm is used as the recognition engine at the back-end processing to enhance the recognition performance. The results compare DTW with LPC coefficients to back-propagation NN with LPC coefficients adjusted using DTW.

Item Type:Conference or Workshop Item (Paper)
Uncontrolled Keywords:neural network, speech recognition, dynamic time warping, distance scores, LPC
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:1699
Deposited By: Dr Zaharuddin Mohamed
Deposited On:13 Mar 2007 02:54
Last Modified:05 Jan 2012 02:02

Repository Staff Only: item control page