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ABSTRACT

Accurate quantification of the current accumulated material damage in the 

steel wall of a reactor vessel is essential in assessing the safety and integrity of the 

structure. In this study, a framework for mechanism-based structural life monitoring 

and assessment procedure is proposed and examined. The methodology is based on 

the competition between damage evolution and continual strength degradation of the 

material throughout the design life of the component. In this respect, damage 

evolution characteristics of the welded vessel steel are established through 

controlled laboratory experiments. Two types of steels, type-316 austenitic stainless 

steel and A516 Gr70 pressure vessel steel are used in this research. The samples 

(SS316 austenitic stainless steel) were heat treated (HT) at 500°C, 800°C and 

1000°C followed by furnace cooling. This work examines the effect of different 

microstructures of austenitic stainless steel on both static and fatigue responses of 

the alloy. Type A516 steels are commonly used in welded construction of pressure 

vessels and boilers. Prolonged exposure to high operating temperature and 

fluctuating pressure could induce undesirable microstructure evolution, particularly 

in the vicinity of the welded connection. This in turn, modifies the long-term 

mechanics response of the structure and affects structural reliability prediction. This 

research attempts to quantify the effects of absorbed hydrogen and thermal aging on 

crack-tip plastic zone, impact toughness and fatigue crack growth response of the 

Type A516 Gr70 steel plate and the associated heat affected zone (HAZ). Ductile-

to-brittle transition temperature (TDBTT) values of Base Metal (BM) and Weld Metal 

(WM) are -26°C and -20°C respectively, while TDBTT value of HAZ is -32°C. Results 

show that a crack continuously grows in the base metal or HAZ with increasing 

applied crack tip driving force, ΔKa. The threshold stress intensity factor range, ΔKth

for HAZ (13.2 MPam) is lower than that for the base metal (15.3 MPam). 

Prolonged thermal exposure further lowers ΔKth of HAZ to 11.4 MPam.
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ABSTRAK

Ketepatan penaksiran bagi kerosakan dinding keluli reaktor adalah penting 

dalam menilai keselamatan dan integriti struktur bahan. Dalam kajian ini, satu 

rangka kerja bagi mengawasi struktur mekanisme dan penilaian prosedur 

dicadangkan dan diperiksa. Kaedah adalah berdasarkan perbandingan di antara 

kerosakan evolusi dan degradasi kekuatan abadi bahan sepanjang hayat rekabentuk 

komponen. Ciri-ciri kerosakan evolusi bagi keluli terkimpal telah dilakukan melalui 

eksperimen di dalam makmal yang terkawal. Dua jenis keluli, iaitu 316 keluli tahan 

karat austenitik dan A516 Gr70 keluli bertekanan digunakan dalam penyelidikan ini. 

Asas fizik keretakan lesu mekanisme-mekanisme keluli austenitik dengan 

mikrostruktur yang berbeza diperkenalkan secara ringkas. Sampel (keluli tahan karat 

SS316 austenitik) dipanaskan pada 500°C, 800°C dan 1000°C diikuti oleh 

pendinginan di dalam relau. Ini bagi mengkaji kesan perbezaan mikrostruktur keluli 

tahan karat austenitik pada dua keadaan tindak balas aloi iaitu statik dan lesu. Keluli 

A516 kerap digunakan di dalam pembinaan kimpalan bagi bekas bertekanan dan 

pendidih. Pendedahan yang berterusan terhadap suhu tinggi operasi dan turun naik 

tekanan boleh menyebabkan evolusi mikrostruktur yang tidak dikehendaki 

terutamanya pada bahagian sambungan kimpalan. Ini menyebabkan perubahan 

struktur mekanik bahan pada jangka masa panjang dan memberi kesan 

kebolehpercayaan ramalan kepada struktur. Kajian ini juga menilai kesan serapan 

hidrogen dan penuaan terma pada retak hujung zon plastik, keliatan hentaman dan 

pertumbuhan keretakan kelesuan yang bertindak balas pada plat keluli A516 Gr70 

dan kawasan suhu yang terlibat. Nilai suhu peralihan mulur kepada rapuh (TDBTT) 

bagi kawasan keluli asas (BM) dan keluli kimpal (WM) adalah pada -26°C dan -

20°C, manakala nilai TDBTT HAZ adalah -32°C. Keputusan menunjukkan keretakan 

yang berterusan pada logam asas atau HAZ dengan pertambahan retak yang 

dikenakan pada daya penggerak hujung, ΔKa. Faktor keamatan tegasan ambang 

julat, ΔKth untuk HAZ (13.2 MPam) berada lebih rendah daripada logam asas (15.3 

MPam). Pendedahan terma yang berterusan akan merendahkan ΔKth HAZ kepada 

11.4 MPam. 
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Today’s business sector economics compel industrial units, such as petro-

chemical, fertilizers and oil and gas industries to attain ever-higher capacity factors.

Materials aging and other form of degradation increases the potential for component 

failures, outages and higher operation and maintenance costs. Managing materials 

degradation and aging is one of the major technical and economic challenges facing 

today’s industry in general and oil and gas sector in particular. For oil and gas plants 

approaching the license renewal stage, assuring regulators of the continuing reliability 

and safety of in-service materials adds another dimension to this challenge. The rate of 

materials degradation, and consequently plant component or system availability, are 

strongly affected by a plant’s environment-fatigue loading, including temperatures and 

corrosiveness. Thus, a comprehensive, integrated understanding of materials 

characterization with respect to their resistance to load, temperature and corrosive 

environment is a fundamental consideration in the development of overall plant 

business and operating strategies in oil and gas industries. 
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1.2 Background and Rationale

Pressure vessel (Figure 1.1) and piping system form a class of components for 

which particularly high levels of integrity and reliability are required. This is due to the 

potential hazards which are associated with many industrial processes combined with 

their high capital value. In oil and gas industries and chemical processing plants, the 

reactor pressure vessel often operates in aggressive environment. The loading consists

of high pressure with fluctuating as in services operation and shut down. Such condition 

leads to environment-fatigue interaction of the material. The vessel provides the 

integrity of the reactor pressure boundary and function as a barrier for preventing the 

leakage of isolated chemical. In addition, the continued safety of the reactor pressure 

vessel is a key factor in ensuring the feasibility of implementing plant life extension 

program.

Figure 1.1 A 405 ton, hydro treatment reactor vessel for ConocoPhillips refinery 

project in Billings (Lakes superior warehousing, 2008). 

Chemical reactor vessels and pipelines are commonly constructed using welded 

C-Mn (A516) steels and stainless steel (SS304) liners. In oil refineries and chemical 

plants these steel vessels operate in corrosive environments where high concentration of 

hydrogen sulphide is present. The operating temperature typically ranges from -29 to 
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427 °C. C-Mn and Cr-Mo low-alloy ferritic steels are widely used in power and 

petrochemical industries because of its susceptibility to HIC and high toughness at 

lower operating temperatures respectively. Unfortunately, prolonged exposure of these 

steels to intermediate service temperatures (thermal aging), could lead to deleterious 

effects such as embrittlement, loss of toughness and creep rupture of the steel (Spence 

and Nash, 2004) and a shift in ductile-to-brittle transition temperature (DBTT) to higher 

temperatures. Previous research showed that DBTT increases with increase in thermal 

aging temperature (Song et al, 2008). All these conditions could lead to failures of 

pressure vessels and pressure piping related accidents, which are often fatal and 

involved loss of capital investment (Tesman, 1973 and Challenger et al, 1995). 

The majority of pressure vessels are made from joining parts or subassemblies, 

which have been previously sub fabricated into segments, such as cylinders and 

hemispheres by welding to form the base vessel. Welding joint used to produce the 

pressure vessel are mainly longitudinal joint and circumference joint (figure 1.2). 

Figure 1.2 Type of welded joints in construction of a pressure vessel

The application of immense heat in a welded joint of a pressure vessel steel, to 

fuse the base plate and weld metal (electrode) for strong permanent joint results in a 

mechanical and metallurgical inhomogeneity due to the weld thermal cycle in the base 

metal (BM), the heat affected zone (HAZ) and the weld metal (WM). These changes 

Circumferential Weld

Longitudinal Weld

Typical Weld Seams

Nozzle
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often lead to a decrease in toughness of the weld and HAZ resulting in different 

microstructures throughout the HAZ and the associated residual stresses.Weldments are 

identified as a particular concern because they are often a life-limiting feature in the 

construction of pressure vessels. 

During service, reactor pressure vessel is subjected to moderately high pressure 

and temperatures, neutron irradiations and cyclic fatigue. The most likely degradation 

sites are typically weldments. Various studies showed that cracks have been found in 

different regions of the weld with different orientation in the weld zone, such as 

centerline cracks, transverse cracks and micro-cracks in the underlying WM or HAZ 

(Zhu et al, 1992; Brooks and Thompson, 1991; Pandey, 2004 and Bullough et al, 2007), 

thus rendering this region to be the most susceptible for crack initiation and growth. The 

most severe and significant degradation mechanism is neutron irradiation 

embrittlement, which may be exacerbated by thermal aging. The accumulated effects 

over a long period of time due to irradiation and thermal aging causes range of 

mechanical properties, most significantly an increase in the DBTT.

Reactor pressure vessel failures have caused extensive damage to the industry, 

people and environment. The explosion of boiler/pressure vessel on-board the 

Mississippi steamship ‘Sultana’ in 1965 have claimed 1238 lives, although more souls 

were lost when a ship sank within 20 min after the explosion. The explosion of Union 

Oil amine absorber pressure vessel in 1984 has resulted in causing 17 fatalities and 

extensive property damage (Challenger et al., 1995). In 1999, 23 percent of a total of 

138 explosion and 82 percent of a total of 150 accidents involved failure of boilers, 

resulting in 21 fatalities (Spence et al., 2004). The situation worsened in 2001 where 

158 people died and 342 were injured in boilers, pressure vessel and pressure piping 

related accidents. Many of these reported mishaps were due to non-conforming design 

and fabrication of pressurized vessels and components and inadequate in-service 

inspection. 
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This research is aimed at quantifying the progressive damage of welded steel in 

the combined loading conditions of pressure, pressure fluctuation and hydrogen 

absorption, typical of a reactor pressure vessel environment. An improved methodology 

for assessment of damage and structural integrity of the vessel based on the critical heat 

affected zone of the weld is proposed. 

1.3 Research Objective

Following are the objectives of this research;

1. To develop a mechanism-based life prediction methodology for welded A516 

Grade 70 pressure vessel steel under environment-fatigue loadings.

2. Establish baseline mechanical properties and fatigue crack growth behavior (FCG) 

of A516 Grade 70 steel.

3. Quantify the effect of thermal aging and hydrogen absorption on fatigue crack 

growth (FCG) behavior of welded A516 steel.
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1.4 Scope of Work

The scope of this research work is to review the followings:

1 Methodology for assessment of damage in welded connections of carbon manganese 

steel reactor vessels.

2 Metallurgical and microstructural evaluation of welded A516 steels.

3 Impact toughness of thermally aged welded A516 steels.

4 Effects of absorbed hydrogen and thermal aging on crack-tip plastic zone in welded 

A516 steels.

5 Fatigue fracture mechanism of welded austenitic steel inlay.

6 Effects of absorbed hydrogen on fatigue crack growth behavior of thermally aged 

welded A516 steels.

1.5 Significance of Research

This research addresses various industrial sectors’ strategic objectives. It 

includes achieving maximum plant useful life and cost/risk-focused decision making in 

regulation, operation, and design. This research also focuses on developing a 

methodology to address materials degradation/aging. 
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1.6 Organization of Thesis

The thesis comprises of nine chapters. Chapter one, the introduction overviews

the application and importance of pressure vessel and highlights it as an important 

element of the oil and gas industries. It discusses the background of welded pressure 

vessel, research objectives, scope and significance of research.

Chapter two covers the literature review on methodology for assessment of 

damage in welded connections of carbon-manganese steel reactor vessel. Literature 

covering different aspects of pressure vessels, its types, geometry, working loads, 

material employed for construction of pressure vessels, design and constructional codes 

and aspects of assessment of damage and structural integrity with respect to fracture 

mechanics approach has been discussed in detail.

Chapter three narrates in detail the research methodology adopted in this 

research. It proposed improvement for life prediction methodology by discussing a 

research frame work employed in this research and presenting step by step process in 

accomplishing the results in the form of research methodology flow chart. This chapter 

gives adequate details regarding welded steel A516 plates, its different microstructure in 

as-received and corrosive environment, chemical analysis and detailed experimental 

procedures carried out throughout this research work.

Chapter four details the metallurgical and microstructure evaluation of welded 

A516 steel. Welding process, chemical composition and microstructure of A516 steel, 

J-factor, hardness variations across the welded A516 steel for as-received, thermally 
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and hydrogen charged specimen and its tensile properties are the main focus in this 

chapter.

Chapter five discusses the impact toughness of thermally aged welded A516 

steels. This chapter discusses in adequate detail on the aging procedures. Results are 

discussed in terms of impact energies for thermally aged specimen, ductile-to-brittle 

transition temperature (DBTT) and fractographic analysis.

Chapter six illustrates effects of absorbed hydrogen and thermal aging on crack 

tip plastic zone in welded A516 steels. This chapter discusses the fracture mechanics 

aspects of the materials and the corresponding fracture mechanisms.

Chapter seven reports on the fatigue behavior of cladding material (SS316) of 

the pressure vessel in terms of fatigue fracture mechanism of welded austenitic stainless 

steel inlay. Focus is placed on stainless steel liner functions and types. Effects of aging 

on mechanical behavior and fatigue fracture mechanisms are discussed in detail in this 

chapter.

Chapter eight narrates the fatigue crack growth behavior of welded A516 steels 

in the reactor vessel corrosive environment. This includes the Paris equation, threshold 

stress intensity factor and fatigue crack growth mechanisms.

Finally, Chapter nine notes the conclusion of the study and recommendations for 

future work in this area.




