
Electrical and Electronics 263

Crypto Embedded System for Electronic Document

Illiasaak Ahmad
1
, Norashikin M . Thamrin

1
, M ohamed Khalil Hani

1

1VLSI-ECAD Research Laboratory,Microelectronic and Computer Engineering Department (MiCE)

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
Tel: +60-7-5535223, Fax: +60-7-5566272, E-mail: ilyasak_ahmad@ yahoo.com,

norashikin.mthamrin@ gmail.com, khalil@ fke.utm.my

Abstract

In this paper, a development of low-cost RSA-based Crypto Embedded System targeted for electronic document
security is presented. The RSA algorithm is implemented in a re-configurable hardware, in this case Field Programmable Gate

Array (FPGA). The 32-bit soft cores of Altera’s Nios RISC processor is used as the basic building blocks of the proposed
complete embedded solutions. Altera’s SOPC Builder is used to facilitate the development of crypto embedded system,

particularly in hardware/software integration stage. The use of Cryptographic Application Programming Interface (CAPI) to

bridge the application and the hardware, and the associated communication layer in the embedded system is also discussed.
The result obtained shows that the crypto embedded system provides a suitable compromise between the constraints of speed,

space and required security level based on the specific demands of targeted applications.

Keywords:

Embedded System, Public Key Cryptography, FPGA, HW/SW Co-design

1. Introduction

Cryptography has gained an important role in today’s

information security problems. Security of the system can be

enhanced if it is embedded in a re-configurable hardware.

Such implementation is harder to tap, decompose, and attack,

n general.i

The protocols in public key cryptography like RSA, El-

Gamal, etc, are excellent examples for implementing

HW/SW co-design concept. Public key cryptography is

based on the difficulty of factoring large numbers. To

increase the operation speed, the algorithm is most often

realized as a hardware component based on a parallel array

of processing elements [1][2]. The hardware structures are

generally fast enough, but not suitable for algorithm

sequencing and they cannot be adapted to algorithm changes.

Software, on the other hand, adapts itself easily but it is

much slower and less secure. Thus implementing

cryptographic algorithms in re-configurable hardware/SOC

offers the best solution: it can consist of an embedded

rocessor, one or more coprocessors, and software.p

In this paper 1024-bit RSA algorithm is implemented.

Due to hardware resource constraint, the encryption and

verification modules are implemented as embedded code,

while decryption and signing operations are performed in

hardware. Chinese Remainder Theorem (CRT) is deployed

not only to speed up decryption and signing operations, but

lso to utilize the 512-bit RSA co-processor designed in [3].a

This paper is organized as follows: Section 2 covers the

fundamental concept of RSA algorithm. The design of crypto

embedded system is discussed in Section 3. Section 4 looks

at the verification of the crypto embedded system and its

performance. We discuss, in brief, the use of Cryptographic

Application Programming Interface (CAPI) as high-level

interface to the crypto embedded system in Section 5.

Fina ly, concluding remarks is presented in the final section. l

2. Overview of RSA Algorithm

As reported in [4], the most widely used public-key

algorithm is RSA algorithm. This is due to the fact that, RSA

can provide both confidentiality and digital signatures using

the key-pair and under the same mathematical operation.

Figure 1(a), 1(b), and 1(c) summarize RSA algorithm.

1. Generate 2 primes, p and q randomly, where p q

2. Calculate M, where M = p * q

3. Calculate φ(M), where φ(M) = (p – 1)(q – 1)

4. Generate E (public exponent) that fulfills

1 < E < φ(M) and GCD (φ(M), E) = 1

5. Calculate D (private exponent), where D = E-1 Mod

φ(M)

Figure 1(a). RSA Key-Pair Generation

Plaintext (P) <M

Ciphertext (C) = PE Mod M

Figure 1(b). RSA Encryption/Verification

Ciphertext (C)

Plaintext (P) =CE Mod M

Figure 1(c). RSA Decryption/Signing

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

264 Electrical and Electronics

3. Design of Crypto Embedded System

An important aspect in embedded system design is

partitioning the overall system into hardware and software

components. This involves the physical partitioning of

functionality into hardware or software, and it is influenced

by system requirement, availability of device resources, IP

core, and execution time. Figure 2 depicts the generic

mbedded HW/SW design flow.e

The architecture of the crypto embedded system is

shown in Figure 3. It has a processor core, on-chip memory,

a co-processor, UART communication, and internal system

bus. Nios [5], a 32-bit soft core from Altera, is used as the

processor, while Avalon Bus [6] is used to enable

communication between processor and RSA co-processor.

The RSA co-processor is designed to perform the intensive

part of computation of RSA algorithm. Nios processor is

used to implement the more control intensive,

parameterizable portions of RSA algorithm like embedded

encryption module, and some parts of decryption module.

SHA-1 has also been implemented in Nios (to be used with

digital signature operation).

Requirem ents Definition

Specification

System Architecture

Developm ent

SW Development

° Application software

° Com piler, etc

° Operating System

Interface Design

° Software driver

° Hardware interface

HW Design

° HW architecture design

° HW synthesis

° Physical design

System Architecture

Developm ent

Figure 2. Generic Embedded HW/SW Design Flow

Nios CPU

Em bedded RSA

Encryption

Em bedded RSA

Decryption CRT

Device Driver

RSA Co-Processor

RSA Core

A
v
a

lo
n

In
te

rf
a
c
e

Nios peripherals

Em bedded SHA-1

A
v
a
lo

n
B

u
s

Figure 3. System Architecture of Crypto Embedded System

3.1 Interfacing RSA Co-processor with Embedded

Processor

In this work, 512-bit RSA co-processor designed in [3] to

perform 1024-bit RSA operation is used. This co-processor

is designed to handle intensive modular arithmetic

computations. It is, however, beyond the scope of this paper

o discuss the implementation of this co-processor in detail.t

To interface this co-processor with Nios processor,

Avalon Bus is used as the bus system. Avalon Bus is a

simple bus architecture designed for connecting on-chip

processor and peripherals together into a system on a

programmable chip. It is an interface that specifies the port

connections between master and slave components, and also

specifies the timing by which the components communicate

[6]. Avalon Bus transactions transfer a single byte, half-

word, or word (8, 16, or 32-bits) between a master and slave

eripheral.p

The RSA co-processor used in this work uses Avalon

slave transfer mode that accept Avalon bus transfer from

master port, which is Nios processor.

3.2 HW /SW Integration

Tools are available to integrate the processor, co-processor,

and peripherals to become a complete embedded system. In

this work, we used Altera SOPC Builder [7]. See Figure 4

for an illustration of SOPC Builder HW/SW integration

flow. It is the interest of this paper to explore in greater

details the Software Development portion of the flow.

H ardw are D evelopm ent

S O PC Builder

C onfigure M asters

Select & C onfigure

P eripherals , IP

C onnect Blocks

G enerate

M aster Lib rary

P eripheral L ibrary

° ED IF N etlis t

° H D L Source File

° Testbench

Q uartu s II

S ynthesis & F itting

° User D esign

° O ther IP

Blocks

Physica l D evice

S oftw are Tools

C om pile r

A ssem bler

° User C ode

° Lib ra ries

° R TO S

° C H eader F iles

° C ustom Libra ry

° Peripheral D rivers

IP M odu les

S oftw are D evelopm ent

H ardw are

C onfiguration File
S oftw are C ode

Figure 4. SOPC Builder HW/SW integration flow [8]

To generate the software development kit (SDK) for the

embedded system, all the peripherals and IP core used must

be added and configured, see Figure 5. The RSA Co-

processor is added here as user-defined interface. The base

address of this co-processor is set to 0x0900900. Since Altera

Apex EP20K20EFC484-2X development board is used, the

clock frequency is set to 33.33 MHz. Other configuration

parameters include assignment of interrupt priorities, and the

it requirements of each peripheral.setup, hold and wa

On the completion of generation process, SOPC Builder

generates the hardware and software driver file called

excalibur.h. Excalibur.h includes all the software interfaces

for all the blocks in the embedded system. Apart from that,

excalibur.h also includes the address for all registers and

memories inside the SOPC Builder as well as associated

software application programming interfaces (APIs) for IP

blocks that include APIs. Figure 6(a) and 6(b) show the

excerpts taken from excalibur.h.

3.3 Embedded Software Development

Based on the previous section, the SOPC builder generates a

custom SDK. The SDK contains the memory map and data

structures for accessing hardware components in the system.

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

Electrical and Electronics 265

It also provides routines for accessing the peripherals like

UART. So this SDK can be used to communicate easily with

undamental system components and custom IP cores.f

Application programming interfaces are developed using

C language to control the RSA Co-processor operations. The

interfaces are:

• RSA_OperandM()

• RSA_OperandE()

• RSA_OperandR()

• RSA_OperandX()

• RSA_Ouput()

• RSA_MonMult_vec()

• Compute_R()

Besides that, embedded code for encryption and

decryption with CRT are also coded. Figure 7 illustrates the

APIs and the embedded software.

A device driver for the crypto embedded system is also

developed to enable communication between crypto

embedded system and external world like personal computer.

The flow of the device driver can be described as state

diagram. See Figure 8.

RSA512 User Interface Logic Avalon 0x00900900 0x0090093F

cpu Nios Processor Avalon

Figure 5. Configuring Crypto Embedded System Using

SOPC Builder

// Th e M em ory M ap

#define na_cpu ((void *) 0x00000000) // a lte ra_nios

#define na_cpu_base 0x00000000

#define na_uart ((np_uart *) 0x00000400) // a lte ra_ava lon_uart

#define na_uart_base 0x00000400

#define na_uart_ irq 26

#define na_tim er ((np_ tim er *) 0x00000440) // a lte ra_ava lon_ tim er

#define na_tim er_base 0x00000440

#define na_tim er_ irq 25

#define na_ex t_ ram ((void *) 0x00040000) // a lte ra_nios_dev_board_sram 32

#define na_ex t_ ram _base 0x00040000

#define na_ex t_ ram _end ((void *) 0x00080000)

#define na_ex t_ ram _size 0x00040000

#define na_ex t_ flash ((void *) 0x00100000) // a lte ra_nios_dev_board_ flash

#define na_ex t_ flash_base 0x00100000

#define na_ex t_ flash_end ((void *) 0x00200000)

#define na_ex t_ flash_size 0x00100000

#define na_R S A 512 ((np_usersocket *) 0x00900900) // a lte ra_ava lon_user_defined_ in te rface

#define na_R S A 512_base 0x00900900

Figure 6(a). Excerpt from excalibur.h: Memory Map

// S tru ctures an d R outines F or Each P erip hera l

// N ios C P U R ou tines

vo id n r_ ins ta llcw pm anager(vo id); // ca lled au tom atica lly a t by n r_se tup.s

void n r_de lay (in t m illiseconds); // approx im ate tim ing based on c lock speed

void n r_zero range (char *rangeS ta rt,in t rangeB y teC oun t);

vo id n r_jum ptorese t(vo id);

// D e fau lt U A R T rou tines

vo id n r_ txchar(in t c);

vo id n r_ txchar2 (in t c , in t channe l);

vo id n r_ txs tr ing (char *s);

in t n r_ rxchar(vo id);

Figure 6(b). Excerpt from excalibur.h: APIs

bigdigits.c

Long integer operations

rsa.c

RSA_OperandM()

RSA_OperandE()

RSA_OperandR()

RSA_OperandX()

RSA_Output()

RSA_monMult-vec()

Compute_R()

sha1.h

excalibur.h

rsa.hbigdigits.h

rsa_driver.c

sha1.c

RSA Co-processor

Personal Computer

Figure 7. APIs and Embedded Code

Idle

Call

Execute

Return

F
u
n
ctio

n
ca

ll

FunctionExecute

F
u
n
ctio

n
E

n
d

F
u
n
ctio

n
E

rro
r

Fun
ct
io

n
re

tu
rn

Figure 8. Device driver state diagram

4. Result

To evaluate and verify software/hardware modules in this

solution and its impact on the speed of the RSA operation,

test application is developed. The test application is run on

Nios processor.

The test vector is obtained from National Institute of

Standards and Technology (NIST) [9] and hard-coded in the

test program. For this test we have predefined the value of

public key to be ‘17’, and this value can be easily changed

according to the user’s requirement later. Table 1 shows the

timing of the RSA operations (CRT is deployed in RSA

decryption).

Table 1. Execution times of RSA on Altera APEX

EP20K200EFC484-2X clocked at 33.33 MHz

Operation Time (ms)

Encryption (software) 10

Decryption (software with CRT) 18338

Decryption (hardware with CRT) 111

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

266 Electrical and Electronics

The result obtained here is also compared with ARM

SecurCore [11], one of the commercial products available in

the market. Table 2 below summarizes the comparisons that

are made. Based on that table, we can see that the result

obtained is quite competitive in terms of performance.

Table 2. Comparison with commercial product

Specifications Our design ARM SecurCore

KeySize 1024 1024

Clock 33.33 Mhz 20 MHz

Decryption

(with CRT)

111 ms 330 ms

Encryption

(software)

10 ms -

5. Cryptographic Application Programming

Interface (CAPI)

Modern embedded systems are built using various

techniques that provide flexibility and reliability. One of the

most important techniques centres on the use of applications

rogramming interface.p

An application-programming interface (API) is basically

a well-defined boundary between two system components

that isolates a specific process or a set of services. For

example, it is quite common now for an application to

interact with e-mail service using e-mail API like MAPI

(Microsoft), VIM (Lotus), and others. In such cases, the API

defines a set of services that allow an application to retrieve

r submit mail messages from or to the mail server.o

A cryptographic application programming interface

(CAPI), like other APIs, is an API specifically designed to

support cryptographic functions. Technically, a CAPI would

provide and interface to a set of cryptographic services such

as encryption/decryption, digital signatures/verification, key

generation, etc. Figure 9 depicts the relation between CAPI

nd crypto services.a

A simple and easy to use CAPI called myCAPI is

developed for the crypto embedded system presented in this

paper. myCAPI has a set of well-defined APIs that enable

application developers integrate crypto embedded system

services into their application. The list of available APIs is

isted in Table 3.l

In addition to myCAPI, the crypto embedded system

services can also be called-up through Microsoft CryptoAPI

interface [10]. This integration would benefit the application

developers. Since Microsoft CryptoAPI has been defined as

one of the standard CAPI, application that utilizes Microsoft

CAPI can access multiple cryptographic implementations

through a single interface, see Figure 9.

6. Conclusion

In this paper, the design of crypto embedded system targeted

for electronic document security has been presented. The

crypto embedded system is implemented in re-configurable

hardware, which is FPGA. Altera CAD tool, SOPC Builder

is used to facilitate and demonstrate hw/sw design and

development flow. The result obtained shows that the crypto

embedded system provides a suitable compromise between

the constraint of speed, space and required security level

based on the specific demands of targeted applications.

Table 3. myCAPI APIs

API Description

utmGenKeyPair() Key-pair generation

utmRSASigning() RSA digital signatures

utmRSAVerification() RSA digital signatures

verification

utmRSAEncryption() RSA encryption

utmRSADecryption() RSA decryption

Crypto Application 1Crypto Application 1 Crypto Application 1Crypto Application 2 Crypto Application 1Crypto Application 3

Cryptographic

Service

Manager

Cryptographic Application Programming Interface (CAPI)

Software

Crypto

Hardware

Crypto

Figure 9. CAPI Architecture

References

[1] A. F. Tenca and C. K. Koc. A scalable architecture for

Montgomery multiplication. In C.K. Koc and C. Paar,

editors, Cryptographic Hardware and Embedded

Systems, number 1717 in Computer Science, pages 94-

108, Berlin, Germany, 1999. Springer Verlag.

[2] M. Drutarovsk , V. Fischer, and M. imka. Two

Implementation Methods of Scalable Montgomery

Coprocessor Embedded in Reconfigurable Hardware.

Cryptographic Hardware and Embedded Systems 2003.

[3] Paniandi. A, 2005. A Hardware Implementation of RSA

Co-processor for Resource Constrained Embedded

Systems. Master Dissertation, Faculty of Electrical

Engineering, Uni. Teknologi Malaysia.

[4] B. Schneier. Applied Cryptography: Protocol, Algorithm

and Source Code in C. 2nd Edition, John Wiley & Sons

Inc, NY. 1996.

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

Electrical and Electronics 267

[5] Nios Soft Core Embedded Processor,

http://www.altera.com/nios

[6] Avalon Bus Specification, http://www.altera.com/

literature/manual/

[7] Altera SOPC Builder, http://www.altera.com/products/

software/products/sopc/

[8] Ekas, P; Jentz B, Fall 2003. Developing and integrating

FPGA coprocessors. Embedded Computing Design.

[9] Keller. S. S, 2004. The RSA Validation System

(RSAVS). National Institute of Standards and

Technology (NIST). USA.

[10] Microsoft Developer Network,

http://msdn.microsoft.com/library/

[11] ARM Products and Solutions – Core Type,

http://www.arm.com/products/CPUs/securcore.html

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

