
Electrical and Electronics 257

Accelerating Graph Algorithms with Priority Queue Processor

Ch’ng Heng Sun
1
, Chew Eik W ee

2
, Nasir Shaikh-Husin

3
, M ohamed Khalil Hani

4

VLSI-ECAD Research Laboratory (P04-Level 1),
Microelectronic and Computer Engineering Department (MiCE),

Faculty of Electrical Engineering (FKE),

Universiti Teknologi Malaysia.

1chnghengsun@ yahoo.com.sg
2eikweechew@ hotmail.com

3nasirsh@ utm.my
4khalil@ fke.utm.my

Abstract

Graphs are a pervasive data structure in computer science, and algorithms working with them are fundamental to the

field. Of the various graph algorithms, techniques for searching a graph are the heart of graph algorithms. Many graph

algorithms are organized as simple elaborations of basic graph searching algorithms. For the searching of a graph, Priority
Queue is used to maintain the tentative search result and choice of priority queue implementation would significantly affect the

run-time and memory consumption of a graph algorithm. In this work, we demonstrate how to accelerate graph algorithms

using priority queue processor. Dijkstra’s algorithm is chosen as the target implementation, as many state-of-the-art graph
algorithms use Dijkstra’s algorithm at the heart of their computational engine. Assuming embedded hardware-software co-

design, results show that our priority queue processor performs better than software implementation, and the run-time
complexity of Dijkstra’s algorithm is reduced from O(n lg n) in software implementation to O(n) with our priority queue

processor.

Keywords:

Graph Algorithms, Shortest Path Routing, Priority Queue, Priority Queue Processor

1. Introduction

Graphs are a pervasive data structure in computer

science, and algorithms working with them are fundamental

to the field, among others; Depth-First Search, Breadth-

First Search, Topological Search, Spanning Tree

Algorithms, Dijkstra’s Algorithms, Bellman-Ford

Algorithms, Floyd-W arshall Algorithm, etc. In real world

applications, there exist many algorithms which are actually

extended from these basic graph algorithms. For instance,

in the field of VLSI physical design automation, there are

many interesting computational problems defined in terms

of graph; among others, Lee’s Algorithm, Maze Routing

Algorithms, Matching Algorithms, Min-Cut and Max-Cut

Algorithms, Minimum Steiner Tree Algorithms, Span

Minimum Tree Algorithms, Clock Skew Scheduling, Clock

Net Synthesis, Critical Net Routing, etc.

A graph, G = (V, E) consists of |V| numbers of

vertices/nodes and |E| numbers of edges. Real world

problems modeled in mathematical set can be represented

as graphs, where elements in the set are represented by

vertices, and the relation between any two elements are

represented by edges. The run-time complexity and

memory-consumption of graph algorithms are expressed in

terms of |V| and |E|. A graph searching algorithm can

discover much about the structure of a graph and many

graph algorithms are organized as simple elaborations of

basic graph searching algorithms [1]. Searching a graph

means systematically following the edges of the graph so as

to visit the vertices of graph. For the searching of a graph,

Priority Queue is used to maintain the tentative search

result and choice of priority queue implementation would

significantly affect the run-time and memory consumption

of a graph algorithm [2].

Priority Queue is an abstract data structure to maintain

a set of elements, where all elements are arranged in

accordance to their associate-priority. The associate-priority

can be given as time-of-occurrence, level-of-importance,

physical-parameters, delay/latency, etc, depending on target

application. Two basic operations are supported by priority

queue, namely (i) INSERT(Q, x), which is generally

referred to as ENQUEUE operation, and (ii)

EXTRACT(Q) which is sometimes referred to as

DEQUEUE operation. The performance of priority queue

operations are measured in terms of n, where n refers to the

total number of elements in the queue.

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

258 Electrical and Electronics

In many advanced algorithms where items/tasks are

processed according to a particular order, priority queue has

proven to be very useful. For task-scheduling on a multi-

thread, shared-memory computer; priority queue is used to

schedule and keep track of the prioritized pending

processor tasks/threads. In the case of discrete-event-

simulation (DES), priority queue is used where items in the

queue are pending-event-sets, each with associated time-of-

occurrence that serves as priority; many simulators,

emulators, and synthesizers are designed based on DES

concept. In the case of shortest-path based graph problem,

priority queue has been used extensively in QoS internet

packet routing, weighted shortest path problem, multi-

constrained routing, VLSI routing, PCB routing, etc.

In this paper, choices of priority queue implementation

will be discussed in section 2. Section 3 introduces the

priority queue processor in this work to accelerate the graph

algorithm. Section 4 illustrates the Dijkstra’s Algorithm.

The embedded system architecture featuring the priority

queue processor is described in section 5. Section 6

presents the result of this work.

2. Choices of Priority Queue

As shown in Figure 1, operation INSERT(Q, x) inserts

a new element, x into priority queue, Q; meanwhile

EXTRACT(Q) returns the element with the highest priority.

Preferably, in some circumstances where the highest

priority is given by a minimum value, the term

EXTRACT-MIN(Q) is used instead of the more general

term EXTRACT(Q); whereas in other cases where the

highest priority is the maximum value, the term

EXTRACT-MAX(Q) is used. Hereinafter, EXTRACT(Q)

is used interchangeably with EXTRACT-MIN(Q) or

EXTRACT-MAX(Q).

Figure 1. Basic Priority Queue Operations

For works done to implement a priority queue, either

one of EXTRACT-MIN(Q) or EXTRACT-MAX(Q)

function will be implemented, depending on what

application is targeted. While software implementation

could be easily modified to switch from EXTRACT-

MIN(Q) to EXTRACT-MAX(Q), or the other way round,

it is not the case for full-custom hardware implementation.

Anyway, this is not a big issue since maximum can be

treated as reciprocal to the minimum, or vice-versa

(maximum = 1/minimum). For instance, given a priority

queue which only provides INSERT(Q) and EXTRACT-

MIN(Q), but the target-application needs EXTRACT-

MAX(Q), then simply solve it by inverting all the

associate-priority (1/priority) before insertion into queue.

The simplest way to implement a priority is to keep an

associate array mapping each priority to a list of items with

that priority, see Figure 2. The priorities are held in static

array which stores the pointers to the list of items assigned

with that priority. Such implementation is static, for

example, if the allowed priority ranged from 1 to

4,294,967,295 (32-bit) then an array of (4 Giga-length) *

(size of pointer storage, i.e. 32-bit) is consumed, a total of

16 Gigabytes is gone, just to construct a priority data

structure.

Figure 2. Simplest way to implement Priority Queue

A more flexible and practical way to implement a

priority queue is to use dynamic array/queue, see Figure

3(a), which means the length of array does not depend on

the range of priority. Each INSERT(Q, x) will extend the

existing queue-length by one unit (n n + 1), put in the

item with priority x, then sort the whole queue to ensure the

highest priority item is ready if EXTRACT(Q) is invoked.

Such sorting during insertion will take up to O(n)

computation run time. For extraction, since the whole

queue already sorted during insertion, extraction takes

constant O(1) time.

Figure 3(a). Priority Queue, implemented as array.

If a self-balanced Binary-Heap is used, see Figure 3(b),

each INSERT(Q, x) or EXTRACT(Q) take O(lg n) run-

time. In order to achieve better priority queue performance,

many novel approaches have been taken to implement

different structure of heap, i.e. Binomial-Heap, Fibonacci-

Heap, Relaxed-Heap, Parallel-Heap, to name a few. A

INSERT (Q, x)

 Insert new element, x into queue Q.

EXTRACT (Q)

 Remove and return the highest priority element in

queue Q.

1

2

3

4

5

6

7

8

A

Z

D B E

G

ZH J V

K

NIL

C

NIL

NIL

Priority List of Elements

38251612832

 1 2 3 4 5 6 7index, i

Priority

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

Electrical and Electronics 259

developer has a number of choices with different access

speed, memory consumption, and required hardware

platform. Theoretically, Fibonacci-Heap Priority Queue

(“FHPQ”) has better performance compared to other types

of heap, especially for applications where the number of

EXTRACT and DELETE operations are relatively small

compared to INSERT and DECREASE-KEY operations;

however, the drawback of Fibonacci-Heap is its complexity

in practice with larger constant-time-factor.

Figure 3(b). Priority Queue, implemented as heap.

(in this case, Binary-Heap)

Due to the tremendous application of priority queue,

there are a lot of researches done on how to accelerate the

priority queue operation using custom hardware resources.

There are two main categories of this work; (a) proposed

full-custom parallel hardware design to accelerate array-

based priority queue, (b) no specific hardware designed, but

assuming PRAM (Parallel Random Access Machine) model,

and propose new heap data structure executing on these

PRAM. The former often achieves very high throughput

and clocking frequency, favorite choice to high speed

applications such as QoS network routing and real-time

applications; whereas the latter often ignore the severe

memory communication overhead and gives theoretical

improvement in terms of run-time complexity.

Due to limited space, works in (b) is less related to our

design work, it will be excluded, reader could refer to [3]

for details. On the other hand, works in (a) includes Binary

Trees of Comparator by [4]; such hardware priority queue

is not efficient if the queue size is large, large fan-in for

Binary-Tree also caused severe bus loading effect when it

comes to physical implementation. Another approach to

implement priority queue is using FIFO Priority Queue as

proposed by [5] and [6], but the main drawback is the

priority range is not flexible, just like the illustration in

figure 2, thus not practical if the allowed priority range is

large. Shift Register implementation of priority queue [6],

[7] has better performance compared to Binary Trees of

Comparators and FIFO Priority because the priority level

and the queue size can be easily scaled, but Shift Register

also suffers severe bus loading effect when it comes to real

hardware implementation. To overcome the bus-loading

effect of Shift Register, A hybrid design of Systolic-Shift-

Register priority queue processor had been proposed by [8],

which claims to reduce bus loading effect and could have

achieved better clocking rate. Having said that, all these

designs are implemented on hardware high-speed network

routers, they are different from embedded platform

requirement; such as in our context, graph algorithm

computation (or any other DES). For example, all these

designs are targeting small number of priorities (i.e. 8-bit),

but in the case for graph algorithm; the data which

represents the priority can be in any range (i.e. 32-bit);

furthermore, for embedded system implementation, those

device are practically not accessible to us.

3. Systolic Array Priority Queue Processor

In a programming model, priority queue can be viewed

as an array; when new element is inserted, it will be

compared with all other elements in queue, in order to

determine where to slip in this new element, in such a way

that priority-order of the queue is always maintained. This

approach is known as insertion-sort priority queue. Derived

from the insertion-sort algorithm, O(n) run-time per

operation is needed for a priority queue with n elements.

Given an all-pair-single-source shortest-path graph

problem to be solved with the Dijkstra’s algorithm, the run-

time complexity is O(n2) if insertion-sort priority queue

(hereinafter called “ISPQ”) is used; the run-time can be

improved to O(n lg n) if the priority queue is implemented

as binary-heap priority queue (“BHPQ”). This shows that

different choices of priority queue implementation could

significantly affect the overall performance of graph

algorithm, especially when the queue size is very large.

An in-house-developed hardware, Systolic Array

Priority Queue Processor (“SAPQ”) could further reduce

the run-time complexity of the said graph algorithm to O(n).

The SAPQ, benefited from parallelizing a modified version

of insertion sort algorithm supports both INSERT(Q, x)

and EXTRACT(Q) in constant O(1) run time. Improved

from the Systolic-Shift-Register by [8], the architecture of

SAPQ is much simpler, localizing control-unit and data-

path for each processing element (PE) making it highly

pipelined, easy for cascading, and with no bus-loading

effect.

The SAPQ consists of an array of identical processing

elements (PEs), with each PE holding a single queue-

element. The identical-PE feature of SAPQ makes it very

flexible, where a parameterized design always allows

generation of any queue-size in a FPGA environment. A

very large queue-size can be achieved by cascading

multiple FPGAs on a single board or distributed through

multiple boards. The SAPQ employs n number of PEs for

worst-case n-size priority queue. Each PE is interconnected

to only its immediate-neighbours. Figure 4 illustrates the

top-level architecture of SAPQ. Of all the PEs, only the

left-most PE will communicate with the outside world,

meaning the new element is inserted to PE1, as well as the

highest priority element will be extracted from PE1.

2

8

25

3

16 3812

Root

1

2 3

4 5 6 7

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

260 Electrical and Electronics

Figure 4. Systolic Array Priority Queue Processor

Each INSERT and EXTRACT-MIN operation on

SAPQ completes in 3 clock cycles. The design of SAPQ

allows, for each queue element, the element-ID in 32-bit, so

as the associate-priority in 32-bit. The element-ID can be

treated as associate-pointer which points to a block of

satellite-data of that element.

The SAPQ design is compiled and targeted to

ALTERA Stratix and Cyclone II FPGA devices. The

synthesis shows that the design can obtain 240 MHz

clocking frequency in Stratix and 175 MHz in Cyclone II.

The design achieved 5.12 Gbps throughput rate for Stratix

and 3.73 Gbps in Cyclone II. For details of SAPQ design,

refer to [9].

4. Dijkstra’s Graph Algorithm

All shortest path based graph algorithms follow a

sequence of predefined graph-search procedures to ensure

the shortest paths are found (if any) within the minimum

period of time. In this paper, Dijkstra’s algorithm is

selected for illustration purpose. Refer the pseudo-code in

Listing 1.

Given a graph G = [V, E], where V[G] denotes the set

of vertices and W[G] denotes the set of edge-weights. We

use s to denote the source-vertex, for any two adjacently-

connected vertices, v = Adj[u] or u = Adj[v]. d[u] denotes

total-path-length from s to u, whereas d[v] denotes total-

path-length from s to v. Given w(u, v) denoted the edge-

weights from u to v, then d[v] = d[u] + w(u, v). Specifically

for shortest path algorithm, S is the set used to hold the

nearest vertex from source, [v] is used to hold the

precedent-vertex of v. Upon complete execution of

algorithm, the shortest path from s to v can be traced by

dereference [v] backward to source, and the total-path-

length is given by d[v].

Dijkstra’s algorithm begins with source-node, where all

nodes adjacent to source will be scanned and the edge-

weights inserted into priority queue. Then the edge with

minimum-weight will be extracted from priority queue, and

the node in which this minimum-weight-edge heading-to

becomes active. The same scanning mechanism continues

at this current active node, with insertion to priority queue

if there is no identical entry in queue, or relaxation

(decrease-key) if identical entry already exists in queue.

The procedure continues until all nodes have been visited.

Listing 1. Pseudo-code of Dijkstra’s Algorithm

Figure 5. Decrease-Key function

Notice that besides the basic priority queue operations

in Figure 1, the graph algorithm needs one additional

function, the DECREASE-KEY. The DECREASE-KEY

function is very important because it is necessarily for any

graph algorithm to perform RELAXATION (see [1]).

Recall each element x in queue Q comes with its ID (here,

denoted as x_ID) and its associate-priority (here, denoted as

x_priority). Refer to Figure 5, when it comes to a condition

where the associate-priority, x_priority of an element x

needs update, the DECREASE-KEY is invoked to find that

element x in queue; if the new-associate-priority-of-x,

new(x_priority) possesses higher priority than the old-

associate-priority-of-x, old(x_priority) (the one exist in

queue), then replace that associate-priority-of-x. Such

property is called dominancy, and it is the key to

understand graph algorithms.

DECREASE-KEY (Q, x, new(x_priority))

 Find element x in queue, Q;

If (new(x_priority) dominates old(x_priority))

x_priority new(x_priority).

DIJKSTRA(G, w, s){

for (each vertex v V[G] and v s){

d[v]

[v] NIL

}

d[s] 0

INSERT(Q, s, d[s])

S Ø

do{

(u, d[u]) EXTRACT-MIN(Q)

S S U {u}

for (each vertex v Adj[u]){

if (d[v] =){

 d[v] d[u] + w(u, v)

[v] u

INSERT(Q, v, d[v])

}

elseif (d[v] > d[u] + w(u, v)){

 d[v] d[u] + w(u, v)

[v] u

DECREASE-KEY(Q, v, d[v])

}

}

}(while Q Ø)

}

… ..

Systolic Array Priority Queue Processor

INSERT

EXTRACT

-MIN PE1 PE2 PE3 PEn

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

Electrical and Electronics 261

Listing 2. Modified version of Dijkstra’s Algorithm

All software implementation of priority queue in heap

(Binary-Heap, Binomial-Heap, and Fibonacci-Heap) could

easily incorporate all three functions needed in finding the

shortest path: INSERT, EXTRACT-MIN, and

DECREASE-KEY. However, neither hardware

implementation of priority queue ever provides

DECREASE-KEY function; this function is possible to be

implemented but often ignored due to additional hardware

resources required. The design of SAPQ also does not

incorporate DECREASE-KEY function. Hence,

modification on the targeted Dijkstra’s graph algorithm is

needed, so that the algorithm does not invoke DECREASE-

KEY directly for relaxation, but indirectly perform

relaxation using the only available INSERT(Q, x) and

EXTRACT-MIN(Q).

The modified version of Dijkstra’s algorithm is

presented in Listing 2, which only invoked INSERT and

EXTRACT-MIN functions. The sequence of execution

remains except (i) when supposed DECREASE-KEY is

needed, INSERT is invoked instead; this causes the queue

which is no longer valid. (ii) During EXTRACT-MIN, the

returned queue-entry will be checked for validity, until a

valid entry is returned. Such modification retains the

relaxation property of graph algorithm, except the priority

queue size at some instance might grow larger than

algorithm in Listing 1. Anyway, such exception does not

have profound effect on SAPQ since the operation run-time

is constant, unlike ISPQ, BHPQ, or other heaps which the

operation run-time depends on queue-size.

size to actually grow by one, and there is one entry in queue

. Embedded System Implementation

ation, SAPQ

will

ue to the limitation of Avalon bus bandwidth, which

is 3

ed System on FPGA

. Result

th queue-size of 200 entries is implemented

on t

5

Targeted for embedded system implement

serve as co-processor, to off-load the recursive priority

queue access and maintenance from the host processor. Our

implementation, assuming a general purpose processor,

NIOS, to serve as host processor, executing (modified)

Dijkstra’s algorithm, with the priority queue access and

maintenance fully handled by the SAPQ. The whole system

is prototyped on a FPGA as illustrated in Figure 6. The

Avalon Interface Unit is designed to handle the

communication protocol between host processor and SAPQ.

The embedded system could be deployed to handle all

kinds of application which utilize priority queue. The

Dijkstra’s algorithm executed by the host processor can be

replaced by other algorithms such as discrete-event

simulation, global-positioning-system, mobile navigating,

etc.

D

2-bit width, the SAPQ does not actually execute at its

64-bit interfacing capability. An optimal SAPQ could be

achieved by having it implemented in higher-end

communication bridge, such as PCI-64 as the system bus.

Figure 6. Embedd

6

SAPQ wi

he said embedded system; this queue-size is constrained

by the logic resources of this particular FPGA. Several

software priority queues (ISPQ, BHPQ, and FHPQ) are

used to compare the performance of SAPQ. Having the

SAPQ actually running at lower than optimal speed (50

MHz compared to the maximum allowed is 240 MHz),

narrower bus bandwidth (32-bit compared to allowed 64-

bit), and high redundancy in cycles per operation incurred

by the host processor (44 cycles for INSERT and 52 cycles

for EXTRACT; compared to actually 3 cycles designed for

DIJKSTRA_MODIFIED(G, w, s){

for (each vertex v V[G]){

d[v]

[v] NIL

}

d[s] 0

INSERT(Q, s, d[s])

S Ø

do{

do{

 (u, temp) EXTRACT-MIN(Q)

}(while d[u] temp)

S S U {u}

for (each vertex v Adj[u]){

if (d[v] =){

 d[v] d[u] + w(u, v)

[v] u

INSERT(Q, v, d[v])

}

elseif (d[v] > d[u] + w(u, v)){

 d[v] d[u] + w(u, v)

[v] u

INSERT(Q, v, d[v])

}

}

}(while Q not empty)

}

NIOS

Systolic

Processor

Host

Array

Priority

Queue

r

Priority Queue Co-Processor

Avalon

I

Processo

nterface

Unit

Avalon System Bus

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

262 Electrical and Electronics

INSERT and 3 cycles designed for EXTRACT), the gain

achieved in terms of number of cycles spent per operation

is still significant.

Resource Utility
Run Time

Complexity, n

(Queue Size = n)
of

Processor
Memory INSERT

of

Storage

EXT-
MIN

Systolic Array
O(n) NIL O(1) O(1)Priority Queue,

SAPQ

Bin p
P O(1) O(n) O(lg n) O(lg n)

ary-Hea
riority Queue,

BHPQ

Insertion-Sort
O(1) O(n) O(n) O(1)Priority Queue,

ISPQ

Fibonacci-Heap
O(1) O(n) O(1) O(lg n)

∗

Priority Queue,
FHPQ

Tab omparisons in terms of run-time complexity.

W ORST CASE
(n

SPEED UP GAIN

le 1: C

umber of cycles)
(Achieved by

SAPQ)(Queue size limited to

INSERT
EXT-

INSERT
T-

n=200)

MIN
EX
MIN

Systolic Array Priority
44 52 1.00 1.00

Queue, SAPQ

Binary y
753 1185 17.11 22.79

-Heap Priorit
Queue, BHPQ

Insertion-Sort P y
13674 65 310.77 1.25

riorit
Queue, ISPQ

Fibonacci-Heap
Pri Q

799 44262 18.16 851.19
ority Queue, FHP

Table 2: Comparison in terms of processor cycles.

Refer to Table 1, the performance of priority queue

depe

ompared to BHPQ, the speed up gain achieved by

SAP

nds on the queue-size, n. In Table 2, the worst case

INSERT is for inserting entries so that the queue is full.

The worst case EXT-MIN is for extracting the minimum

entry when the queue is full.

C

Q is more than expected. Theoretically, one could

expect lg n speed up (which in this case n = 200, log2 200 =

7.6) by SAPQ; this real implementation achieved 17 times

and 22 times worst-case speed up for INSERT and

EXTRACT operation. This is because software

implementation suffers severe memory communication

overhead, where tremendous cycles are spent to access heap

data structure stored in memory; whereas SAPQ, having all

the elements stored in registers, such communication

drawback is eliminated.

∗

 For FHPQ, the O(lg n) for EXT-MIN is worst-case

amortized-time, refer [1] for amortized analysis.

Next, compared to ISPQ, SAPQ obtained 310 speed

gains for worst-case INSERT and 1.25 gains for

EXTRACT. Notice the 310 times speed gain is also greater

than theoretical expectation; it is also due to the advantage

of hardware implementation which eliminates the memory

communication overhead.

Lastly, comparison is made between the theoretically

most efficient priority queue, the FHPQ with our SAPQ;

the result is very impressive. Both FHPQ and SAPQ claims

O(1) run-time complexity for INSERT, this implementation

shows 18 times gain achieved using SAPQ because

constantly large cycles are spent by FHPQ to handle a

bunch of pointer manipulation. Similarly, for EXTRACT

operation, the speed-up gain achieved by SAPQ is over 851

times.

The above reported worst case speed-up gain could be

more if larger SAPQ were to be implemented (i.e. queue-

size of 1000). The main drawback of Systolic Array

Priority Queue Processor is the logic resources consumed,

when other software implementation of software priority

queues only take space in random access memory. Anyway,

for real-time applications where the speed is top-priority,

the drawback in logic consumption is a worthy trade-off.

References
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Clifford Stein,

Introduction To Algorithms, 2nd Edition, The MIT Press,

McGraw-Hill Book Company, 2001.

[2] S. S. Skiena, The Algorithm Design Manual, Springer-

Verlag, New York, 1997

[3] Ch’ng Heng Sun, Mohamed Khalil Hani, “Design of a Graph

Processor for VLSI Routing”, Master Research Proposal,

FEB. 2006.

[4] D. Picker and R. Fellman, “A VLSI Priority Packet Queue

with Inheritance and Overwrite,” IEEE Trans. Very Large

Scale Integration Systems, vol. 3, no. 2, pp. 245-252, June

1995.

[5] R. Brown, “Calendar Queues: A Fast O(1) Priority Queue

Implementation for the Simulation Event Set Problem,”

Comm. ACM, vol. 31, no. 10, pp. 1220-1227, Oct 1988.

[6] J. Chao, “A Novel Architecture for Queue Management in

the ATM Network,” IEEE J. Selected Areas in Comm., vol. 9,

no. 7, pp. 1110-1118, Sept. 1991.

[7] K. Toda, K. Nishida, E. Takahashi, N. Michell, and Y.

Tamaguchi, “Design and Implementation of a Priority

Forwarding Router Chip for Real-Time Interconnect

Networks,” Int’l J. Mini and Microcomputers, vol. 17, no. 1,

pp. 42-51, 1995.

[8] S.W. Moon, J. Rexford, K.G. Shin, “Scalable Hardware

Priority Queue Architectures for High-Speed Packet

Swicthes”, IEEE Trans. On Computers, vol. 49, no. 11, Nov.

2000.

[9] Ch’ng Heng Sun, Mohamed Khalil Hani, “Systolic Array

Priority Queue Processor”, Research Report, APR. 2006.

Regional Postgraduate Conference on Engineering and Science (RPCES 2006), Johore, 26-27 July

