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CONNECTED REGIONS ONTO A DISK
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This paper presents an integral equation method for computing the
conformal mapping function f(z) of triply connected regions onto

a disk of unit radius with two concentric circular slits of radii w; <
1 and p, < 1. By using the boundary relationship satisfied by the
mapping function, a related system of nonlinear integral equations
via Neumann kernel is constructed involving the unknown p; and
up. Together with some normalizing conditions, a unique solution
to the system is then computed using an optimization method.
Numerical implementation on some test regions will also be
presented.

8.1 OVERVIEW

Integral equation method for conformal mapping of multiply
connected regions is presently still a subject of interest. Nehari [14,
p.335] described the five types of slit region as important canonical
regions for conformal mapping of multiply connected regions.
They are the discs with concentric circular slits, an annulus with
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concentric circular slits, the circular slit region, the radial slit
region and the parallel slit region. However, exact mapping
functions are not known except for some special regions. Several
methods have been proposed in the literature for the numerical
approximation for conformal mapping of multiply connected
regions [1,3,4,5, 7,11,12,13,15,16,17]. One of the methods is the
integral equation method.

A derivation of boundary integral equation satisfied by a
function on a doubly connected region with Neumann kernel onto
a disk with a circular slit has been presented in Murid and Hu [10].
The theoretical development is based on the boundary integral
equation for conformal mapping of doubly connected regions
derived by Murid and Razali [12] which was limited to doubly
connected regions. Murid & Mohamed [11] and Mohamed [8]
have also discussed numerical conformal mapping of doubly
connected regions onto an annulus via the Kerzman-Stein and the
Neumann Kkernel. Recently, conformal mapping of multiply
connected regions onto an annulus with circular slits is also
discussed in Murid and Hu [9]. But Murid & Razali [9], Murid &
Mohamed [8] and Murid & Hu [9,10] have not yet performed any
numerical experiments on conformal mapping of triply connected
regions onto a disk with circular slits.

In this paper we describe an integral equation method for
computing the conformal mapping of triply connected regions onto
a disk with concentric circular slits. The integral equation is
satisfied by f'(z), M1 and po. For numerical experiment, we

discretized the integral equation and imposed some normalizing
conditions. The system obtained is solved using Lavenberg-
Marquadt algorithm. Then, the boundary values of f(z) is
completely determined from the boundary values of f'(z) through

a boundary relationship. We presents a numerical result as well as
comparisons with the results of Reichel [16] and Kokkinos et. al.

[7].
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8.2 BOUNDARY INTEGRAL EQUATION FOR
CONFORMAL MAPPING OF TRIPLY CONNECTED
REGIONS WITH NEUMANN KERNEL

Let o, I'; and T'» be three smooth Jordan curves in the z-
plane such that I'; and I", lies in the interior of T'o. Let w= f(z) be

the analytic function which maps Q conformally onto a disk with
circular slits of radii p; < 1 and P, < 1 (see Figure 8.1). The
function f could be made unique by prescribing that

f(@) =0, f'(@>0 or f(z*) =1,

a € Qand z* € I'y are fixed points. The boundary values of f can
be represented in the form

f(zo) =€ P® ry:z=24(t),0<t< Sy,
@) =m0, iz=7(), 0<t< A,
f(2o0) = 16'%20 T, 2= 2,(t) 0 <t < B,

where 6(t), 6i(t) and 6&(t) are the boundary correspondence
functions of Iy, I'; and I, respectively.

Figure 8.1. Mapping of a triply connected region.

Denote the unit tangent to " at z(t) by T(z(t))= z'@t)/|z'(t)].
Then it can be shown that
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f(z,(t) = =T (z,(t))—2 =L ¢10) Lz el
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%0 T8O _ g =D e,
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(2, (1)) = ?T(zza»

(8.6)

Note that ¢,'(t) and 6,'(t) may be positive or negative since
the circular slits are traversed twice (see Figure 8.1). Thus,
') 6't)=+1 and 6,'(t)/|6,'(t)|=+1. If we square both sides of
boundary relationship (8.4), (8.5) and (8.6), the results can be
unified as

f'(2)?
f(2)? == f@F T — =
B ’ '@ P
Recently, Murid and Hu [10] have shown that the mapping
function f of multiply connected regions satisfies the integral
equation

a(z,a)+ PV_[I_N*(Z,W)g(W,a)|dW|=| f(2) |2 h(a,z), zeT,

where
g(z,a) = f'(@)T(2) f'(2),
T(2)
h l = - l
@.2) (@-12)?
237
N zw) = | 1@ T@FTE)

27| (z-w) | fW) EZ-W)|
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Since Q is a triply connected region, the single integral
equation in (8.8) can be separated into a system of equations

9(z0.)+ [ N(zo,W) g(w,2) | dw| [ Py(z,W) g(w, )| dw|

=L, Q(z0,W) g(w,a) | dw |=h(a, 7o),
Zy Ero, (89)

0z )+ [ Rz.w) gw.a)|dw|—[ N(z,w) gwa)|dw

- [, Q2 W) g(w @) [ dw = fh(a, ),
Z]_ S Fl' (810)

0z )+ [, Po(2,,w) gw,a) [dw|=[ | Q,(z,,w) g(w,a) | dw]

~ [y, N2 W) g(w,a) | dw = 3h(a,z,),

22 (S rz, (811)
where

T2 1@
Po(z,w) = m{(z W yf(i—v_v):ll
%

T2  T@
Z-w) udz-w)|

A (W) :%{ @ _ ufﬁ}

Al (z-w) (Z-W) [

1
27z1

Qu(z,w) =

T(2) 4T (@)
@-w) ufz-w) |

(2 W) _i{ T@) #5@}

27| (z-w) (Z-W) |

1
QZ(ZvW) _2_7Zi

T(2) 45T()
@-w) iz-w) |
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L{H_E} ifw,zel,w=z,

2rilz—-w ZI-W

NGz w) = 1Mz O7O] i, er

2r |Z'(t)|3

The kernel N is also known as the Neumann kernel. There are
five unknown quantities in the integral equations (8.9), (8.10) and
(8.11), namely, g(z9.a), 9(z,a), 9(z5,a), 1 and . Naturally it is
also required that the unknown mapping function f(z) be single-
valued in the problem domain [5], that is,

Lrl f'(z)dz =0,
j_rz f'(z)dz =0,

which implies
Lrlg(w, a)|dw|=0,

j_rz g(w,a) | dw|=0.

Several conditions can be obtained to help achieve
uniqueness. We first consider applying the condition f(zy(0)) =1.

From (8.4), this implies g(zq(0),a)/| g(zo(0),a) |=i, which means

Re[9(z0(0),2)] = 0, Im[g(z0(0),2)/ | 9(z0(0).2) |=1.

If the region is symmetric with respect to the axes, we can also
impose the conditions

Re[9(z1(0),2)] =0, Re[g(z,(0).a)]=0.
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Thus the system of integral equations comprising of (8.9), (8.10),
(8.11) with conditions (8.14), (8.15), (8.16) and (8.17) should lead
to a unique solution.

8.1 NUMERICAL IMPLEMENTATION

Using the parametric representations zy(t) of T, for
t:0<t<py, z(t) of -1, for t:0<t<p and z,(t) of -r, for
t:0<t<p, equations (8.9), (8.10), (8.11), (8.14) and (8.15)
become

0a,0.a+[ NG 026 0O % 15[ RE0.26) 060229

[ Q2 .2,(9) 9(2,(5).2) | 2, () [ds =h(a, z,().  z,(B) T,
, (8.18)
0z (0.2)+ [ Rz 2,9) 9 (981 % Ol s N 0,29 9262 2,9 s

B '
—IO Q (1), 2,(5)) 9(2,(5),8) | 2, () [ds = i5h(a, z, (1),  z(t) el
(8.19)
9(zo(t),a) + J.fo P2(22(1),20(5)) 9(z0(5).2) | 9'(s) | ds

- OﬂlQZ(ZZ(t)le(S)) 9(z(s).a) | z1'(s) | ds
_Lﬁz N(z,().2,(5)) 9(z,().8) | 2,'(5) | ds = t6h(a, 7, (1)), (M) T,
oﬂ1 g(z1(s).a) [ z'(s) [ ds =0,
fz 9(z2(8).2)| z5'(s) | ds = 0.

Multiplying (8.18), (8.19) and (8.20) respectively by |z,'(t)],
|z'(t) | and | z,'(t)| gives
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12,01 9(2,).2)+ "1 2, ) [N (2,0, 25()) 9(2,(5).2) |2, (5) | s
{12 0/Ra026) 020.al2016-{ 1201Q@0.2() 0.3l 2O It

=20'(®) [h(a,zo()), zo(t) €I,

12019 M.2)+ [12 1) | R(2,(1),2(5)) 9(2,(5).2) | 2,(5) | ds

120INa026) 902016 12010 26) 9Ol Ol

=i 1z’ O |h@ ), zE) e,
12,'(t) | 9(25 (1), 2)

11220 | Pa(22(0),20(5) 9(20(5).2) | 29'(5) | s
2201 Q(z2(). 1(8)) 9(1a(s).2) | 21'(5) | I
72120 IN 22 (0. 22(5) 9 22(5).2) | 25'(5) | s

=115 1 2,'®) |h(@, 2, (1), z,(t) e .

We next define
do(t) = 29" (1) | 9(zo(t),),
A =[z'(t) | 9(z1(t),2),
P (t) = 25" () | 9(z2(1),2),
7o(t) =l 2o'(t) [ h(a, zo (1)),
r1(®) =l z,'(®) | h(a, 2, (1)),
r2(t) =l 22'(t) | h(a, z, (1)),
Koo (to:So) =[ 2o (t) | N(z(t), 2o (5)) ,
Kor(tor81) =1 29" (t) | Py (2o (1), ,(5)) ,
Koz (to,82) =1 2o'(t) | Qo (2o (1), 2,(5))
Kio(t1,S0) =1 2,"(t) [ Pi(z1 (1), 20 (5))
Kty s1) =l 20" (1) | N (24 (t), 24(5))
Kia(t1,82) =1 2,"(1) [ Qu(z4 (1), 2,(5))
Koo (t2,S0) =1 25'(t) | P (z,(t), 2o (S))
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Ko (t2,81) = 25" (1) [ Q2 (2,(1), 24.(5))
Ko (ty,82) = 25" (1) | N(z,(t), Z,(5)) -

Thus, equations (8.23), (8.24), (8.25), (8.21) and (8.22) can be
briefly written as

O+ Kollo SO Kb, AN [ Koty 8)h ()5 =7,(0),
A0+ Kot S8 Kalt )OS [ Ky (.5 (S)ds =),

AO+[ Kl OB Kl G Kb ) (5 =7,(0)
[ a(9)as=0,
[ g,(s)05 =0.

We choose p,=p,=p8,=27 and n equidistant collocation
points t =(i-1)p,/n, 1<i<n on Ty, m equidistant collocation
points t-=(i ~1)4/m, 1<i <m on I; and | equidistant collocation
points t-=(@-1p,/1, 1<i<l on TI,. Applying the Nystrom’s

method with trapezoidal rule to discretize equations (8.26) to
(8.30), we obtain

AN Y MAAIPELS Y M AR AR Y AN SEAD
A+ E DK A 22D K ) -2 T K A ()

NSy MARIORC) Y HRIIORLS Y S OEAS
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i@(t]) =0,
Z¢2(t]) =0.

Equations (8.31) to (8.35) lead to a system of (n+m+1+2)
non-linear complex equations in n unknowns ¢,(t;), m unknowns
¢ (t-), 1 unknowns 4,(t-) , as well as the unknown parameters z4 and
Lo. By defining the matrices

Xoi = o (t) X =h(t:), X =dy(t),
Y0i :70(ti)1 71i~=}/1(ti~), 72f:72(tf)1
Bj :%Koo(tivtj)a Cis :%KOl(thtJ’)’

D5 =%K02(ti1ti) = :%Klo(tfutj) )

B B
r“i,*:HlKn(tiﬂt;), G73=T2K12(tr,tj),

B A
H; :70K20(tfvtj) v Ji5 =FK21(tint]T) )

o
LIAi :I—Kzz(tf,ti) .

The system of equations (8.31), (8.32) and (8.33) can be
written as n+m-+1 by n+m+1 system of non-linear equations

[Inn + Bpp ]XOn = ChmXtm — DniX21 = 7on s
EmnXon + [Imm - me]xlm =GmiX21 = 71m »
HinXon = Jim¥im + [l = Lu Xz = 721,

The result in matrix form for the system of equations (8.36), (8.37)
and (8.38) is
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Inn + Bnn _Cnm _Dnl XOn Yon
Emn Imm - me _Gml Xim = 7m |-
Hi, i R X5 Yl
Defining
Inn+Bpn o -Chm - —Dp Xon
A= Emn Imm — Fim Gl |+ X= | Xy | andy
Hin —Jim Iy — Ly Xa|
Yon
= | 7m |
721

where the (n + m + [) x (n + m + |) system can be written briefly as
Ax =y. Separating A, x and y in terms of the real and imaginary
parts, the system can be written as

ReARex—-ImAImx+i(InARex+ReAlImx)= Rey
+ilmy.

The single (n + m + 1) x (n + m + 1) complex system (8.40)
above is equivalent to the 2(n + m + I) x 2(n + m + I) system
matrix involving the real (Re) and imaginary (Im) of the unknown
functions, that is,
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ReA --- —ImA) (Rex Rey

ImA .- ReA Imx Imy

Note that the matrix in (8.41) contains the unknown
parameters 4 and s». Since ¢=Reg+ilmg, equations (8.34),
(8.35), (8.16) and (8.17) become

Zm:(RexH +ilmx;)=0
j=1

|
Z(Rexzi +ilmx,.) =0,

j=1

Rex,, =0,

Im[xm/\/(Re X,,)? +(Imxy,)? J _1,

Rex, =0, Rex, =0.

The system of equations (8.41) to (8.46) is an over-
determined system of nonlinear equations involving 2(n + m + 1) +
6 equations in 2(n + m + ) + 2 unknowns. We use a modification
of the Gauss-Newton called the Lavenberg-Marquardt algorithm
[2] to solve this non-linear least square problem. The Lavenberg-
Marquardt algorithm is an iterative procedure with starting value
denoted as x°. This initial approximation, which, if at all possible,
should be well-informed guess and generate a sequence of
approximations x*, x%, x°, ... base on the formula

xM=xk _HOFY), =0,

where  H(x*) = ((J; (x*)T Is (x*) + X1 (3; (x*)Tand  J,(x) denotes
the Jacobian of f at x. Here, x stands for the (2n + 2m + 2| + 2)
vector (Re Xo1, Re Xo2, ..., Re Xon, Re X11, Re X12, ..., Re Xim, Re Xz1,
Re X2, ..., Re Xz, Im Xo1, Im Xz, ..., IM Xon, IM X11, IM X2, ..., IMm
Xim, 1M Xo1, IM Xo2, ..., Im Xy, 7 yz), and f = (fl, fg, .
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f2n+2m+2l+6)-

The strategy for getting the initial estimation is to provide
rough estimates of the slit radius, p4; = 0.8 and i, = 0.7 for the test
region. Then the non-linear system of equations (8.39), (8.34) and
(8.35) reduces to over-determined linear system. Writing the over-
determined system as Bx =y, we use the least-squares solutions of
Bx = y which are precisely the solutions of B'Bx = By [6]. The
solutions are then taken as initial estimation. In our experiments,
we have chosen the number of collocation points on I'y, I'; and T',
being equal, i.e, N=n=m=1.

The system of equations (8.41) with (8.42), (8.43), (8.44),
(8.45) and (8.46) are then solved for the unknown function

do(t) =[z0"®)] " @T (2o (1)) f (20 (1)) ,
At) =z’ ®)] F'@T @) (),
$2(t) =|z2' (O] £ (@T (22(0) (22 (1)) ,

M1 and po. Finally, the boundary correspondence functions 4,(t),
6,(t) and o,(t) are then computed approximately by the formula

(1) = Arg T (2, (1)) = Arg (=igy (1)),
6,(t) = Arg f (z,(1)) = Arg (i (1),
0,(t) = Arg  (z,(1)) = Arg (i 4,(t)).

8.4 NUMERICAL RESULTS

For numerical experiment, we have used an ellipse and two
circle as a test regions (see Figure 8.2). Let

I, {z,(t) =2cost +isint},
I, :{z,(t) =0.5(cost +isint)},
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I, :{z,(t)=1.2+0.3(cost +isint)}, t:0<t<2x.

e
) u_s /Uyzx

Figure 8.2. Ellipse/two circle

We have adopted the example from Reichel [16] and
Kokkinos et al. [7] for comparison of p; and [, (see Table 8.1 and
8.2). Since the conditions of the problems are somewhat different,
Mo =1 inours and w4 = 2.5 in Reichel’s and Kokkinos et al., our
radius should be multiplied by 2.5. Values of p; and p; in Reichel
are denoted here by pir and por respectively. While the values of
M1 and Y2 in Kokkinos et al. are denoted here by pix and pox
respectively. All  the computations were done using
MATHEMATICA package Wolfram [18] in single precision (16
digit machine precision).

Table 8.1. Radii comparison with Reichel [16].

N > 25 - paglle b2 * 2.5 - Pl
64 1.8 (-02) 6.0 (-04)

Table 8.2. Radii comparison with Kokkinos et al. [7].

N e % 2.5 - Pagelle  [[M2 X 2.5 - Holl
64 18 (-02) 5.9 (-04)
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8.5 CONCLUSION

In this paper we have constructed a system of integral
equations for numerical conformal mapping from a triply
connected regions onto a disk with concentric circular slits of radii
M1 and po. The system involved the Neumann kernel and unknown
parameters p; and Hp. Due to the presence of y; and [, in the
kernel, the discretized integral equation leads to a system of
nonlinear equations which is solved using optimization method. A
mapping of the test region was computed numerically using the
proposed method. The advantage of our method is that it calculates
the boundary correspondence functions and the unknown
parameters Wy and p, simultaneously.
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