

WORK IMPROVEMENT AT AN ENGINE ASSEMBLY LINE AT CAR MANUFACTURING PLANT

Fadzilah binti Adnan

Universiti Teknologi Malaysia

WORK IMPROVEMENT AT AN ENGINE ASSEMBLY LINE AT CAR MANUFACTURING PLANT

Fadzilah binti Adnan

A Project Report submitted in fulfilment of the requirement for the award of the degree of Master of Engineering (Industrial Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > DECEMBER 2010

Specially dedicated to my beloved parents, siblings, and friends who have always been supportive

ACKNOWLEDGEMENT

First and for most, I would like to express my deepest thank to Allah the Almighty for His guidance and help in giving me the strength to complete this project. My utmost gratitude goes to my supervisor, Assc. Prof. Dr. Abd. Rahman bin Abdul Rahim for his constructive advice, continuous guidance and encouragement throughout the period of this project.

I would also like to express my special thank to En Syuhada, En Suharto, supervisors at ETM engine assembly line and En. Muhammad Firdaus, engineer at ETM engine assembly line for their willingness to assist me in conducting this project at this company from the very beginning up until the end.

Gratitude and appreciation is also expressed to other individuals who have been very supportive during the completion of this project. Last but not least, appreciation is extended to my beloved parents, Aisyah binti Abdul Samad and Adnan bin Jaafar for their continuous encouragement and care. Their support and understanding had always becomes my prime motivation in completing this project.

ABSTRACT

The project was carried out at ETM engine assembly line at a car assembly plant. The objectives of this project are to reduce cycle time in ETM assembly at EA21 workstation and suggest improvement technique to overcome the problem. The company produces many types of engines and the process of producing one engine has been chosen for this project. The study only focus on the internal part of engine assembly line. By assuming all work is normally distributed, time study is done using continuous stop watch method in order to determine the standard time of all the processes involved. Data collection was done through observations, interviews, and study of company records and discussion with supervisors and engineer. Pareto Chart is constructed to determine problem which lead to the high waste operation time. Poor Line balancing is the main problem with 330 hours or 67.1% time lost. Simulation using WITNESS software and line balancing analysis has been chosen to overcome the problem. Through these techniques, 4 alternative models have been developed. Alternative 3 proposed using color coding for parts storage rack has been selected as the best alternative. The scoring was done by taking three performance measurements into account which is cycle time, line balancing loss, and cost.

ABSTRAK

Projek ini telah dijalankan di pemasangan enjin di kilang pemasangan kereta. Objektif projek ini adalah untuk mengurangkan kitaran masa dan mencadangkan teknik penambahbaikan untuk mengatasi masalah yang terdapat pada pengeluaran kilang ini. Kilang ini mengeluarkan pelbagai jenis enjin dan proses pengeluaran sebuah enjin telah dipilih untuk kajian ini. Kajian juga hanya menumpukan kepada pemasangan bahagian dalaman enjin sahaja. Dengan menganggap bahawa taburan kerja adalah secara normal, pengukuran masa dengan kaedah stop watch digunakan dalam menentukan masa piawai bagi semua proses yang terlibat. Pengumpulan data telah dinilai melalui pemerhatian, temuduga, merujuk kepada rekod syarikat, dan juga perbincangan dengan pengendali dan jurutera. Carta Pareto telah dibangunkan bagi mengenalpasti masalah utama yang menyebabkan masa operasi pengeluaran yang tinggi. Masalah pengimbangan lini didapati merupakan masalah utama dengan menyebabkan kehilangan masa operasi sebanyak 330 jam ataupun 67.1%. Bagi menyelesaikan masalah ini, simulasi dengan menggunakan perisian WITNESS dan aturcara pengimbangan lini telah dipilih. Dengan menggunakan teknik ini, sebanyak empat alternatif bagi mengatasi masalah ini telah direkabentuk dah didapati bahawa alternative ke 3 iaitu menggunakan kod warna untuk rak simpanan merupakan alternatif yang terbaik. Pemarkahan bagi menilai setiap alternatif telah dijalankan dengan melihat kepada tiga pengukur prestasi iaitu masa yang digunakan untuk menamatkan keseluruhan operasi, Line Balancing Loss, dan kos.

TABLE OF CONTENTS

CHAPTER

1

2

TITLE

PAGE

DEC	CLARATION	ii
DED	DICATION	iii
ACK	KNOWLEDGEMENT	iv
ABS	TRACT	v
ABS	TRAK	vi
TAB	BLE OF CONTENT	vii
LIST	Г OF TABLES	xii
LIST	Γ OF FIGURES	xiv
LIST	Γ OF APPENDICES	xxi
INT	RODUCTION	1
1.1	Introduction	1
1.2	Background of the Project	2
1.3	Objectives of Project	2
1.4	Scope of Project	2
1.5	Methodology	3
1.6	Summary	3
LITI	ERATURE REVIEW	4
2.1	Introduction	4
2.2	Productivity	4
2.3	Time Study	6

2.4	Line Balancing	8	
	2.4.1 Classification of Line Balancing	9	
	2.4.2 Line Balancing Algorithm	9	
2.5	Simulation	11	
	2.5.1 Witness Simulation Software	12	
2.6	Summary	14	
MET	HODOLOGY	15	
3.1	Introduction	15	
3.2	Research Procedure	15	
3.3	Observation	19	
3.4	Interview with Engineer and Supervisor	20	
3.5	Study Company's Documentation	20	
3.6	Conclusion	20	
DATA	A COLLECTION AND ANALYSIS	21	
4.1	Introduction	21	
4.2	Case Study	22	
4.3	Company Profile	22	
4.4	Engine Types	23	
4.5	Production Capacity	24	
4.6	Location and Layout		
4.7	Product Description		
4.6	EA21 Assembly Line	28	
4.9	Identified Problems	29	
	4.9.1 Glare at Monitor Display	31	
	4.9.2 Poor Layout Design	35	
	4.9.3 Inventory Problems	37	
	4.9.5 Quality Issues	39	
4.10	Problem Selection	41	
4.11	Summary	42	

5	MOD	ELLING THE CURRENT SYSTEM	43
	5.1	Preliminary Data Analysis	43
	5.2	Simulation Modelling Observation	48
	5.3	Process Flow of Simulation Project	48
		5.3.1 Simulation Objective	48
		5.3.2 Data Collection	49
		5.3.3 Model Building and Testing	49
	5.4	Summary	50
6	PROI	POSED ALTERNATIVE SOLUTION	51
	6.1	Main Problem with the Current System	51
	6.2	Building Alternative Solution	52
		6.2.1 Add a Machine to Assemble Wheel	
		and Bearing	52
		6.2.2 Rack Using Color Coding	54
		6.2.3 Adding Automation Information Display	56
		6.2.4 Add Inspection Workstation	57
	6.3	Comparison of Cycle Time Among Alternatives	59
	6.4	Cost Analysis	
		6.4.1 Direct Cost Labor	60
		6.4.2 Additional Machine Cost	61
	6.5	Line Balancing Loss	63
	6.6	Selecting Best Alternative	65
	6.7	Summary	66
7	CON	CLUSION AND SUGGESTION	67
	7.1	Conclusion	67
	7.2	Suggestion for Future Work	68
REFERENCES			69

APPENDICES

LIST OF TABLES

TABLE NOTITLE

PAGE

Table 4.1	Process flow chart for oil pan assembly	31
Table 4.2	Normal and standard time calculation	36
Table 4.3	Total time loss factors	41
Table 5.1	Controllable and uncontrollable variable	45
Table 5.2	Definition for element in current system simulation	
	model	48
Table 6.1	Total time required vs model	51
Table 6.2	Current system with inspection workstation	55
Table 6.3	Total production time vs alternatives	57
Table 6.4	Total cost and additional cost of every alternative	59
Table 6.5	Line balancing vs alternative	60
Table 6.7	Final score for each alternative	64

LIST OF FIGURES

FIGURE NO TITLE

PAGE

Figure 3.1	Methodology for project1	17
Figure 3.2	Methodology for project2	18
Figure 4.1	Basic parts for engine assembly	23
Figure 4.2	ETM plant layout	24
Figure 4.3	Plant layouts EA21	25
Figure 4.4	Campro engine at ETM production line	25
Figure 4.5	Flow chart process in EA21 production line	27
Figure 4.6	Picture of process in EA21 production line	28
Figure 4.7	Glare at loading block workstation	29
Figure 4.8	Cause and effect of glare	30
Figure 4.9	Workstation showing movement	30
Figure 4.10	Distance of worker movement	31
Figure 4.11	Pie chart of total travel distance lost per total	
	working hour	33
Figure 4.12	Cause and effect diagram at oil pan assembly	33
Figure 4.13	Poor line balancing at connecting rod bearing workstation	35
Figure 4.14	Line balancing at EA21	36
Figure 4.15	Workstation activity and standard time	
	for each workstation	37
Figure 4.16	Types of rejects	39
Figure 4.17	Types of reject occur at spark plug	39
Figure 4.18	Workstation activity and standard time	
	for each workstation	40

Figure 4.19	Time loss factor vs time lost	41
Figure 5.1	The costs involve in engine production	43
Figure 5.2	Influence diagram	46
Figure 6.1	Current workstation	51
Figure 6.2	Suggestion of add machine to assemble	
	wheel and bearing	52
Figure 6.3	Result of total cycle time for solution 1	52
Figure 6.4	Current workstation	53
Figure 6.5	Improve searching time at wheel station by re-design rack	using
	color coding	54
Figure 6.6	Improve searching time at wheel station	54
Figure 6.7	Current workstation	55
Figure 6.8	Implementation adding automation information display	54
Figure 6.9	Adding automated information display	54
Figure 6.10	Current system without inspection workstation	55
Figure 6.11	Workstation with inspection	56
Figure 6.12	Current system with inspection workstation	56
Figure 6.13	Total production time vs alternatives	57
Figure 6.14	Total cost of every alternative	60
Figure 6.15	Improvement of line balancing vs alternative	61
Figure 6.16	Final score for each alternative	62

LIST OF APPENDICES

APPENDIX NO. TITLE

Appendix A	Gantt chart for project 1 and project 2
Appendix B	Standard time for engine process assembly line
Appendix C	Simulation of proposed solution
Appendix D	Presentation slide

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter discusses the background, objective, scope, and methodology of the project and organization of the report.

1.2 Background of the Project

This project seeks to improve productivity of an engine assembly line by applying method study, line balancing and time study. Markets pressure requires every manufacturing company to be able to respond quickly to variations in quantity and mix of produced goods.

Car manufacturing industries are growing rapidly in this country. Automotive manufacturers need to improve as well as quality, cost and delivery. Quality directly affects warranty costs and customer satisfaction. Productivity improvement requires knowledge of manufacturing processes.

1.3 Objectives of Project

This project is about work improvement in an automotive engine assembly line. The objectives of project are to:

- a) Identify problems of ETM assembly at EA21 workstation
- b) Suggest improvement to overcome the problem

1.4 Scope of Project

The scopes of the project are:

- a) Only focused at EA21 engine assembly line
- b) Cover work improvement only
- c) All suggestion are not necessarily implemented

1.5 Methodology

This project is carried out using methodology. An engine assembly line at a car manufacturing plant is selected as case study. Observation of the manufacturing process is done to identify the main problem. Relevant data were collected through interviews with engineer and supervisor as well as using time study to determine cycle time for each operation.

Once the problems are determined, further data collections are carried out. A simulation model of the operation under study is then developed using gathered data.

By comparing the time from simulation process and actual process time, any variation can be observed. Alternative solutions can be generated followed by evaluation of each proposed solution. The alternative which provide the lowest throughput time will be chosen.

Conclusion and suggestion of future work will be included at the end of the project report. Gantt chart for this project is shown in Appendix A.

1.6 Summary

This chapter explains the background of the project, objectives and scope. The methodology to be applied in the project and problem solving method is also described.

REFERENCES

Bhattacharya, R and et al. (1988). A Knowledge Based Line Balance System for a Multi-Product Environment. University of Warwick, U.K.

Caputo, A.C and Palumbo, M. (2004). *Manufacturing re-insourcing in the textile industry*. University of L'Aquila, L'Aquila, Italy.

Falkenauer, e. (2005). *Line Balancing in the Real World*. International Conference on Product Lifecycle Management.

Ford, F. D. A. and et al. (1987). *Use of Operation Research in Production Management*. Production and Inventory Management.

Heizer, J and Render B. (2006). *Principles of Operation Management*. 6th edition. New Jersey: Prentice Hall.

Kendrick J.W. (1984). *Improving Company Productivity: Handbook With Case Study*. Baltimore: Johns Hopkins University Press.

Lanner Group Ltd. (1998). WITNESS Version 9 User Manual. UK: Lanner Group.

Meyers, F.E. and Stewart, J.R. (2002). *Motion and Time Study for Lean Production*. 3rd edition. New Jersey: Prentice Hall.

Mundel, M.E. (1985). Motion and Time Study: Improving Productivity. 6th edition.

Englewood Cliffs, N.J.: Prentice Hall.

Niebel, B and Freivalds, A. (2003). *Methods, Standards, and Work Design*. McGraw-Hill International Edition.

Pegden C Dennis, and et al. (1995). *Introduction to Simulation Using SIMAN*. McGraw-Hill International Edition.

Rotab Khan, M.R. (1999). *Simulation Modeling of a Garment Production System Using a Spreadsheet to Minimize Production Cost*. International Journal of Clothing, Science and Technology. Vol.11, no.5: 287-299.

SAM Committee on Rating of Time Studies, (1994). *Advanced Management*. Vol. 6, no.3:110. Sheppard, S. (1983). *Applying software Engineering to Simulation*. Simulation Vol 10.

Stevenson, W.J. (1996). *Production/Operation Management*. 5th edition. USA: Irwin, Times Mirror Higher Education Group Inc.