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ABSTRACT 

 

 

 

This project presents the development of a dynamic model and an efficient control 

algorithm of a three-dimensional (3D) gantry crane with payload. A 3D gantry crane 

with simultaneous travelling, traversing, and hoisting is considered. The dynamic 

equations of motion of the gantry crane system are derived using the Lagrange’s 

method and represented in nonlinear differential equations. Simulation is performed 

using Matlab/Simulink to investigate the dynamic behaviour of the system both in 

time and frequency domains. System responses including positions of rail, trolley 

and payload, and payload sway angle are obtained and analysed. For control of the 

3D gantry crane, a proportional-derivative controller with input shaping for input 

tracking and reduction of payload sway is proposed. The performances of the 

controller are examined in terms of input tracking capability, level of sway reduction, 

and robustness of the input shaper. Simulation and experimental exercises using a 

lab-scaled 3D gantry crane show that the proposed controller is capable of 

minimising the payload sway while achieving satisfactory input tracking 

performance. The controller is also shown to be robust up to 50 % error tolerance in 

the sway frequencies.  Moreover, with the experimental results, it is demonstrated 

that the proposed control is practical and easy to implement in real-time.  
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ABSTRAK 

 

 

 

Projek ini memaparkan pembangunan model dinamik dan kawalan cekap sebuah 

kren gantri tiga-dimensi (3D) dengan beban. Kren gantri 3D dengan pergerakan 

serentak secara mendatar, melintang, dan mengangkat telah diambil kira dalam 

projek ini. Persamaan dinamik pergerakan sistem kren gantri telah diperolehi dengan 

menggunakan kaedah Lagrange dan diwakilkan dalam bentuk persamaan pembezaan 

tak lelurus. Simulasi telah dilakukan dengan menggunakan Matlab/Simulink untuk 

menyelidik sifat-sifat dinamik sistem dalam domain masa dan frekuensi. Tindak 

balas sistem termasuk kedudukan rel, troli dan beban, dan sudut ayunan beban telah 

diperolehi dan dianalisa. Bagi kawalan kren gantri 3D ini, sebuah sistem kawalan 

terbitan-berkadaran dengan pembentukan masukan  untuk penjejakan masukan dan 

pengurangan ayunan beban telah dicadangkan. Prestasi pengawal diperiksa dalam 

aspek keupayaan penjejakan masukan, aras pengurangan ayunan, dan ketegapan pada 

pembentuk masukan. Ujian simulasi dan eksperimen dengan menggunakan kren 

gantri 3D dalam skala makmal menunjukkan bahawa sistem pengawal yang 

dicadangkan berkeupayaan mengurangi ayunan beban sementara ia juga dapat 

mencapai prestasi penjejakan masukan yang memuaskan. Sistem pengawal juga 

menunjukkan sifat yang tegap sehingga 50 % toleransi ralat dalam frekueansi 

ayunannya. Disamping itu, berdasarkan keputusan eksperimen, ia menunjukkan 

sistem kawalan yang dicadangkan  tersebut adalah pratikal dan mudah untuk 

diaplikasikan dalam masa sebenar. 
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CHAPTER 1 

 

 

 

 INTRODUCTION 

 

 

 

1.1 Background  

 

Cranes are increasingly used in transportation and construction. Those cranes occupy 

a crucial role within industries. The cranes are used to perform important and 

challenging manipulation tasks such as construction of bridges, dams, buildings, and 

high-rise towers. Cranes are also indispensable in commerce, as the cranes are 

widely used to transport heavy loads and hazardous materials in shipyard, factories 

and warehouse. Energy exploration and production are also highly dependent on 

cranes where the cranes are used on oil platforms, in refineries and nuclear power 

plants.  

 

A crane consists of a hoisting mechanism comprises of a hoisting line and a 

hook and a support mechanism which is trolley-girder, trolley-jib or a boom. The 

cable-hook-payload assembly is suspended from a point on the support mechanism. 

The support mechanism moves the suspension point around the crane workspace. 

The hoisting mechanism lifts and lowers the payload to avoid obstacles in the path 

and deposit the payload at the target point. 

 

Cranes can be classified based on the degree of freedom the support 

mechanism offers the suspension point (Abdel-Rahman et.al., 2003). The support 

mechanism in a gantry (overhead) crane is composed of a trolley moving over the 

girder. In some gantry cranes, this girder (bridge) is in turn mounted on another set of 
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orthogonal railings in the horizontal plane. This setup allows the suspension point 

one or two rectilinear translations in the horizontal plane. In a rotary (tower) crane, 

the girder (jib) rotates in the horizontal plane about fixed vertical axis. This allows 

the suspension point two motion patterns in the horizontal plane, a translation and a 

rotation. The suspension point in a boom crane is fixed at the end of the boom. It has 

two motion patterns: rotation around two orthogonal axes located at the base of the 

boom.  

 

A gantry crane is one of the widely used cranes in factories and warehouses 

(Butler et. al., 1991). The control objective is to move the trolley to a required 

position as fast as possible with low payload oscillation. Moreover, payloads are 

required not to oscillate during movement. Speed is an important issue in the 

industry as it translates into the productivity and efficiency of the system. However, 

it is well known that fast manoeuvres tend to excite sway angles of the hoisting line, 

and this can result in significant residual sway that degrades the overall performance 

of the system. At very low speeds, the payload’s sways are not significant and can be 

ignored. However, at higher speed, these sway angles become larger and significant, 

and cause the payload hard to settle down during motion and unloading.  The overall 

system performance will be affected when significant sways angle of the payload 

occurs during and after the movement of a gantry crane. This is a very severe 

problem especially for the applications in the industries that require high positioning 

accuracy, small swing angle, short transportation time and high safety (Hua and 

Shine, 2007). It has also been reported that hoisting increases the sway angles and 

therefore affects the system performance (Singhose et. al., 2000). With the size of 

gantry cranes becoming larger and the motion expected to be faster, the process of 

controlling them become difficult. Moreover, gantry cranes have to be operated 

under different conditions. The complexity of the problem increases for a three 

dimensional (3D) gantry crane as more parameters need to be considered and control 

simultaneously. Due to these requirements, an accurate model and efficient 

controllers need to be developed and investigated.    
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1.2 Statement of the Problem 

 

3D gantry crane systems experience significant payload’s sway when commanded to 

perform fast motion. The fast manoeuvres tend to excite sway angles of hoisting line 

and this can result in significant residual sway that degrades the overall performance 

of the system.   

 

 

 

1.3 Objectives of the Study 

 

The study focuses on the issues of modelling and control of a 3D gantry crane. The 

main objectives of the study are as follows:  

(a) To obtain a dynamic model of a 3D gantry crane based on a new assumption. 

(b) To study the dynamic behaviour of the 3D gantry crane. 

(c) To develop an efficient and practical control scheme for input tracking control 

and sway control of the crane system. 

(d) To investigate the real-time implementation of the proposed controller on 3D 

gantry crane. 

 

 

 

1.4 Scope of Works 

 

In this work, a 3D gantry crane is considered. Dynamic modelling of the system is 

developed using Lagrange’s equation. Matlab and Simulink are used to simulate and 

investigate the behaviour of the system. Performance of the dynamic model is 

verified with the previously published model. In the development of control 

algorithms, PD controller with input shaping technique that consists of open-loop 

and closed-loop control strategies is designed and investigated. Simulation using the 

developed dynamic model is performed to investigate the performances of the 

controller in terms of input tracking capability and sway reduction of the payload. 
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The real-time performance of the proposed controller is verified with a lab-scaled 3D 

gantry crane system.  

 

 

 

1.5 Thesis Contributions 

 

From the discussion in the literature review, it is evidenced that there are several 

outstanding issues especially related to control of a 3D gantry crane system. By 

focusing on these issues, the thesis makes several contributions in modelling and 

control of the system. These include: 

(a) Modelling and investigations of the dynamic behaviour of a 3D gantry crane  

(b) Development of PD controller with input shaping technique for input tracking 

and payload sway reduction of the system. 

(c) Development of a practical control algorithm for a 3D gantry crane.   

(d) Development and investigation of PD controller with input shaping technique 

that minimise the effects of hoisting on the payload sway. 

The contributions are reflected with several publications as listed in Appendix A. 

 

 

 

1.6 Thesis Organisation 

 

The thesis is organised as follows. Chapter 2 provides a review of the previous 

modelling and control for gantry cranes. Chapter 3 describes the 3D gantry crane 

system used in this study and the development of a dynamic model of the system. 

Chapter 4 focuses on the development of the proposed control algorithm that is 

verified within simulation and experimental exercises. The simulation results using 

the proposed controller and performance analysis are presented in Chapter 5.  

Chapter 6 discusses the real-time implementation of the proposed controller with 

experimental results.  Finally, the conclusions of the thesis as well as the research 

direction of the work are presented in Chapter 7. 
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