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ABSTRACT 
 
 
 
 

 The purpose of this study is to model the suspension bridge that oscillated 

by the external forces and investigate the phenomenon of resonance that would 

induce the destructive of the suspension bridge.  Theoretically, the resonance will 

occur when the external frequency of the forces are tend to or equal to the natural 

frequency of the bridge.  Resonance is a phenomenon of wave oscillation that can 

produce large amplitude even due to small periodic driving forces.  A big building 

can collapse easily by the resonance due to the vibration of earthquake.  A high 

frequency of sound can cause resonance to occur and break the glass or mirror.  The 

mathematical model involves a suspension bridge that suspended at both end and it is 

vibrating under external forces (marching soldiers).  In this model, the oscillation of 

the suspension bridge will be in linear wave equation form and will be solved by 

using the methods in Ordinary Differential Equation (ODE’s) and Partial Differential 

Equation (PDE’s).  Different types of graph will be plotted by using MAPLE. 

Simulation results demonstrated that the bridge will collapse during the first two 

modes of the vibration when resonance occurred.  Different lengths and angles of 

the suspension bridge also influence the period of the vibration when resonance 

occurred. 
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ABSTRAK 
 
 
 
 

Kajian ini dilakukan bertujuan untuk model jambatan gantung yang 

terumbang-ambing oleh pengaruh luaran dan menyiasat fenomena resonansi yang 

akan mendorong kemusnahan jambatan gantung. Secara teori, resonan akan terjadi 

ketika frekuensi luaran daripada pengaruh luaran cenderung atau sama dengan 

frekuensi alam dari jambatan. Resonan adalah fenomena ayunan gelombang yang 

dapat menghasilkan amplitud besar walaupun kekuatan pendorong berkala kecil. 

Sebuah bangunan besar dapat diruntuhkan dengan mudah oleh resonan akibat 

getaran gempa. Frekuensi yang tinggi boleh menyebabkan resonan suara berlaku dan 

memecahkan kaca atau cermin. Model matematik ini melibatkan jambatan gantung 

yang ditangguhkan pada kedua-dua hujung jambatan dan bergetar di bawah kuasa 

pengaruh luaran (tentera berbaris). Dalam model ini, ayunan jambatan gantung ini 

adalah dalam bentuk persamaan gelombang linier dan akan diselesaikan dengan 

menggunakan kaedah Persamaan Pembezaan Biasa (ODE’s) dan Persamaan 

Pembezaan Separa (PDE's). Berbagai jenis graf akan diplotkan dengan menggunakan 

MAPLE. Keputusan simulasi ini menunjukkan bahawa jambatan akan runtuh pada 

dua mode pertama semasa resonan berlaku. Panjang dan sudut jambatan gantung 

yang berbeza juga mempengaruhi tempoh getaran resonan. 
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CHAPTER 1 
 
 
 

BACKGROUND OF THE STUDY 
 
 
 
 

1.1 Introduction 
 
 

This research involves the mathematical modeling of suspension bridges that 

suspended at both end.  Mathematical modeling now a day becomes one of the most 

important parts of our daily life.  Theoretical work in science and design work in 

engineering are often done by using mathematical modeling.  Scientists and 

engineers are usually using the mathematical models to discover scientific principles 

or to predict the behavior of a real-world system.  This mathematical tool is always 

deal with differential equations (DE’s). 

 
 

 Differential equation is an equation that contains a derivative (or derivatives) of 

an unknown function [1].  Differential equation included Ordinary differential 

equation (ODE’s) and partial differential equation (PDE’s).  Further detail and 

discussion about differential equation will be continued in Chapter 3.  Since this 

research involved the suspension bridge, therefore, Chapter 2 will briefly discuss and 

introduce some basic knowledge of the suspension bridges. 
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Suppose that, there is a force (by wind or mankind) that disturbing the 

suspension bridge from its equilibrium position.  The suspension bridge will 

oscillate up and down by the external forcing.  Hence, we wish to model the 

oscillations of suspension bridges under the external forcing to find out the general 

function of the wave equation of the suspension bridge.  The wave equation is 

obtained by using the mathematical and physical theory on a suspension bridge due 

to the force.  Then, the solution will be obtained by solving partial differential 

equations and ordinary differential equations of the wave equation. 

 
 

 In this research, we assumed the suspension bridge is passing through by a 

union of marching soldiers.  The external force that exerted to the suspension bridge 

is come from the marching soldiers.  When the external force frequency get close to 

or equal to the natural frequency, then the resonance of the oscillation will occur 

[1][2]. The suspension bridge may collapse due to the resonance of the oscillation by 

the marching soldiers.  The way of construction of the suspension bridge’s model 

will be shown in Chapter 4.  

 
 

After constructing the model, we need to determine which mode of the 

maximum amplitude of the resonance would bring to the bridge collapse and the 

other factors that will affect the bridge to resonant by the external force (soldiers) 

such as the lengths and the angles of the suspension bridge.  

 
 

 The graphical representation will be carried out by using MAPLE.  Different 

graphs will be presented such as amplitude versus period, amplitude versus 

frequency and etc.  The analysis about the phenomenon and behavior of the graphs 
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will be discussed in Chapter 5.  The conclusions and recommendations will be 

made in Chapter 6. 

 
 
 
 
1.2 Background of the Problem 
 
 

In the summer of 1940, Tacoma Narrow’s Bridge was completed. Almost 

immediately, observer noted that sometimes the wind appeared to set up large 

vertical oscillations of the roadbed. The bridge became a tourist attraction as people 

came to watch, and perhaps ride the undulating bridge. Finally, on 7th November, 

1940, during a powerful storm, the oscillations increased beyond any previously 

observed. Soon the vertical oscillations became rotational, as observed by looking 

down the roadway. The entire span was eventually shaken apart by the large 

oscillation, and the bridge collapsed.  Another case was the collapsed of the 

Broughton Bridge near Manchester, England by a column of soldiers marching in 

union over the bridge [3]. 

 
 

 These disasters have often been cited in textbooks on ordinary differential 

equation as examples of resonance, which happens when the frequency of forcing 

matches the natural frequency of oscillation of the bridge, with no discussion given 

on how the natural frequency is determined, or even where the ordinary differential 

equation used to model this phenomenon comes from. The modeling of bridge 

vibration by partial differential equation, although still simple minded, is a big step 

forward in connecting to reality. 
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 The mathematicians, Lazer and Mckenna, one of the researcher state that 

the main cause of the collapsing bridge is due to the nonlinear effect, but not to the 

resonance. They state that the main cause leading to the destruction of suspension 

bridge was the large oscillations of the bridge which amplitude increases over time 

every cycle and proportional to the wind velocity.  McKenna has defined a different 

viewpoint of the torsional oscillations in the bridge [4][5]. 

 
 

 In the other hand, Professor Farquharson of University of Washington stated 

that in the Tacoma Narrow’s Bridge, the wind speed at the time was 42 mph, giving 

a frequency by the vortex shedding mechanism of about 1 Hz.  He observed that the 

frequency of the oscillation of the bridge of the bridge just prior to its destruction 

was about 0.2 Hz.  So he concluded that the bridge collapsed due to the torsional 

(twisting) vibration by the wind [6].  Besides, others were arguing the bridge 

collapsed was due to the structure of the bridge itself.  So, there was no agreement 

of the researchers about the main cause that can induce the collapsing of the Tacoma 

Narrow’s suspension bridge. 

 
 

 Hence, this study was interested in how if there were another cause which can 

induce the collapsed of the bridge?  We will try to construct a simple mathematical 

model based on the mathematic and physic theory of the suspension bridge.  The 

model will be in linear wave form.  So what could be happen to the suspension 

bridge?  How did it collapse?  So, we made a hypothesis that the bridge was 

collapsed due to the resonance of the external forces. 
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1.3 Statement of the Problem 
 
 

The research was conducted in order to model the linear wave motion of 

suspension bridges under forcing by a column of soldiers that marching over the 

suspension bridge.  The wave equation obtained will include the ordinary 

differential equation (ODE’s) and partial differential equation (PDE’s).  Then we 

will solve the differential equations by using suitable method such as method of 

separation of variables.  Then, the graph will be plotted and the value of natural 

frequency, period of the oscillation, amplitude, and etc will be calculated.  The 

phenomenon for non-resonance and resonance by the external force will be discussed.  

Also, we wish to find out which mode of the oscillation will induce the resonance to 

give the real impact to the suspension bridge due to the external force (soldiers).  

We also interested in what others effect will influence the resonance of the 

suspension bridge such as the length and angle of the bridge. 

 
 
 
 
1.4 Research Objectives 
 
 

The research objectives in this study will be: 
 
 

i. To derive the mathematical model of a suspension bridge that oscillates 

under external force. 

ii. To analyze and discuss the behavior of the vibration due to different 

external frequencies for non-resonance mode and resonance mode. 
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iii. To analyze and discuss the period of the vibration in different vibration 

mode when the resonance occurred. 

iv. To analyze and discuss the effect of different lengths and angles to the 

period of vibration when resonance occurred. 

v. To identify which mode of vibration will give the real impact to the 

suspension bridge. 

 
 
 
 
1.5 Scope of the Study 
 
 

This research was only considering that the suspension bridge was collapsed by 

the resonance due to the external force (soldiers).  Other consideration such as 

mechanical structure failure of the bridge was out of the scope in this study.  The 

model was focused on partial differential equations and ordinary differential 

equations in linear wave equation. The graphical representation of the model will be 

constructed by using MAPLE. 

 
 
 
 
1.6 Significant of the Study 
 
 

Since our aims were to find out the period of different vibration mode and 

identify which mode will give the real impact to the suspension bridge when the 

resonance occurred.  We also investigate the effect of different length and angle for 

the bridge safety.  Hence, the results will help the engineers to take for 
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consideration in the construction of the suspension bridge. Today, wind tunnel 

testing of bridge designs is mandatory. Therefore, they will design a more stable 

bridge instead of only focus on the material use for the bridges. Finally, the bridges 

will be more safety for all users. 
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