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ABSTRACT 

 

 

 

 

 

Composite slabs are popular flooring systems in steel-framed buildings. They 

have a lot of advantages which make their use the most feasible option in many 

situations. Slenderness ratio (shear span/effective depth) has a dominant effect on 

composite slabs. It is not possible to test the whole range of slenderness for each 

deck profile because of limitation in time and cost. A good understanding of the 

slenderness effect makes prediction of the slab strength possible, and contribution to 

such understanding was the main aim of this study. A nonlinear finite element model 

was employed to predict the behavior of composite slabs. Steel-concrete interface 

was modeled with cohesive elements and a quasi-static solution was achieved 

through explicit dynamic analysis. Modeling procedure was improved to avoid 

unnecessary computational cost. The study then focused on examining the behavior 

of composite slabs with respect to variable slenderness. It is found that at slenderness 

ratio 7.0, the slab behavior changes between compact and slender. Finally, the study 

explored the use of shear bond-slenderness equation by plotting a linear regression 

line. The application of shear bond-slenderness equation enables the prediction of the 

shear-bond strength of any number of slabs utilizing the same profile from only two 

sets of test data. It was demonstrated that the shear bond stress varies linearly with 

the slab slenderness, with slender slabs exhibiting lower shear bond stress. 
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ABSTRAK 

 

 

 

 

 

Lantai komposit merupakan satu sistem lantai yang sering digunakan dalam 

pembinaan bangunan keluli. Terdapat banyak kelebihan mengunakan sistem lanatai 

komposit ini. Nisbah kelangsingan (jarak ricih/kedalaman berkesan) banyak memberi 

kesan terhadap lantai komposit. Keseluruhan nisbah kelangsingan tidak dapat diuji 

disebabkan masa dan kos ujian adalah terbatas. Tujuan kajian ini adalah untuk 

memahami dengan baik terhadap kesan kelangsingan lantai komposit dari segi 

kekuatannya. Kaedah unsur terhingga (nonlinear) telah digunakan untuk meramal 

kelakuan sesebuah lantai komposit. Permukaan keluli-konkrit dimodelkan dengan 

menggunakan cohesive elements dan penyelesaian quasi statik dengan menggunakan 

analisis explicit dynamic dilakukan. Prosedur pemodelan diperbaiki untuk 

mengelakan pengunaan kos pengkomputeran yang terlampau banyak. Kajian ini 

kemudianya tertumpu kepada ujian kelakuan lantai berkomposit terhadap 

kelangsingan. Ujian menunjukkan nisbah kelangsingan adalah 7.0 dimana kelakuan 

lantai komposit berubah antara jenis padat dan langsing. Kajian ini juga melihat 

penggunaan persamaan ikatan ricih dan kelangsingan dengan memplot graf regresi 

linear. Aplikasi persamaan kekuatan ricih dan kelangsingan membolehkan ramalan 

kelakuan ricih dan kekuatan ikatan sesebuah lantai komposit yang mepunyai profile 

yang sama dapat dilakukan dengan hanya menggunakan dua set data ujian. Ikatan 

tekanan ricih berkadar langsung dengan kelangsingan lantai, dimana kelangsingan 

lantai menunjukkan ikatan tekanan ricih yang rendah. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Composite slab systems are common flooring systems in steel-framed 

buildings whereby concrete is placed on profiled steel decking which carries the 

construction loads and acts compositely upon hardening of concrete. The sheeting 

acts as the tensile reinforcement besides its other benefits. Light mesh reinforcement 

is normally placed in the concrete to account for temperature, shrinkage, cracks and 

fire. Shear connectors are used to develop composite action between the slab and the 

beam. The system has many advantages to offer including: high-speed erection due 

to un-propped construction, better quality control, lightweight and longer spans 

which all lead to overall economy of the system compared to conventional systems. 

On the other hand, some shortcomings can be highlighted such ah susceptibility to 

fire damage, damage caused by large local loads, and criticality of the steel-concrete 

bond [1-4]. 

 

 

The behavior of composite systems is complex and established methods for 

concrete and steel design are not applicable. The quest for developing established 

physical models has never stopped because the current design methods have some 
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weaknesses including the lack of underlying mechanical models and dependency on 

costly and time-consuming full-scale bending tests. To overcome this, many 

attempts have been made so far to develop small-scale tests and numerical models 

which are in turn constantly evolving and improving.  

 

 

Slenderness is a geometric property that has a paramount effect on load 

carrying capacity, shear bond strength and other properties of composite slabs. 

Hence, slab behavior with respect to variable slenderness must be understood 

properly so that wise decisions can be made at testing and design stages.  

 

 

 

 

1.2 Problem Statement 

 

 

Due to the apparent limitations of tests; development of reliable analytical 

models is desirable. These models can supplement available experimental data to 

increase efficiency and eliminate the need for too many tests. In the last two 

decades, few two-dimensional (2D) and three-dimensional (3D) Finite Element (FE) 

models have been proposed with successes and inherent limitations in each model. 

The FE model adopted in the current study is one of best models developed so far 

but has some deficiencies. These include the sensitivity to mesh refinement and 

reliance on trial-and-error procedure for obtaining some material parameters, both of 

which result in excessive analysis time and computer memory. It must be improved 

to make it more practical. 

 

 

Some past researchers ignored the effect of slenderness in their numerical 

models or utilized constant behavioral properties for different slabs. However, 

slenderness is a geometric property that directly controls the behavior of composite 

slabs and hence must be understood so that wise decisions can be taken at testing 

and design stages. Slender slabs exhibit lower capacity and shear stress-slip property 
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values but they do not undergo large variation in capacity when slenderness is 

change. However, any small change of slenderness in the compact region results in 

significant changes of load carrying capacity.  

 

 

 

 

1.3 Research Aim and Objectives 

 

 

The aim of this research was to study the effect of slenderness on the 

behavior of composite slabs and subsequently propose useful recommendations for 

the design, numerical simulation and testing of composite slabs. In order to achieve 

that aim, the following objectives were set out: 

 

 

1. To build a 3D model of the composite slab using the commercial 

software ABAQUS/Explicit. Cohesive elements were used for 

representing the shear bond between concrete and steel deck, whereas 3D 

continuum elements were used for both steel and concrete. Concrete 

damaged plasticity material model was used for the concrete.  

 

2. To perform non-linear explicit dynamic analysis for the developed model 

in order to achieve a computationally efficient quasi-static solution 

similar to the static lab testing of the slab. The weaknesses of this 

approach -which has been developed by a previous researcher [12] – are 

pointed out and some improvements suggested. 

 
3. To carry out parametric study by changing span length and concrete 

thickness in order to study the slenderness effect. 
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1.4 Scope of Study 

 

 

 A three-dimensional finite element model utilizing interface elements for 

shear bond between steel and concrete is performed which incorporates both 

geometric and material non-linearity. 

 Profile deformations are not included in the FE model and no shear 

connectors are present. 

 Taking benefit from the two-way symmetry, only quarter model is taken for 

the analysis. 

 The FE models are built for 2” deep Gage 16 trapezoidal Vulcraft decks.  

 For comparison purposes, the model adopts the small-scale setup used by 

Abdullah [9] in his experimental work. In this setup, one-rip wide simply 

supported slab is loaded by two-point loading.    

 

 

 

 

1.5 Report Organization 

 

 

This project report consists of five chapters. After this introductory chapter, 

the literature is briefly reviewed in chapter 2. A general discussion of composite 

construction aspects is followed by summarizing the state-of-the-art of finite 

element modeling of composite slabs, past research on the slenderness effect and the 

usage of explicit dynamic algorithm for achieving quasi-static solutions. Chapter 3 

summarizes the research methodology adopted. Among the topics discussed are the 

finite element choices made, extraction of material properties from the literature and 

the analysis control. Chapter 4 presents and discusses the results of the current study. 

This includes the effect of mesh and web strength variation, energy control and 

studying the slenderness effect on composite slab behavior. Finally, chapter 5 is 

devoted to the conclusions drawn and suggestions for further improvements.   
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