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Abstract

In this paper the position and posture control for the wheeled inverse pendulum type mobile robot is discuss base on simulation
result of two type of controller. The robot in this consideration has two independent driving wheels in same axis, and the gyro type

sensor to know the inclination angular velocity of the body and rotary encoders to know wheels rotation. this paper will discuss
the control algorithm to make the robot autonomously navigate in two dimensional plane while keeping balance its pole. 
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1. Introduction

Some previous researchers on such a wheeled inverse

pendulum type robot have been reported. W heeled inverse

pendulum model have evoked a lot of interest recently

[1][2][3] and at least one commercial product (Segway) is

available [4]. Such vehicles are of interest because they have

a small foot-print and can turn on dime. The kinematic

model of the system has been proved to be uncontrollable[3]

and therefore balancing of the pendulum is only achieved by

considering dynamic effects.

Grasser et al [6] derived a dynamic model using a 

Newtonian approach and the equation were linearized

around an operating point to design a controller. In Solerno

et al[3] the dynamic equations were studied, with the

pendulum pitch and the rotational angles of the two wheels

as the variables of interest. Various controllability properties

of the system in terms of the state variables were analyzed 

using differential-geometric approach. T.Kawamura and

K.Yamafuji[5] proposed posture and driving control

algorithm of similar vehicle. They assumed that the robot 

has the tactile sensor to detect posture angle between ground

and body. They made a good experiment s on balancing but

the robot could not move in two dimensional plane because

the wheels is drived by single servo motor. O.Matsumoto,

S.Kajita and K.Tani [6] presented the estimation and control

algorithm of the posture using the adaptive observer. The

presented algorithm also did not considered the moving

control on the two dimensional plane.

*Corresponding Author. E-mail:sophan@fke.utm.my

E.Koyanagi et al [7] proposed two dimensional

trajectory control algorithm for this type of robot and

implemented on the real autonomous self contained robot

but the algorithm could only worked while the robot moves

slowly. Y.Ha and S.Yuta [8] propose the algorithm of

trajectory tracking of the wheeled inverse pendulum type

mobile robot which can run in relatively high speed in the

two dimensional plane.

The focus of this research is to make the wheeled inverse

pendulum type robot move smoothly in balancing with

proper velocity control. The robot is assumed to have two

independent driving wheels in same axis to support and

move the robot itself. The gyro sensor is attach to know the

inclination angular velocity of the body and rotary encoders

to know wheels rotation angle. Base on simulation result

which getting from control algorithm of [8], it can be shown

that the control algorithm can be improve in term of

robustness by other robust controller. The SMC is used to

compare the simulation result of integral state feedback by

[8].
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2. Dynamic Model 

This system is modeled based on wheels axle and its vertical

axis. And body motion in one dimensional plane is

determined by the inclination and translation motion. The

model of the robot is shown in figure 1. where, θ and φ are
the wheels rotation angle and the inclination angle of the 

body respectively and β be the wheel’s relative rotation

angle to body(θ-φ). Lagrange motion equation of this model
is given as equation (1) and (2)[8].
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Figure 1: Geometric Parameters and coordinate systems of

two wheeled inverted pendulum vehicle

Where:

T=Kinetic energy

U=Potential energy

D=Dissipation energy function

Q
β
=External force to β axis

Q
θ
=External force to θ axis

Assume the to linearized in the neighborhood

of the up right state.

0,0 ==

The parameters and variable in equation (8) and (9) is define

in Table 1[8].
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Table 1: Parameter and variableS1

The state equation of the linearized model is obtained as (10)

from (8) and (9).
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3. Controller Design

In order to synthesize the Sliding mode controller we write

the state variable as and get the following

state-space matrices[9]:

[=x ]
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To develop a sliding mode controller, equation (10) has been

decompose as: 

u
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let the switching surface be defined as  whereSx=

[ ]=
2

1

21 x
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assume the system dynamics is an ideal sliding surface,

. Using this property it can be determine the 

equivalent system and associated linear control input. To

proceed, using

0Sx ==

0=
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Substitute (13) into (11) yields the equivalent system:

( )
11
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21211 xSSAAx =

defining  : 
1
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( )
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the location of poles of the resulting system are obtained by

selecting k and S2 as the switching function becomes

,Sx= [ ] [ ] [ ]1kSSkSSSS 22221 === . Pole

placement method is use to select the gain k. 

The sliding mode control inputs are separated into the linear

and nonlinear component as . The linear

input u

nlleq uuu +=

1 can be selected by the following equations: 

0xS ==

from (16) and (10), the equivalent linear control input is: 

( ) SAxSBu
1

l =

the sliding-mode reaching condition given by ,

bring the system dynamics to the sliding surface =0.

Choose the nonlinear control a 

where >0. Then:

0<

( ) ( )sgnSBu
1

nl =

( )BuAxS +=

 that is whenever , which means the

reaching condition

0< 0

0<σσ
is satisfied. The control input

can then be written as:

( ) ( )[ ]sgnSAxSBu
1

eq +=

3. Stability Analysis

For a given control system stability is usually the most

important attribute to be determine.The stability of this

system with SMC is proved to be stable at the designed

sliding surface using lyapunov method. The concept is

introduced by Russian mathematician A.M Lyapunov. The

lyapunov’s method of stability analysis is in principle the

most general method for determination of stability of 

nonlinear or time varying systems.

yapunov’s Theorem:

1. V is continuous first partial derivatives)(t

2. V is positive definite)(t

3. V   is locally negative definite)(t

T=

2 =

from Ricati equation : 

where matrix Q and P is positive definite.

For linear system time-invariant systems, i.e f(x,t)=Ax a 

suitable Lyapunov function is V where P is 

obtain from Ricati equation and Q is a positive definite

symmetric real matrix. The control proposed by M.J Corless

and G.Lietmann[10] is u where p is any

continuous function which satisfies:

Pxx)x(

)t,x(p

any continuous function which satisfies: 

The proposed control action is in fact a continuous

approximation of the discontinuous min-max control. For

simplicity the case of n-order single input linear time 

invariant system without uncertain elements is considered.

The model of a linear system can be written as follows:

SMC
+ x

Plant

( ) ( ) ( )[ ]sgnSBSAxSBSBSAx
11

+=-

θ
( )sgn= (18)

Figure 2: Block diagram of SMC for self-contained mobile

inverse pendulum
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The switching hyperplane were define as follow

{ 0)x(x == where =Sx and
n1S ×

to provide the sliding mode, all the phase trajectories in the 

vicinity of must be oriented toward it[11]. There exists

a lypunov function such that and in

neighborhood of , the condition

V<0 is satisfied. In what follows, the

switching surface is assume to be chosen so that the

restriction of the nominal system to the surface is 

asymptotically stable. For the single input case a suitable

lypunov function is:

),t,x(V

Thus if  in a

neighborhood of

for all the time, then all state trajectories initially in this

neighborhood, converge to the surface and are restricted to

the surface for all subsequent time.

0V <=

Assume and since the hyperplane does not

change if S is multiplied by an arbitrary constant, without

loss of generality, it can be assume that SB<0. Thus to ensure

sliding mode behavior, u can be a any function fulfilling the

inequalities:

0SB

Now since in sliding mode, the state does not leave the

reduced order subspace , the state velocity also

belongs to , that is, 
0=σ

or . By the

substitution of  from (3) the following is obtained:

0xS =

x

Since , is determined uniquely as: 0SB equ

The sliding mode equation in is:

So for SMC controller:

BuAxx +=

The lyapunov function V(t) is positive definite since P is 

positive definite. The derivative of the lyapunov function

with respect to time t can be obtained as follows:

At sliding surface:

eqBuAxx +=

( ) SAxSBu
1

eq =

substitute into x
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substitute Riccati Equation into )(tV
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From Rayleigh’s principle:

The derivative of the lypunov is always negative, which

prove via Lypunov stability theorem that this system 

equilibrium state at the origin is asymptotically stable. In

SMC beside proving the stability at sliding condition,

another important thing to prove is the stability of the

reaching condition. So for the reaching condition:
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1
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where: )sgn(E =

now for the case of multi input system, assume: 
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And , . For such u* the

derivative V becomes:

)t,x(ˆ)t,x( += 0> 4. Conclusion 

In this paper a two-wheeled inverted pendulum type robot is

discussed. It has the advantage of mobility from without

caster and an innate clumsy motion for balancing. The

proposed controller in particular SMC shows the good

control behavior of the system to be control. It can be seen in

the result of the simulation. The characteristics of the SMC 

appear to be more robust and good control compare to SFIC

on inverse pendulum type mobile robot.

It can be seen that the implementation of u* assures that the 

derivative of Lyapunov function is negative everywhere

outside the switching surface. From the above derivation it

can be shown that the SMC designed for the inverse

pendulum mobile robot plant is proved to be asymptotically

stable.
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