ABSTRACT

Many optical character recognition (OCR) techniques and tools have been developed for plurality of languages. A successful OCR system improves interactivity between humans and computers in many applications such as digitising and recognising written content. With regard to Arabic OCR, the problem of handwriting recognition is challenging because Arabic letters are cursive and shapechangeable depending on their positions. OCR systems have reached nearly perfect acknowledgement of Arabic printed text, yet still in its inception and needs to be greatly improved with handwritten text. Therefore in this study, an approach to recognize Arabic characters based on genetic algorithms (GA) is proposed. The approach requires two separate stages; feature extraction and GA for character recognition development. In the feature extraction stage, six features are detected for each character and denoted as a feature vector of 6 integer numbers. The feature vectors are then utilised in the next stage. Three genetic operators namely selection, crossover and mutation are implemented to search for the similar vectors with the best fitness value to recognise the character. The data used in this study were collected from different resources and stored in a database. It consists of 12,500 printed text words in 50 paragraphs and 15,000 words written by 100 different writers, males and females aged 5 to 60 years. Pre-processing operations are conducted including segmenting paragraphs into lines, segmenting line into words, segmenting words into characters, detecting skeleton, and determining baseline and other horizontal zones. The experimental results have shown that the proposed method has achieved promising accuracy recognition rate with 90.46% for printed text and handwritten characters.

ABSTRAK

Banyak teknik dan alatan Pengecaman Aksara Optikal (PAO) telah dibangunkan bagi mempelbagaikan bahasa. Satu sistem PAO yang berkesan dapat mempertingkatkan interaksi antara manusia dan komputer dalam pelbagai aplikasi seperti pendigitan dan pengecaman kandungan bertulis. Merujuk kepada PAO Bahasa Arab, permasalahan dalam pengecaman tulisan tangan adalah mencabar disebabkan oleh aksara Arab yang berbentuk kursif dan berubah bentuk mengikut kedudukan aksara tersebut. Sistem PAO telah mencapai pengiktirafan hampir sempurna terhadap teks Arab bercetak; namun pembaikan lanjutan terhadap teks tulisan tangan Arab perlu dipergiatkan lagi. Oleh yang demikian, kajian ini mencadangkan satu pendekatan pengecaman aksara Arab berdasarkan Algoritma Genetik (AG). Pendekatan ini memerlukan dua fasa berasingan; penyarian fitur dan pembangunan pengecaman aksara menggunakan AG. Pada fasa penyarian fitur, enam fitur dikesan bagi setiap aksara dan diwakilkan sebagai satu vektor fitur dengan 6 nombor integer. Vektor fitur ini akan digunakan dalam fasa seterusnya. Terdapat tiga operasi genetik iaitu pemilihan, pemindahan dan carian permutasi dilaksanakan terhadap vektor yang serupa dengan nilai muatan terbaik bagi mengecam aksara Kutipan data bagi kajian diperolehi daripada pelbagai sumber dan berkaitan. tersimpan dalam pangkalan data. Ia terdiri daripada 12,500 teks bercetak; 50 perenggan dengan 15,000 perkataan yang ditulis oleh seratus penulis lelaki dan perempuan yang berlainan dengan julat umur di antara 5 hingga 60 tahun. Operasi pra-pemprosesan yang dilaksanakan termasuk segmentasi perenggan kepada garisan, segmentasi garis kepada perkataan, segmentasi perkataan kepada aksara, pengesanan rangka, garis-dasar, dan penentuan zon mendatar. Hasil kajian menunjukkan bahawa kaedah ini berjaya memberikan kadar ketepatan pengecaman yang menyakinkan iaitu sebanyak 90.46% bagi teks bercetak dan aksara tulisan tangan.

TABLE OF CONTENTS

CHAPTER

1

2

TITLE

DEC	LARATION	ii
DED	ICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	TRACT	V
ABS	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	FOF TABLES	xi
LIST	COF FIGURES	xiii
LIST	COF ABBREVIATIONS	XV
LIST	FOF APPENDICES	xvi
INT	RODUCTION	
1.1	Problem Background	1
1.2	Statement of the Problem	3
1.3	Research Aim	4
1.4	Objectives	4
1.5	Research Scope	5
1.6	Significance of the Research	6
1.7	Organization of the Report	6
LITI	ERATURE REVIEW	
2.1	Introduction	7
2.2	Common Characteristics of Arabic Script	10

2.3	Character Recognition			
2.4	Arabi	rabic Character Recognition Stages		
	2.4.1	Preprocessing and Representation		
		2.4.1.1 Vertical and Horizontal		
		Projection	18	
		2.4.1.2 Thinning (skeleton extraction)	22	
		2.4.1.3 Contour Tracing	24	
		2.4.1.4 Baseline Detection	26	
	2.4.2	Segmentation	26	
	2.4.3	Feature Extraction	29	
2.5	Arabi	c Character Recognition Techniques	30	
	2.5.1	Neural Network Technique	31	
	2.5.2	Hidden Markov Models (HMMs)	32	
	2.5.3	Genetic Algorithm	34	
2.6	Discu	Discussion		
2.7	Summary			
МЕТ	HODO	LOGY		
3.1	Intro	duction	45	
3.2	Operational Framework		46	
	3.2.1	Phase 1: Planning Phase and		
		Literature Review	47	
	3.2.2	Collecting Data	47	
	3.2.3	Data Analysis	49	
	3.2.4	Storing Resulting Samples in the		
		Database	50	
	3.2.5	Preprocessing for the Image	52	
	3.2.6	Representation	52	
	3.2.7	Feature extraction	54	
	3.2.8	GA	60	
		3.2.8.1 The fitness function	60	
		3.2.8.2 Selection reproduction operator	62	
		3.2.8.3 Crossover operator	62	

3

		3.2.8.5 Peak concatenation function	64
		3.2.9 Programming of Techniques	64
		3.2.10 Evaluation	65
	3.3	Instrumentation	65
	3.4	Summary	67
4	EXPE	ERIMENTAL RESULTS AND DISCUSSION	
4.1	Intro	duction	68
4.2	Availa	able Arabic OCR tools	68
4.3	Repre	sentation Results and Analysis	71
	4.3.1	Results of Building the Database	72
	4.3.2	Segmentation Performance	73
		4.3.2.1 Results of Segmenting the Image	
		into Lines	73
		4.3.2.2 Results of Segmenting the Lines to	
		Words or Sub-words	76
		4.3.2.3 Results of Segmenting Words to	
		Peaks or Characters	77
	4.3.3	Results of Thinning the Contour	80
	4.3.4	Results of Detecting the Baseline	81
4.4	Result	ts of the Recognition Algorithm	82
	4.4.1	Feature Extraction Results	82
	4.4.2	Genetic Operation Results	86
4.5	Comp	aring our Algorithm with Other Algorithms	92
	4.5.1	GA Systems	92
	4.5.2	ICDAR 2009 Arabic Handwriting	
		Recognition Competition	93
4.6	Discu	ssion	95
4.7	Summ	hary	97
5	CON	CLUSION	
	5.1	Introduction	98
	5.2	Findings	99
	5.3	Contributions of the Study	99
	5.4	Future Works	100

5.5 Summary

BIBLIOGRAPHY

APPENDICES A-F

111 – 130

102

103

LIST OF TABLES

TABLE NO

TITLE

2.1	Comparison of different scripts (Amin, 1997)	10
2.2	Arabic alphabet shapes	12
2.3	Components of OCR recognition	11
2.4	Summary of GAs in character recognition	39
2.5	Summary of the literature review on AOCR	
	techniques; Where H stand for Horizontal projection	
	and V stand for Vertical projection	41
3.1	The groups of writers	48
3.2	Number of words, sub-words, and letters in one form	51
3.3	Number of words, sub-words, and letters for the	
	writers in each group	51
3.4	Comparison between the proposed database and	
	AHD/USM	52
3.5	ن Fitness function of the character	61
3.6	Fitness function of the character -	61
3.7	List of software needed	66
3.8	List of hardware used	66
4.1	Readiri Pro 11's recognition of printed text	69
4.2	Numbers of lines images resulted from segment	
	the paragraphs	75
4.3	Accuracy rate of segmentation method	78

4.4	Examples of segmented and over-segmented words	79
4.5	Examples of unsegmented words	79
4.6	Examples of the poor preprocessing experiment	
	in the feature extraction stage.	83
4.7	Examples of the excellent preprocessing	
	experiment in the feature extraction stage.	84
4.8	Examples of the for all experiment in the feature	
	extraction stage.	85
4.9	Results from all experiments in the feature extraction	
	stage	85
4.10	Examples of poor preprocessing experiment in the	
	recognition stage	87
4.11	Examples of the excellent preprocessing experiment	
	in the recognition stage.	88
4.12	Examples of All experiments in the recognition stage	89
4.13	Results of all experiments in the recognition stage	91
4.14	Comparing the GA systems	93
4.15	Comparing our system with the results of the	
	ICDAR 2009 competition	94

LIST OF FIGURES

FIGURE NO

TITLE

1.1	Structure of a single population evolutionary algorithm	4
2.1	Arabic characters differing with dots or hamza	13
2.2	Example of Arabic sub-words	14
2.3	Dissimilar styles and fonts for Arabic wording	15
2.4	Arabic character recognition stages	17
2.5	Horizontal and vertical projections (Mohammed, 2006)	19
2.6	A word image and its skeleton	22
2.7	Genetic algorithm	35
3.1	Operational Framework	46
3.2	Printed text paragraph	50
3.3	Features of words, sub-words, and characters	55
3.4	Detecting the baseline by the horizontal projection profile:	
	(a) handwritten word, (b) horizontal projection profile to	
	detect the baseline.	55
3.5	Feature vector representing the character	57
3.6	Feature extraction algorithm	59
3.7	-ن Feature vectors of and	61
3.8	Example of reproduction operator	62
3.9	Example of crossover operator	63
3.10	Example of mutation operator	63
4.1	Readiris Pro 11 Recognition of printed text	70

4.2	Printed text paragraph	70
4.3	Reorganization of Readiri Pro 11 from Figure 4.2	71
4.4	The collected characters, words, sub-words, and	, 1
	paragraphs in our database from handwriting and	
	printing text.	72
4.5	Segmenting the paragraph into lines by horizontal projection	
	profile: (a) printed text paragraph, (b) horizontal projection	
	profile used to segment the paragraph into lines.	74
4.6	Segment the paragraph to line, (a) the horizontal	
	projection profile of the paragraph image ,(b) the	
	paragraph image ,(c) image of first line segmented	
	from paragraph ,(d) image of second line segmented	
	from paragraph ,(e) image of third line segmented from	
	paragraph, (f) image of fourth line segmented from	
	paragraph	75
4.7	Segmentation of the line to words and sub-words by	
	the vertical projection profile: (a) printed text line	
	segmented from paragraph, (b) horizontal projection	
	profile of the segmented line, (c) vertical projection profile	
	of the line segmented into words and sub-words.	76
4.8	Success of the segmentation method	78
4.9	Clusters in the skeleton: (a) the main image, (b) the	
	skeleton image.	80
4.10	Results from all experiments in the feature extraction stage	86
4.11	Relation between population size and recognition rate in	
	the excellent preprocessing experiment.	91

LIST OF ABBREVIATIONS

ACR	-	Arabic Character Recognition
BMP	-	Bitmap Picture
CEDR	-	Center of Excellence for Document Analysis and Recognition
CR	-	Character Recognition
GAs	-	Genetic Algorithms
HWR	-	Handwriting Recognition
OCR	-	Optical Character Recognition
OACR	-	Optical Arabic Character Recognition
UR	-	UnRecognized
R	-	Recognized
US	-	UnSegmented

LIST OF APPENDICES

APPENDIX

TITLE

A	Form	111
В	Form of one writer	116
С	Examples of paragraph images	118
D	Examples of Experimentation of Feature Extraction	
	Algorithm	119
Е	Examples of Experimentation of	
	Genetic Algorithms' Recognition	123
F	Time Table	129

CHAPTER 1

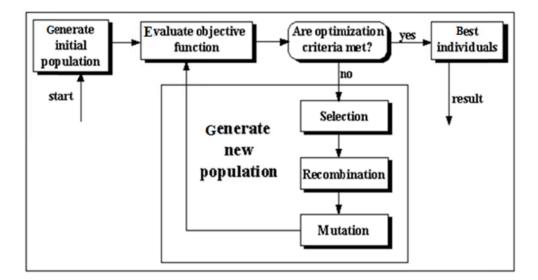
INTRODUCTION

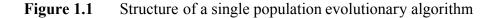
1.1 **Problem Background**

The character recognition (CR) mechanization is being intensively investigated in the pattern recognition research area. CR automation means translating images of characters into a text; in other words, it represents an attempt to simulate the human reading process. CR is very difficult to accomplish owing to various issues such as the inconsistency of human writing, the segmentation of words into characters, high variability in terms of handwriting styles and shapes, the size of the lexicon, and the writing skew or slant.

There are two main classifications of the problem of handwriting recognition: online recognition and offline recognition; these terms refer to the format of the input handwritings image. Temporal information is available in online recognition, for instance pen tip coordinates as a time function, while in offline recognition, just the handwritings image is obtainable. Several applications require offline handwriting recognition capabilities; these include commercial form reading, bank processing, document archiving, office automation, mail sorting, etc. Up to the present time, offline handwriting recognition is still an open problem, and has been dealt with by several researchers in this field (Benouaretha *et al.*, 2008;Plamondon and Srihari, 2000; Koerich *et al.*, 2003; Vinciarelli, 2002).

Research into Arabic handwriting recognition has not been conducted as fully as for other scripts, such as Latin, although there has recently been renewed interest in this area (Ben Amara and Bouslama, 2003; Amin, 1998; Lorigo and Govindaraju, 2006; Benouaretha et al., 2008). The developed techniques for Latin handwriting recognition are not suitable for Arabic for the reason that the foundations of Arabic writing, such as its alphabet and grammars, differ from Latin script. In view of the fact that the word is the most innate part of writing, the procedure for recognizing it needs to adopt either an analytic approach that recognizes individual characters in the word or a holistic approach that recognizes the whole word image (Benouaretha et al., 2008). Analytical approaches involve two steps: segmentation and combination (El-Hajj et al., 2005; Kim and Govindaraju, 1997; Benouareth et al., 2006; El-Yacoubi et al., 1999; Koerich et al., 2003). It starts by segmenting the enter image into units that are close to the characters' size. Next, it uses dynamic programming to combine the segmented units to match character forms. In contrast, the holistic approach handles the whole input image. Holistic attributes are typically used to reduce fewer likely selections in the lexicon. Such attributes include word length, translation or rotation invariant quantities, ascenders, descenders, connected components, dots, etc. (Benouaretha et al., 2008). Hence, holistic techniques need to be compared for each word in the lexicon (Souici and Sellami, 2006; Madhvanath and Govindaraju, 2001; Farah et al., 2006), whereas analytical techniques compare for each character.


While many different methods of solving the OCR problem have been explored, the use of a genetic algorithm to recognize characters has been growing in popularity. "Genetic algorithms offer a particularly attractive approach for this kind of problems since they are generally quite effective for rapid global search. Moreover, genetic algorithms are very effective in solving large-scale problems"(Oliveira *et al.*, 2001). This begs the question of what genetic algorithms (GAs) actually are.


A GAs is an optimization and search technique utilized in computer science to find approximate solutions to problems. It is inspired by processes in biological evolution such as natural selection, inheritance, recombination, and mutation. GAs are generally realized in a computer model, in which a population of runner solutions to an optimization problem progress to better solutions. The evolution starts from a population of completely random individuals and occurs in generations. In each generation, the fitness of the whole population is evaluated, and multiple individuals are selected from the current population based on their fitness. These are modified, mutated, or recombined to create a new population, which becomes current in the next iteration of the algorithm, as shown in Figure 1.1. Usually, the solutions are represented in strings of 0s and 1s, although different encodings are also possible. So, evolutionary algorithms play on populations, instead of coming to one solution.

This research will give an extended illustration of offline Arabic character recognition. The system is based on feature extraction and the genetic algorithms approach.

1.2 Statement of the Problem

One major issue that remains uncharted is how to segment and recognize cursive handwriting, especially Arabic characters. In this regard, our problem statement asks whether genetic algorithms can be effectively adapted for the segmentation and recognition of Arabic characters.

1.3 Research Aim

This research aims to investigate the use of GAs for the recognition of Arabic handwriting and printed text. In other words, it center of attention on the problem of recognizing Arabic characters to create a successful system.

1.4 Objectives

This research proposes to accomplish the following objectives:

- i. To overcome the problems of offline CR.
- ii. To prove GAs' ability to recognize offline cursive printed text and handwritten words in Arabic characters.
- iii. To develop a feature extraction approach for the shape of Arabic characters.

1.5 Research Scope

This project entails the following scope:

- i. The main focus of this work is to recognize and segment cursive Arabic words and printed text in to characters; the sub-word is our region of interest.
- ii. The input image may be in one of the following:
 - An image containing one and only one sub-word.
 - An image containing a word of more than one sub-word, or a text line of several words (see example in Appendix B).
 - A document of multiple text lines, such as a paragraph (see example in Appendix C).
- iii. GAs techniques will be used and facilities with a population of solutions called *feature vectors* represent the features of the characters.
- iv. The algorithm will be programmed using Matlab 2007.

1.6 Significance of the Research

This research will describe an offline handwriting and typed Arabic word recognition and segmentation system based on GAs. As we searched, we found that this is the first work that uses only GAs without any other supplementary method for the problem of recognizing offline Arabic characters.

1.7 Organization of the Report

This report is organized into five chapters. The first introduces the study and gives the problem background, objectives, and scopes. Chapter 2 provides a literature review of the existing techniques to recognize and segment Arabic characters (AC). The methodology of the project is discussed in Chapter 3. Next, the experimental results are given in Chapter 4. The conclusion and suggestions for future work are explained in Chapter 5.