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CHAPTER 1 

 
 
 
 
 

INTRODUCTION 

 
 
 
 
1.0 Background of Study 

 
 

Over the last 40 years, various solid acids and bases have been developed. 

Nowadays, solid acid-base catalysis is one of the economically and ecologically 

important fields in catalysis [1]. From the statistical survey, more than hundred types 

of industries processes are using acid as catalyst. On the other hand, base catalyst is 

far less behind. Thus, the emergence of novel solid base materials makes the new 

base-catalyzed reactions become commercially relevant. Based on this, fundamental 

studies on solid bases become necessary in order to achieve the success like those of 

solid acids catalysts.  

 
 

Conventionally, the Knoevenagel reaction carried out in organic solvents is 

catalyzed by base homogenous catalysts such as ammonia, primary and secondary 

amines and their salts[2]as well as CuCl2, ZnCl2 and SmCl3. However, in recent 

years, numerous acidic and basic heterogeneous catalysis have been applied in the 

Knoevenagel reaction. Zeolites have been reported as an efficient heterogeneous 

catalyst in Knoevenagel reaction for the carbon-carbon bond formation in organic 

syntheses[3]. 

 
 
 Solid base catalysts exhibit higher activities and selectivities for many kinds 

of reactions, including condensation, alkylations, cyclizations, and isomerizations. 
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However, in industrial field, many of these processes were carried out by using liquid 

bases as catalysts. In addition, the versatile Knoevenagel condensation is classically 

catalyzed by bases in the liquid phase systems or Lewis acid under homogeneous 

conditions. The main problems with the usage of bases and acids in the reactions are 

huge organic waste generation due to formation of unwanted products resulting from 

polymerization, bis-addition and self condensation as well as the total dissolved salt 

resulting from the neutralization of the soluble bases or acids. The replacement of 

liquid basic catalysts by solid bases in the organic synthesis of fine and intermediate 

chemicals offers an opportunity to avoid salt formation, corrosion, and other 

environmental problems [4]. On the other hand, solid base catalysts are inexpensive 

and are more easily separable and recyclable than the homogeneous catalysts. Hence, 

the use of solid base catalysts is desirable from the viewpoints of economy and green 

chemistry and is currently gaining much attention. 

  
 

However, little effort has been given to the study of solid base catalysts. 

Basic solids such as Cs-ZSM-5, MgO [5], NaX and CsNaX [6] have been used as 

catalysts in industrial processes due to their activity, thermal stability, and reusability. 

While metal ion-exchanged zeolites possess basic sites of relatively low strength, 

they can be easily regenerated from poisoning by air, as compared with strong solid 

bases, such as alkaline earth oxides. Nevertheless, applications of basic zeolites are 

limited by slow diffusion of substrates into their micropores for bulky molecular 

reactions and rapid deactivation due to coke formation [5].  

 
 

It is therefore of interest to develop a high aluminum-containing zeolite with 

a basicity comparable to the basic homogeneous catalyst. Sodalite with high 

aluminum content (Si/ Al = 1) and is expected posses high strength of basicity. 

Sodalite has very small pore. In this study, the porosity is not being taking into 

account, only the number of alkali metal exchanged on the sodalite like any other 

NaOH or base. Sodalite does not dissolve in reaction medium and hence can be 

recycled and reused.  

 
 

In this study, nanosodalite with high aluminium content synthesized by 

hydrothermal method was reported. The catalytic activity was compared with that 
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microsodalite for Knoevenagel condensation reaction. The methods used to 

characterize basic sites were spectroscopic method using CO2 as probe molecules, 

and catalytic test reactions. An advantage of an adequate choice of a test reaction is 

that it can give useful information about the catalyst under reaction conditions [4].  

 
 
 
 
1.1 Statement of Problem 

 
 

In general, most of the organic synthesis is based on the homogeneous 

catalysis. However, these homogeneous reactions are suffered from separation and 

regeneration. The solid base catalysts have many advantages over liquid base 

catalysts because they are non-corrosive, eco-environmentally, and present fewer 

disposal problems.  

 
 
 From the point of view of solid base, the properties of zeolites are adjustable 

to specific applications, and the solid may therefore seen in a sense as a new material. 

In spite of this, not much effort was done in preparing base zeolite. Only several 

exploration have been done to introduce base sites in faujasites type zeolite X and 

zeolite Y compared to other solid base materials [7]. However, some other zeolites 

that have not been investigated with regards to their basicity may show interesting 

base character. Based on this, fundamental studies on solid bases become necessary 

in order to achieve the success like those of solid acids catalysts.  

 
 

Sodalite is a zeolite with high aluminum content (Si/Al = 1) and high stability 

in basic solution. However, it thus far has not found any significant catalytic 

applications due to its inaccessible cages with small pore openings (2.8 Å). Sodalite 

with nanosized particle with increased in external surface area offers great attractive 

possibilities to explore their potential utilization. In this study, sodalite with high 

aluminum content (Si/ Al = 1) have basicity and be able to catalyze the Knoevenagel 

condensation reaction. 
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1.2 Significant of Research  

 
 

The substitution of the homogeneous catalysts with the heterogeneous ones is 

becoming more significant in chemical and life science industries due to their 

advantages. For instance, they are non-corrosive, fewer disposal problems, easy 

separation and reusable. Furthermore they can be designed to give high activity, 

selectivity, and longer catalyst life.  

 
 

Knoevenagel condensation is a widely used method for the synthesis of fine 

chemical in industry. The reaction takes place generally based on homogeneous base 

as catalyst but is suffer from separation of products. In addition, this process 

generates huge amount of inorganic waste and many by-products. The use of solid 

base catalyst introduces advantages for industrial for a simplistic work-up, reduction 

of waste. Furthermore, separation and regeneration of the solid base catalyst can save 

cost. 

 
 
 
 

1.3 Objectives 

 
 
The objectives of this study are: 

1) To synthesize nanosodalite with base properties. 

2) To characterize the physical and chemical properties nano size sodalite. 
 
3)  To study the base properties of nanosodalite. 

4)  To compare the catalytic properties of nanosodalite in Knoevenagel base-

catalyzed reaction. 

 
 
 
 
 
 
 
 
 
 



5 
 

1.4 Scope of Research 
 
 

The scope of study included hydrothermal synthesis of sodalite nanocrystals 

without using any organic additives during the crystallization process. Sodium 

aluminate was used as Al source, fumed silica as silica source, and NaOH pellets as 

alkali and counter ion source. Effects of temperature and aging period were also 

studied in order to determine an optimum condition to obtain the nanosodalite. 

 
 

The samples were characterized by X-ray diffraction (XRD), Fourier 

Transform Infrared (FTIR) spectroscopy, Field Emission Scanning Electron 

Microscopy (FESEM). Basicity study was carried out by using CO2 as probe 

molecules and monitored by FTIR spectroscopy. The basic catalysts were tested for 

the Knoevanagel condensation of benzaldehye and malononitrile. The liquid 

products that were obtained were analyzed and identified by using Gas 

Chromatography (GC-FID) and the identification of the component was determined 

by Gas Chromatography-Mass Spectroscopy Detector (GC-MSD). 
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Figure 1.1: Flow chart of the experimental research. 
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