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Abstract--This paper suggests an improved method for usage 

allocation to individual generators in a deregulated power 
system. Based on solved load flow, the method converts power 
injections and line flows into real and imaginary current 
injections and flows. These currents are then represented 
independently as real and imaginary current networks. Since 
current networks are acyclic lossless networks, proportional 
sharing principle and graph theory is used to trace the 
relationship between current sources and current sinks. The 
contributions from each current source are finally translated into 
power contributions to each load, line flows and losses. IEEE 14-
bus test system is used to illustrate the effectiveness of the 
method. Comparison of the results with previous methods is also 
given. 

 
Index Terms--Directed graphs, energy management, load flow 

analysis, losses, power pools. 

I.  INTRODUCTION 
HE competitive environment of electricity markets 
necessitates wide access to transmission networks that 

connect dispersed customers and suppliers. Regardless of 
market structure, it is important to know whether or not, and 
to what extent, each power system user contributes to the 
usage of a particular system component. This information 
facilitates the restructured power system to operate 
economically and efficiently. Moreover it brings fair pricing 
and open access to all system users. 

Due to non linear nature of power flow, it is difficult to 
determine transmission usage accurately. Therefore it required 
to use approximate models, tracing algorithms or sensitivity 
indices for usage allocation. The tracing methods are based on 
the actual power flows in the network and the proportional 
sharing principle. To date several tracing algorithms have 
been proposed in the literature [1]-[11]. 
 A novel tracing method is presented in [1]-[3]. But, even 
though the approach is conceptually very simple, it requires 
inverting a sparse matrix of the rank equal to the number of 
network nodes. In [4] graph theory is applied to trace active 
power and it is limited to systems without loop flows. 
Reference [5] is based on the concept of generator ‘domains’, 
‘commons’ and ‘links’. The disadvantage of this method is 
that the share of each generator in each ‘common’ (i.e., the set 
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of buses supplied from the same set of generators) is assumed 
to be same. Furthermore, the ‘commons’ concept can lead to 
problems, since the topology of a ‘common’ could radically 
change even in the case of slight change in power flows. Line 
utility factor is introduced in [6] to identify the impact of each 
generator to each line which is only applicable to active power 
tracing.  

In general all the above mentioned methods are most 
appropriate for active power flow tracing rather than reactive 
power tracing. 

Nodal generation distribution factor (NGDF) [7] for active 
and reactive power allocation is based on time consuming 
search algorithm. AC power flow tracing algorithms [8], [9] 
use a complicated line representation to account for the losses 
and line charging, Detecting and solving the loop flows is a 
pre requisite to these methods.  

In order to overcome the difficulties arise in reactive power 
tracing due to interaction cause by losses, [10] traces active 
and reactive power using real and imaginary currents 
respectively. This technique automatically becomes lossless 
real and imaginary current networks and does not require to 
model line losses but the method still involves the 
disadvantages of the concept of ‘domains’ and ‘commons’. 
Reference [11], proved that real and imaginary current 
networks are acyclic directed graphs. Then authors attempt to 
show the share of the generators to the loads, ignoring line 
charging elements. 

The above mentioned disadvantages have been the reason 
for developing a new method to know how much, and to what 
extent, each generator supplies to each load and line flows. 
Besides, the method is suitable in allocating transmission 
losses to individual generators. The algorithm uses the 
advantages of real and imaginary current networks along with 
the basic concept of graph theory. Starting from load flow 
solutions, it first decomposes line complex currents based on 
the proportion of generator and network injected currents. The 
amount of current attributed from each current source in the 
lines is then used to identify the usage allocation. Shunt 
elements are handled by introducing additional fictitious 
nodes. 

II.  APPROACH 
Reference [4] reports a power flow tracing algorithm using 

graph theory which can only apply to systems without losses 
and loop flows. Moreover, the paper quotes that evaluating 
loop flows were not easy especially when loops have 
complicated paths and therefore the issue needs to be further 
investigated. To avoid these limitations, this paper suggests a 
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new approach to handle loop flows and form lossless network. 
Finally a new and improved algorithm is proposed that can 
trace active power usage by the system generators. 

In the previous section the paper has unveiled that real and 
imaginary current networks are lossless networks without 
loops [10], [11]. Therefore these current network properties 
makes it [4] very suitable to trace the contribution of current 
sources (current sinks) to line flows and to current sinks 
(current sources).Necessary modifications are made to the 
method by introducing fictitious  lines and treated as network 
current sources or sinks at additional nodes. Moreover, 
generators and loads are considered independently instead of a 
net generator or a net load bus as in the original algorithm [4]. 

 

A.  Current flow diagrams and proportionality principle  
Starting from AC power flow solution one can convert the 

complex power injections and line flows into complex current 
equivalents. Injected currents, line currents and currents due 
to shunt elements can be represented respectively as 
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where injI , iS , iV , shiy _  and shiI _  are the injected current, 

injected power, voltage, equivalent shunt admittance and 
current flow through shiy _  of bus i respectively. ijI  is the 

line current from bus i to bus j. The term ijy  is the admittance 

of the line ijl between buses i and j. Voltage at bus j is jV . 

The complex current flow diagram obtained from (1)-(3) 
can be further decoupled into real and imaginary current 
diagrams. Theses diagrams can then be used to estimate the 
relationship between the current sources and the current sinks 
using proportional sharing principle [1]. Details of current 
source and current sinks are found on reference [10]. 

 

B.  Handling network elements 
In a power system, generator and loads are not the only 

sources and/or sinks of complex power. Static Var 
Compensators (SVCs), transformers, shunt capacitors/reactors 
and line charging capacitances play a vital role in transferring 
power between suppliers and consumers. In order to assess 
possible contributions from these network elements, it is 
necessary to consider the amount of current injected or 
absorbed by equivalent shunt impedance seen at each bus. 
These shunt currents can be handled by introducing fictitious 
lines and treated as network current sources or sinks at 
additional nodes as shown in Fig. 1.  

 
 

Fig. 1.  Representation of equivalent network element at node i using a 
fictitious node and branch. 

C.  Graph method in short 
The method assumes that a generator has the priority to 

provide power to the load on the same bus and is based on the 
following lemmas of graph theory. 
Lemma 1: A lossless, finite-nodes power system without loop 
flow has at least one pure source, i.e. a generator bus with all 
incident lines carrying outflows. 
Lemma 2: A lossless, finite-nodes power system without loop 
flow has at least one pure sink, i.e. a load bus with all incident 
lines carrying inflows. 

Based on these two lemmas downstream tracing sequence 
briefly describes the method. The downstream tracing (DSTR) 
is used for calculating the contribution factors of individual 
generators to line flows and loads. This process initially 
requires the formation of intermediate matrices called 
extraction factor matrix of lines , lA  and loads LA from total 
passing power of their upstream buses i.e. PAP ll .= and 

PAP LL .=  respectively. Where lP  is a vector of line 
power. P  is a vector of bus total passing power in the bus 
sequence of down stream  tracing. Then the nonzero elements 
in Al and AL are calculated with the following equations. 
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The next step involves the calculation of contribution factor 

matrix (B) of generators to bus total passing power. 
Mathematically this can be expressed as GPBP .= . The 
elements of B are calculated using the equation given below.  
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where k< i means k is an upstream bus of bus i, and k> i  
means k is a downstream bus of bus i . The last expression is 
for the lower triangular nonzero elements. The term ijl ∈   

means line j is an inflow line of bus i. 
mjlA

−
 is the unique 

nonzero element corresponding to line j in matrix lA  with bus 

m as its upstream terminal. kmB −  is the element in matrix B 
already calculated which represents the contribution of 
generator k to the total injection power of bus .  

By substituting  GPBP .=  in PAP ll .=  and PAP LL .=  
contribution of each generator to line flows and loads can be 
calculated. Exact derivation can be found on reference [4]. 

III.  DECOUPLING LINE AND LOAD POWER 
The output of tracing procedure apportions real and reactive 

current sources to line currents and to each current sink within 
their respective real and imaginary current diagrams. Then the 
complex current contribution by each current source k to each 
line between nodes i and j is simply 
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where  k

ijI is the complex current of source k attributed to ijl . 
rk

ijI _ and imk
ijI _  are real and imaginary component of 

k
ijI respectively. 

Assuming that the receiving end of ijl  is j, one can obtain 

the complex power share of each current source to ijl as 
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from (8) the total line complex power at the receiving end of 

ijl , due to all current sources will be 
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where rijS _ and k

rijS _  are the complex power at the 

receiving end of line ijl and contribution from current source k 

to  rijS _  respectively. The term ( )*k
ijI  means the conjugate 

of k
ijI . Superscript inj represents the total number of current 

sources. 
Equation (9) shows the implicit contribution of all current 

sources to a line. The next step consists of evaluating how 
much each real power source contributes to each line of the 
transmission network. For this purpose the following 
derivations are used.  

Starting from (9), total real power at the receiving end of ijl  

can be obtained from the following equation. 
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where  rijP _  is the real power component of rijS _ . 

Splitting (10) into number of generators, ng and remaining 
current sources defined as network sources, ns 
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where g

ijI , g
rijP _ and genijP _ are the complex current share of 

generator  g ,component of rijP _ due to g
ijI and  sum of real 

power contribution from generators to ijl  respectively. 

Similarly m
ijI , m

rijP _ and netijP _ represents the complex 

current  share of network source m, component of rijP _ due 

to m
ijI and sum of real power contribution from network 

sources to ijl respectively.   

In the equation (13)  netijP _  , does not exhibit explicit 

dependence on generator contributions. Therefore netijP _  

term may be divided among actual generators proportionally 
to their respective exchanged real power. With this 
assumption the netijP _  term can be assigned to generators as 
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Once the contribution netijP _  term is assigned to 

generators, line power rijP _  can be expressed as 
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where the superscripts denote the supply generator. 

By following the same procedure, it is also possible to 
obtain the decomposed sending end line power sijP _  as  
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where g

sijP _  is the amount of real power contributed by the 

generator g to sending end of line ijl . 

The result of (15) and (17) provides important information 
that can be used to determine the share of real power produced 
by generator g that is consumed by the load at bus j.  
Mathematically this can be expressed as 
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where ji α∈ the set of lines supplying directly to bus j, 

jk δ∈ is the set of outflow lines from bus j, g
sjkP _ means 

power component of generator g at the sending end of line 

jkl and g
jP  is the power injection at load bus  j. 

IV.  APPLICATION TO POWER LOSS 
The unbundled real power components can be used to 

allocate line power loss to individual generators. The line 
power loss,

ijPLoss  can be written as 
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where the term ( )g

rij
g

sij PP __ −  represents the line losses 

allocated to generator g.  
Finally the contribution from generator g to system loss is 

obtained as 
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and nl is the number of lines in the system. 

V.  RESULTS AND ANALYSIS 
A number of simulations have been carried out to 

demonstrate the validity of the method. The result of IEEE 14- 
bus test system is presented. Load flow analysis including bus 
data and line power flows for IEEE 14-bus test case is given 
in Appendix. 

The active power flow tracing results are shown in Tables 
1-2. The implicit result obtained from (10) is shown in Table 
1. Due to lack of space, result for one half of the system lines 
is shown in Table 1. Note that the contributions from the 
equivalent shunt elements and loads. This result is expected 
because loads generally act as the sources of imaginary 
current and equivalent shunt elements may become either 
sources or sinks of real and/or imaginary current. Since loads, 
SVCs and shunt elements are not actual real power generators 
their interaction terms are distributed among the actual 
generators using (14) and are listed in Table 2. Table 2 also 
shows the loss shared by individual generators and the balance 
of line powers and losses.     

 
TABLE I 

ACTIVE  POWER COMPONENTS OF  LINE FLOWS DUE TO ALL CURRENT 
SOURCES  

 
 

TABLE II 
ACTIVE  POWER CONTRIBUTION FROM INDIVIDUAL GENERATORS TO LINE 

FLOWS AND LOSSES IN MEGAWATT(MW) 

 
 

The final allocation of active power to loads is presented in 
Table 3 along with the result obtained through the procedure 
proposed by Bialek, [1].  Note that the result obtained by the 
proposed method in this paper is compared well with the 
results of [1]. Table 3 also shows the loss shared by individual 
generators and the balance of system power. The loss share of 
each generator in Table 3 is obtained by using (21). 
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TABLE III 
ACTIVE  POWER CONTRIBUTION FROM INDIVIDUAL GENERATORS TO LOADS IN 

MEGAWATT(MW) 

 

VI.  CONCLUSION 
This paper proposes a method for calculating the 

contribution from individual generators to line flows, loads 
and transmission losses. Instead of power tracing, the 
algorithm traces real and imaginary currents to handle the 
problem of system losses and loop flows. The traces from 
current sources to current sinks are then converted to power 
contributions. The algorithm is simple and accurate. 
Accordingly, a small, illustrative network was selected as the 
test case to show simplicity and veracity of the method. 

The method could be used to resolve some of the difficult 
pricing and costing issues which arise from the introduction of 
competition in the power industry and to ensure fairness and 
transparency. 

VII.  APPENDIX 
TABLE VI 

BUS DATA OF THE IEEE 14-BUS SYSTEM 

 
 
 
 
 
 

TABLE V 
LINE  DATA OF THE IEEE 14-BUS SYSTEM 
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