License Plate Recognition using Multi-cluster and Multilayer Neural Networks

Siti Norul Huda Shcikh Abdullah,Marzuki Khalid and Rubiyah Yusof
Centre for Artificial Intelligence and Robotics (CAIRO),
Faculty of Electrical Engineering,Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur
mimi@sun1.ftsm.ukm.my, marzuki@utmkl.utm.my, rubiyah@utmkl.utm.my
Khairuddin Omar
Jabatan Sains dan Pengurusan Sistem,Fakulti Teknologi Maklumat, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor.
ko@ftsm.ukm.my

Abstract

Vehicle license plat recognition has been a much studied research area in many countries. Due to the different types of license plates being used, the requirement of an automatic license plate recognition system is rather different for each country. In this paper, an automatic license plate recognition system is proposed for Malaysian vehicles with standard license plates based on image processing, feature extraction and neural networks. The image-processing library is developed in-house which we referred to as Vision System Development Platform (VSDP). MultiCluster approach is applied to locate the license plate at the right position while Kirsch Edge feature extraction technique is used to extract features from the license plates characters which are then used as inputs to the neural network classifier. The neural network model is the standard multilayered perceptron trained using the back-propagation algorithm. The prototyped system has an accuracy of more than 91%, however, suggestions to further improve the system are discussed in this paper based on the analysis of the error.

Keywords-License plate recognition, clustering, feature extraction, classification.

1. Introduction

Automatic license plate recognition system is an important area of research due to its many applications. For local authorities license plate recognition is required for the purposes of enforcement, border protection, vehicle thefts, automatic toll collection, and perhaps traffic control. For others, automatic license plate recognition system can be applied to access control in housing arcas, automatic parking control and marketing tools in large shopping complexes, and perhaps for surveillance. Among the commercial license plate recognition systems available worldwide are Car Plate Recognition by J.A.G. Nijhuis et.al.[11], Car Plate Reader (CPR) by Rafael et.al.[7], Optical Car Recognition by Emiris and Koulouriotis [6] and Automatic Number Plate Recognition(ANPR) by ShyangLih Chang et. al.[5] and Mehmwet Sabih Aksoy et.
al.[2]. In Malaysia, vehicles license plates are in the form of single or double line with normal fonts which comprise of perhaps 95% of the all the vehicles. There are also special fonts as depicted in Figure1.

LPR normally consists of a camera, illumination,

Figure 1(a)Samples of common Malaysia license plates (b) Samples of special Malaysia license plates.
frame grabber, computer, recognition software, hardware (input output adapters) and database as illustrated in Figure 2. LPR cmploys real time plus artificial intelligence algorithm like hybrid system or Neural Network (NN) which recognizes significant plate numbers and records in the refined databases. This dedicated LPR software covers at least five major processes consecutively; Capturing, Pre-Processing, Segmentation, Feature Extraction and Classification as shown in Figure 3. Usually, targeted functions and specifications that will be embedded into the LPR system are fast recognition alphabet and number with high accuracy recognizing both front and back side, 24 hours non-stop operation and alarm message send out after recognition.

2. Image Segmentation

Image segmentation is a process that scparates words to single characters for casy identification[3]. In this project, segmentation involves a process of separating a collection of character that has been filtered; to a sequence of characters that will be used in the feature extraction stage. This step is very significant due to overlapping characters that form the license plate. There are three main forms of characters that are overlapping vertically, ligature, diacritics, horizontal overlap, and two connected charac-

Figure 2.Elements in LPR

Figure 3.Process in image processing.
ters. The task will be more difficult for those different forms of which are joined.

At the moment, LPSeeker applies clustering technique to identify important blobs. After processing image using simple image enhancement technique like Fixed filter, Minimum Filter, Opening and dependent threshold for the LPSeeker image enhancement which are provided in VSDP library (Vision System Development Platform). VSDP is a library that has been developed by CAIRO, UTMKL rescarchers. After applying above image enhancement, the image is segmented using horizontal scan line profiles and clustering technique. Thoroughly each image is transformed into blob objects and its important information such as location, height and width, are being analyzed by the LPSeeker for the purpose of cluster exercising and choosing the best cluster with winner blobs. The blobs are clustered when difference between blob and cluster heights and difference between maximum Y value of the cluster and blob are less than a constant time to cluster's height as stated in multi-clustering algorithm. Please refer to the multi-clustering algorithm in section 2.1 and picture depicted in Figure 4 and Figure 5. Then these winner blobs are extracted its feature individually before permitting to recognition or classification phase.

2.1. Clustering algorithm

Input: Set original image into a buffer, B1.
Output: Get winner clusters and blobs, $C_{\mathrm{n}}, B_{\mathrm{b} 1 . . \mathrm{m}}$
Step 1: Calculate total of blobs in the image, n.
Step 1.1: From 0 until n, then keep information like $\min X_{n}$, $\min Y_{\mathrm{n}}, \max X_{\mathrm{n}}, \max Y_{\mathrm{n}}$, height n_{n}, widthn for each blobs into an apray.
Step 2: Cluster each blobs when difference (refer equation

Figure 4.Image Segmentation using clustering approach.

Figure 5.Important information for clustering approach.
(1) between blob height, heightBm and cluster height, H_{cn} and difference (refer equation (D)) between maximum Y volue in clusler, max Y_{cn} and maximum Y value of blobs, $\max Y_{b m}$ are less than a constant lime to the cluster height, $H_{c n}$.

$$
\begin{gather*}
\left|\max Y_{B i}-\max Y_{C i}\right|\left\langle a \times H_{C i}\right. \tag{1}\\
\left|H_{C i}-H_{B i}\right|\left\langle a \times H_{C i}\right. \tag{2}
\end{gather*}
$$

where a value is $0.3,0.5,1$ or 2.
Step 3: Choose the cluster, C_{n} which has the maximum size of blobs, Csize...m
Step 3.1: Check distance between each winner blobs, $\max X_{n}$ and $\min X_{\mathrm{n}+1}$.
Step 3.2: Sort the winner blobs according to its min X_{n}.
Step 3.3: Segment all sorted winner blobs individually.
Step 4: Finish.

3. Feature Extraction

Feature extraction is described as functions of the measurements performed on a class of objects that enable class to be distinguished from other classes in the same general category. One of feature extraction objective is to grab only essential and distinguished information or characteristics of the each character to be easily recognized later[3]. Some researchers applied thinning or skeleton[6], Laplacian Edge detector [2], Minimum Area [6], Prewits, Robinson and Sobels [4] edge detector. In our research we concetrated on Kirsch Edge Detection.

3.1. Kirsch Edge Detection

Basically kirsch edge detector have cight different kernels to detect eight different directions of edges. A minor research has been conducted to select the best kernel in Kirsch Edge Detector and we found that right vertical, top horizontal, top left diagonal and top right diagonal are the best features to represent character images and inputs to neural network.

Kirsch Edge Derection is a simple algorichm for firstorder differencial edge detection. This elge detector is used to detect four direccional edges more accurately than other detectors such as Prewitt and Sobel which considers all the eight-neighborhood pixels[11]. The non-linear edge enhancement algorithm defined by Kirsch is shown as equation (3), equation (1), ©quation (5) atach oquation (1)follows:

$$
\begin{align*}
& K=0,1,2,3,4,5,6,7 \tag{4}\\
& S_{k}=A_{i s}-A_{k \mid 1}+A_{i s}{ }_{3} \tag{5}\\
& T_{k}=h_{k-s}-i_{2}+4+i_{k-5}+i_{2+2}+h_{k-i}
\end{align*}
$$

The ($\mathrm{G}(\mathrm{i}, j)$ is the gradient of the pixel ($i, j)$. The subseripls of A are represented as whe nciphborlood pixels lor the (ij) as shown in Table L. We con colculate the directional featue vectors for vertical (oquation \bar{T} and 11), horizontal (equation 8 and 12), leli-dia, onal (equation 9 and 13), and rightediagonal (equation 10 and 11) directions as follows:

Table 1.Example showing the eight neighbours of pixel

$$
\begin{align*}
& \begin{array}{|c|c|c|}
\hline A j) \\
\hline A 0 & A 1 & A+ \\
\hline A i_{i} & (i j) & A ? \\
\hline A+i & A b & A 4 \\
\hline
\end{array} \\
& \frac{1}{15}\left[\begin{array}{ccc}
5 & -3 & -3 \\
3 & 0 & -3 \\
3 & -3 & -3
\end{array}\right] \tag{11}\\
& \frac{1}{15}\left[\begin{array}{ccc}
5 & 5 & 5 \\
-3 & 0 & -3 \\
-3 & -3 & -3
\end{array}\right] \tag{12}\\
& \frac{1}{15}\left[\begin{array}{ccc}
5 & 5 & -3 \\
\vdots & 0 & -3 \\
-3 & -3 & -3
\end{array}\right] \tag{13}\\
& \frac{1}{15}\left[\begin{array}{ccc}
-3 & 5 & 5 \\
-8 & 0 & 5 \\
-3 & -3 & -3
\end{array}\right] \tag{14}
\end{align*}
$$

The equations abowe can be replaced by simple convolution masks opration as given in Table 1 and Whe scale Eactor ol $1 / 15$ was sustersed by Prat [13]. The eqlyes catracted from different classes of chatacters are not the same and the operacion sperel is also acecplatile. Thuts, it, could be thed as the feature catrector for the character recognition. The results of the Firsch detect,ors are shown in Figure 6. Note that after the Kirscli edge detertion, the image will change from binary to gray level scale. These val11es will locome the inputs of Neural Network scheme latter (Table 2).

Figurc 6.(i)Original Image of '4', '6', E' and 'G'(left most). Example feature extracted images using Kirsch Edge Detection using (ii)vertical, (iii)horizontal, (iv)leftdiagonal and (v)right diagonal for letter '4', '6', E'and 'G' consecutively.

3.2. Kirsch Edge algorithm

Input: Sel Orignizal Itrage indo a inffetr, B1,
Output : Display what binarinal foatwe axtractad smage.
Step it For coroster, $i=1,9,9,3,5,5,7,8$

 teft dituonal Ko arud dop rigint ajagornd K_{1}.
Step 4; Do comolation buffer Be with shosth scrmal diroctioms of kernel h i.

Step 6: Finieh

4. Image Classifications

We apply noural networli to clasify these images and recoglize the clatacters. Here we cay lain lutiefly foundation of NN. . Thui ct.al. [9] presented two imporbant characterishics in JN: Coarning ard gencralizar
 chitecture that will change the contrection structure betwech units and signal strength in the connection
 Weight w1.L, w-a,... Wr.r from weight mattix w. This neuron has bjas b that will be accumnthated with clan
 ron inpul walue is used in the activation function f, and producas one sealex outpint nemon, a that can be repersented by equation(10):

$$
a=j\left(\sum_{i=1}^{n} w_{1, k} x_{i} \mid b\right)
$$

Outpul a malue dependis on the activanion furetion userl. Basically there are two types of activation functions: linear and non-linear. Activation function either Binary sigmoid, Bi-polar sigmoid or Hyperbolic tangent, whech is suitable with the wpe of problem solving and desired outpunt renges, slabll bo appliod outo the network [8]. In our case we arr lied Biriary
sigmoid. We also used random weight control for the first network initializing even though there are other types like Nguyen Widrow [8] and Genetic algorithm [1].

After a few experiments conducted Table 2, we found that using five features: original image and kirsch edge kernel 2, 4, 6 and 8 with 10×10 image size is the most essential input numbers for the neural network scheme. Meanwhile, 200 are the most optimum hidden nodes. We have trained on 200 image sets and stopped training when its mean square errors have reached to 0.0026 values. Since we are dealing with Malaysian license plate, the output nodes have been increased from 33 up to 36 which covers all roman alphabets (except O), numbers (from 0 to 9) and backlash ("/") .

Table 2.Neural Network Scheme.

Input nodes	5 types x (10×10 pixel)	500
Hidden nodcs		200
Output	$0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F, G, H, I$, J.K.L,M,N.P, Q,R,S,T,U,V,W,X,Y,Z ancl /	36
Learning rate		0.05
Minimum Error rate		0.0026

5. Discussions

The plate recognizer or 'LPSeeker' has been fully developed by using contemporary techniques such as median filtering and threshold for image processing, clustering for segmentation, kirsch edge detector for feature extractions and neural network. We have also run two separate experiments; fixed and different threshold. From those experiments, we constructed analysis of error tables based on segmentation and classification errors. The prototyped system has an accuracy more than 91%, however, suggestions to further improve the system are discussed in this paper pertaining to analysis of the crror.

There were two experiments conducted; fixed (value for threshold is 130) and different threshold value experiments. Each experiment had been run onto 1000 off-line image data. Here, we only stated classification, feature extraction and classification time because the experiment has been carried out automatically. These images are captured from frontal and back of Malaysia cars. This time we only concentrated on Malaysia standard car plate images which taken surrounding Kuala Lumpur, Selangor, Pahang, Terengganu and Perak. LPSeeker is developed using Microsoft Visual C++ and VSDP library. VSDP library is a library for image processing and it has consistently developed and updated by CAIRO.

As depicted in Table 3, Classification has consumed the highest time which is 2247.68 ms while feature cxtraction falls the second with 472.02 ms and segmentation is the least with 5.2 ms . Classification gains most time due to neural network processing time which requires connecting to the weight database and calculating the current image's weight.

From Table 4, out of a thousand images that were been analyzed, 803 images have perfectly recognized
for fixed threshold experiment. This result increased to 919 when different threshold values were used. Therefore, both experiments accuracy percentage are 80.3% and 91.9% correspondingly.

Even though, LPSeeker accuracy percentage has achieved more than 80%, they are several issues to be tackled in the case error analysis such as segmentation and classification issues. From Table 4, segmentation error percentage for fixed threshold is about 61.4% while classification error rate is 38.58%. However, when different threshold values are used, its segmentation error percentage has reduced significantly to 12.34% and caused the classification error percentage increased to 87.65%. Here, we can assume that by applying different threshold or perhaps adaptive threshold values can reduce segmentation error percentage. Furthermore, LPSceker II also needs to give attention to classification crrors because adaptive threshold did not show any significant improvement.

Segmentation errors are categorized into five classes: NotFound, Miss1, Miss2, Miss $\succ 2$ and Extra. Meanwhile classification errors are divided into four categories: Wrong1, Wrong2, Wrong $\succ 2$ and Wrongseq. Description of each errors are explained briefly in Table 5. Samples of interfaces of those errors are also depicted in Figure 10 and 11. Referring to the segmentation problems of Table 3 , there were 26 errors for Type Miss1, 30 errors for Type Miss2, 57 crrors for Type Miss $\succ 2$ and 8 crrors for Type Extra in fixed threshold value experiment. These errors were occurred may due to restrictions in clustering approach. Inappropriate threshold causes two and more characters connected and width of the blobs is greater than the height of the blobs. As a result, these connected character blobs will not consider as winner blobs and become missing (8). Clustering success is closely related to the constant value that has been set for grouping the blobs. If the constant value increases, LPSeeker surprisingly can detect almost more than 20 but less that 50 degree of skewed license plate. However, the drawback is sometimes unnecessary blobs will also consider as winner blobs and this error falls into category Extra. On the other hand, if the constant value reduces, this may also lead to missing blobs like Miss1, Miss2 and Miss $\succ 2$ crrors.

Fortunately, these segmentation errors were reduced dramatically when different threshold values were used. From Table 3, you can see that out of 121 errors occurred in fixed threshold experiment; only 10 remained as errors when different threshold values were adapted. Therefore, an adaptive threshold system is highly required to be developed such as Otsu Threshold[10], N.N Threshold or Rule-based Threshold.

On the other hand, classification is another serious issue as depicted in Figure 7 and Table 5. There were 56, 9, 11 and 0 errors for Type Wrong1, Wrong2, Wrong $\succ 2$ and Wrongseq consecutively when fixed
threshold experiment was conducted. These errors almost remained the same (except for Type Wrongson) even though different thereshold values were used. Errors that fall under catcegory classification may due to segmentation techniques. Quile a number that Type Wrong1, Wrong2 and Wrong $\succ 2$ were wrongly recognized because the license plate images were skewed or rotated. Therefore, some of the letters were misclassificd. For cxample, several characters that look similar were detected vice versa like character B or 3 detects as 8 , character 3 detects as 6 , character 6 detects as G, character A detects as 4 , character I dolects as 1 (refer to Figure 9). Apart from that, these errors may also due to inappropriate feature extraction technique. Kirsch edge detector is intolerance to rotated images. Kirsch Edge detector also fails to distinguish certain character like 6 and G. Feature representation for 6 and G may return the same binary value. As a resull, Kirsch Edge might lead to letler misclassification.

Table 3.Average time for five fixed threshold experi-

ments		
Sel	Tolal	Averast
Sogmentration	258	5.2
Fcaturo Exbraction	2360.1	472.02
Classification	11238.4	2246.8

Table 4.Accuracy time for five fixed and different threshold experiments.

Detail	Threshold		Averase
	lised	<Lliterellb	
tonol sample cata.	1097)	1193)	1,9m?
no of correct	803	ソ1\%	81
cortecl percenlage	81,3\%	91.3%	86. 1%
total seghnentation crior	121	10	65.5
Segmelluation troor perventspe		12.31\%	35.88\%
classificabion error	73	71	ヶ8,
Clasafication crior percontoges	38.5.5\%	87.65%	63.12\%

6. Suggestion

Firstly, boith fixed and different threshold experiment shows that the performance increases if the appropriate threshold is applied before segmenting the characters. Adaptive threshold like Otsu Threshold or Otsu with a revised formula need to be developed for roducing segmentation crrors that may lead to misclassification later. Sccondly, segmentation algorithm should solve geometric issues from the very begimning. Cieometric approach can re-correct the position of coordinates and aid to arrange the character

Table 5.Type of errors for fixed and different threshold

Error experiment				
	Deacriplon			
Nitesi		${ }^{26}$		
Stus		${ }_{8}^{8}$		
Wions ${ }^{\text {a }}$	Whal semmenlation eniors	${ }^{\frac{1281}{86}}$	$\underline{53}$	
	(Wenn ${ }^{\text {a characherse }}$	$\stackrel{\frac{3}{11}}{ }$	$\frac{8}{10}$	
	Wroves scyucuse of dhatratere	$\stackrel{\square}{78}$		

Figure 7. Overall type versus number of errors for fixed and different threshold graph.

Figure 8 Samples of mis1(top left), miss2 (top right), miss $\succ 2$ (bottom left) and extra character (bottom right).
in proper order. Furthermore, geometric approach also helps maintaining uniquencss of cach letter characteristics by corrocting its structure. Besides that, there are three main approaches of segmentation, which are IIistogram Profile Projection ${ }^{1}$ (IIPP), Connected Components Labeling ${ }^{2}$ (CCL) and Determining of Segmentation Points ${ }^{3}$ (DSP) [12].Combination of these three approaches can form better solution in segmentation phasc.

The third problem may cause by feature extraction. Fealure extraction has a good correlation with the success of the recognition. Using other feature extraction, which explains and represents better nature of cach character is required. Feature cxtraction is divided into three styles; grayscalc image ${ }^{4}$, binary

[^0]

Figure 9.Samples of wrong1(top left), wrong2 (top right), wrong $\succ 2$ (bottom left) and wrongseq (bottom right).
image ${ }^{5}$ or vector (skeleton) image ${ }^{6}$ [12].
Lastly, the recognition using neural network can lead to misclassification if crrors in segmentation and feature extraction are not solved independently. Otherwise, perhaps other lechnique to classily can be used like Trace Transform, Polynomial and Bayesian classification.

7. Conclusions and Acknowledgment

This paper has generally discussed on concept of license plate recognition, segmentation, foature extraction approach and neural network technique. In conclusion, we can conclude that classification has signilicantly raised more problems compared to segmentation. Major adjustment must be made to reduce recognition errors. These errors may origin to insufficiont segmentation algorithm or incfficient feature extraction method (Kirsch Edge Detector).

Spocial thanks to my fricnds: Norzi, Faridatul, Norzu and Dilah who had been hardworking in collecting data in various states.

8. References

[1] A.C.Tsoi and H.C. Andersen. A constructive algorithm for the training of a multilayer perceptron based on the genetic algortihm. Mastor's thesis, Department of Eloctrical Engineoring, University of Quensland, 1994.
[2] Mehmwet Sabih Aksoy, Gultekin Cagil, and Ahmet Kursat, Turker. Number-plate recognition using inductive leaming. Robotics and Autonomous systems, Elscoier seience B.V., $33: 149-153,2000$.

[^1][3] B. Al-Badr and S.A.Mahmoud. Survey and bibliography of arabic optical test recognition. Signal Processing., 11:19-77, 1995.
[4] Muhammad Safraz andMohammed Jameel and syed A.Chazi Saudi arabian license plate recognilion system. In IEEE Proccedings of the 2003 International conference on Geometric Modelling and Graphics(GMAG0\%)., 2003.
[5] Shyang-Lih Chang, Li shien Chen, Yun-Chung Chung, and Sei-Wan Chen. Automatic license plate recognition. IEEE Transaction Intelligent transportation system, 5:42-53, 2004.
[6] D.M.Emiris and D.E.Koulouriolis. Automated optic recognition of alphanumeric content in car license plates is semi-structured environment. In Procedings of International Conference on Image Processing, volume 3, pagss $50-53,7-10 \mathrm{Oct}$ 2001.
[7] J.Barosso, E.L Daglesss, A.Ralel, and J. BulasCruz. Number plate reading using computer vision- In Proceedings of IEEE International symposium on Industrial Electronics., volume 3, pages $761-766,1997$.
[8] L.Fausctt. Fundamental of Neural Networks: Architechtures, Algortihms, Applications. Prentice Hall, New Jersey, 1994.
[9] L.Mui, A A. Agrarwal, A.Gupta, and P.S.P Wang. An Adaplive Modular Neural Nelwork with Application to Unconstrained Character Recognition In Document Image Analysis., volume 16:1189-1203. World Scientific, 1991.
[10] M.Petrou and P-Bosdogianni. Image Processing: the fundamentals. John Wilcy \& sons Ltd., England, 2000.
[11] J.A.G. Nijhuis, M.H ler Brugge, and K.A. Helmholl. Car license plave recognition with neural network and fuzzy logic. In IEEE Proceedings of International Conference on Neural Networks., volume 5, pages 2232-2236. IEEE, 27 Nov-1 Doc 1990.
[12] O.D.Tricr, A.K. Jain, and T. Taxt. Feature cotraction methods for charactor rocognitiona survey. Joumal of Pallem Recognition, 29(4):641-662., 1996.
[13] W.K. Pratt. Digital Image Processing. Wiley, 1978.
[11] Yap Keem Siah. A closign of an intelligent liconse plate recognition. Master's thosis, Universili Teknologi Malaysia, 2000.

[^0]: ${ }^{1}$ HPP can be used to segment text-to-text lines, then to words
 ${ }^{2} \mathrm{CCL}$ can gather all contours of connected componenis
 ${ }^{3}$ DSP is stressed on the determination of definitive segmentaution points by scarcling junction of segments betwent characlers
 ${ }^{1}$ Crayscale image consists of several techniques like template matuchüng, delormable lemplates, unitary bransform, zoning, geomelric moments and Zernike moments.

[^1]: ${ }^{5}$ For binary feature extraction, lechniques above are used similarly to gravscale image and plus contour profles, spline curve and fourier descriptors.
 ${ }^{6}$ Vector image includes [eabre extraction technique such as graph doscriptors and discrele fearure.

