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ABSTRACT 

 

 

 

 

 

Remote protein homology detection is a problem of detecting evolutionary 

relationship between proteins at low sequence similarity level. Among several 

problems in remote protein homology detection include the questions of determining 

which combination of multiple alignment and classification techniques is the best as 

well as the misalignment of protein sequences during the alignment process. 

Therefore, this study deals with remote protein homology detection via assessing the 

impact of using structural information on protein multiple alignments over sequence 

information. This study further presents the best combinations of multiple alignment 

and classification programs to be chosen. This study also improves the quality of the 

multiple alignments via integration of a refinement algorithm. The framework of this 

study began with datasets preparation on datasets from SCOP version 1.73, followed 

by multiple alignments of the protein sequences using CLUSTALW, MAFFT, 

ProbCons and T-Coffee for sequence-based multiple alignments and 3DCoffee, 

MAMMOTH-mult, MUSTANG and PROMALS3D for structural-based multiple 

alignments. Next, a refinement algorithm was applied on the protein sequences to 

reduce misalignments. Lastly, the aligned protein sequences were classified using the 

pHMMs generative classifier such as HMMER and SAM and also SVMs 

discriminative classifier such as SVM-Fold and SVM-Struct. The performances of 

assessed programs were evaluated using Receiver Operating Characteristics (ROC), 

Precision and Recall tests. The result from this study shows that the combination of 

refined SVM-Struct and PROMALS3D performs the best against other programs, 

which suggests that this combination is the best for remote protein homology 

detection. This study also shows that the use of the refinement algorithm increases 

the performance of the multiple alignments programs by at least 4 percent. 
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ABSTRAK 

 

 

 

 

 
Pengesanan homologi protein terpencil merupakan permasalahan dalam 

mengesan hubungan evolusi antara protein yang mempunyai kesamaan urutan yang 

rendah. Antara masalah yang terdapat dalam pengesanan homologi protein terpencil 

termasuklah menentukan kombinasi terbaik teknik penyelarasan dan 

pengklasifikasian selain kesalahan penyelarasan urutan di dalam proses penyelarasan 

protein. Oleh itu, kajian ini adalah berkaitan pengesanan homologi protein yang 

terpencil melalui penilaian terhadap kesan penggunaan maklumat struktur kepada 

penyelarasan berganda protein berbanding penggunaan maklumat urutan. Kajian ini 

seterusnya memaparkan pilihan kombinasi terbaik bagi teknik penyelarasan dan 

pengklasifikasian. Kajian ini turut mempertingkatkan kualiti penyelarasan berganda 

melalui algoritma penambahbaikan. Rangka kerja kajian ini bermula dengan 

penyediaan set data daripada SCOP versi 1.73, diikuti penyelarasan berganda 

menggunakan CLUSTALW, MAFFT, ProbCons dan T-Coffee yang berasaskan 

struktur primer dan 3DCoffee, MAMMOTH-mult, MUSTANG serta PROMALS3D 

yang berasaskan struktur sekunder. Seterusnya, algoritma penambahbaikan 

diaplikasikan untuk mengurangkan kesalahan semasa penyelarasan. Akhir sekali, 

urutan protein diklasifikasikan menggunakan HMMER dan SAM yang berasaskan 

Model Markov Tersembunyi Berprofil (pHMMs) dan SVM-Fold serta SVM-Struct 

yang berasaskan Mesin Vektor Sokongan (SVMs). Karakter Pengoperasian Penerima 

(ROC), ketepatan dan dapatan semula digunakan untuk menilai kemampuan rangka 

kerja yang dicadangkan ini. Hasil kajian menunjukkan bahawa kombinasi SVM-

Struct dan PROMALS3D mengatasi kombinasi yang lain. Ini menunjukkan ia adalah 

kombinasi terbaik bagi pengesanan homologi protein terpencil. Kajian ini turut 

menunjukkan bahawa penggunaan algoritma penambahbaikan telah meningkatkan 

prestasi program penyelarasan berganda sebanyak sekurang-kurangnya 4 peratus. 
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CHAPTER 1 

 

 

 

 

 

INTRODUCTION 

 

 

 

 

 

1.1 Background 

 

 

Remote protein homology detection forms the basis for structure prediction, 

function prediction and evolution in protein. Being a core problem in computational 

biology, there are two different degrees of remote protein homology. The first one is 

sequence homology while the second one is structural homology. Protein sequence 

homology is where protein sequences are compared to each other as subtle similarity 

between the compared protein sequences defines homology. As for structural 

homology, whether or not there are homologies are detected by finding identical 

secondary structures and motifs in the compared proteins. The main objective in 

remote protein homology detection is to find homology of protein sequences when 

the actual sequence identity is low. 

 

 

The use of multiple alignments has been proven to improve the detection of 

remote protein homology. There are two types of multiple alignments in 

bioinformatics which are multiple sequence alignments and multiple structural 
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alignments. Multiple sequence alignments are often used to assess protein sequences 

shared evolutionary origins. Meanwhile, multiple structural alignments are essential 

in providing benchmarks dataset for improving sequence alignment algorithm as 

bases for bioinformatics research. 

 

 

Meanwhile, another two fashionable methods in computational biology for 

detecting remote homologies are Hidden Markov Models (HMMs) and Support 

Vector Machines (SVMs). As probabilistic models, HMMs are initially used in 

speech recognition (Mendel, 1992). To date, HMMs are being applied in solving 

molecular biology problems such as gene finding (Brejova et al., 2005; Majoros et 

al., 2005), multiple sequence alignment (MSA: Mamitsuka, 2005; Knudsen and 

Miyamoto, 2003) and protein structure prediction (Lampros et al., 2007; Camproux 

and Tufféry, 2005; Lin et al., 2005). HMMs that are used to represents groups of 

homologues sequences are called profile Hidden Markov Models (pHMMs). The 

pHMMs are probabilistic models built from multiple sequence alignments. Madera 

and Gough (2002) has systematically compared the performance of HMMER 

(http://hmmer.janelia.org/) and SAM (http://compbio.soe.ucsc.edu/HMM-apps/) 

which is based on pHMMs over two protein families, globins and cupredoxins by 

using nrdb90 (Holm and Sander, 1998) database and an all-against-all experiment for 

the two systems using SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/) database. In their 

works, several alignment strategies have been used, including manual alignment of 

the two protein families, SAM-T99 (http://compbio.soe.ucsc.edu/HMM-apps/T99-

query.html) seeded from a single protein, WU-BLAST (http://blast.wustl.edu/) 

search from the seed protein followed by CLUSTALW (http://www.ebi.ac.uk 

/Tools/clustalw2/). They showed that the initial multiple alignments can significantly 

affect HMMER and SAM performance, also that SAM T-99 package generates a 

good quality multiple alignments. They found that SAM had better model quality 

than HMMER. The two systems were further evaluated by Wistrand and 

Sonnhammer (2005). In their work, they relied on SCOP database for high quality 

labeled hierarchies of protein domains. They explicitly avoided conditioning on the 

use of particular program to perform initial multiple alignments and instead they 

used Pfam (http://pfam.sanger.ac.uk/) database. They concluded that SAM’s model 

estimation is superior, due to better usage of priors, which avoid over-fitting. On the 
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other hand, they also showed that HMMER’s model scoring is more accurate, 

probably due to a better null model. Bernardes et al. (2007) works investigate the 

contributions of using multiple structural alignments to build the model for remote 

protein homology detection by considering proteins below 30% in identity. Their 

experiments showed that profile HMMs derived from multiple structural alignments 

perform significantly better than that derived from multiple sequence alignments. 

They also showed that accuracy of alignment is not directly related to alignment 

identity. They suggested that although multiple structural alignments often present 

smaller identity than multiple sequence alignments, the best quality alignments based 

on structural information are generally considered to derive from structural 

superposition. In their work, they compare the performance of two pHMMs packages 

which are HMMER and SAM when two different kinds of alignments that are 

sequence and structural alignments were used. Their results showed that HMMER 

based on structural alignment outperforms SAM for such remote homologues. 

 

 

Meanwhile, SVMs are method for constructing a rule called linear classifier 

in a way that it produces classifiers with theoretical guarantees of good predictive 

performance that is the quality of classification of unseen data. In short, SVMs are a 

set of related supervised learning methods used for classification and regression. 

Rangwala and Karypis (2006) presents an extensive evaluation of a number of 

methods for building SVM-based multiclass classification schemes in the context of 

the SCOP protein classification. Their methods are comprised of schemes that 

directly build a SVMs-based multiclass model, schemes that employ a second level 

learning approach to combine the predictions generated by a set of binary SVMs-

based classifiers and also schemes that build and combine binary classifiers for 

various levels of the SCOP hierarchy beyond those defining the target classes. The 

SVM-Fisher method by Jaakkola et al. (1999) combines an iterative HMMs training 

scheme with discriminative algorithm of SVMs. For any given family of related 

proteins, the HMMs provide a kernel function. First, the HMMs are trained of 

positive members of the training set using the standard Baum-Welch (Baum et al., 

1970) training routine. Then, the training is iterated, adding similar sequences from a 

large unlabelled database to the training set at each round. After training, the gradient 

vector of any sequence can be computed with respects to the trained model. Lastly, 
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SVMs are trained on a collection of positively and negatively labeled protein 

gradient vectors. By coupling HMMs and SVMs, this method offers an interpretable 

model, a means of incorporating prior knowledge and missing data and also excellent 

recognition performance.   

 

 

In this thesis, super-families from SCOP database are used as datasets. 

Firstly, the performance of different multiple alignments with different classifiers are 

assessed. Next, a refinement algorithm is integrated to improve the multiple 

alignments before being classified using the classifiers. Then, the performance 

between the refined and unrefined multiple alignments are compared. HMMER and 

SAM which are two popular tools in bioinformatics for pHMMs in detecting remote 

protein homologies are used to provide generative classification. Meanwhile, SVM-

Fold (http://svm-fold.c2b2.columbia.edu/) and SVM-Struct (http://svmlight. 

joachims.org/svm_struct.html) are used to provide discriminative classification.  

 

 

 

 

 

1.2 Current Methods in Remote Protein Homology Detection 

 

 

Generally, there are three basic groups of major methods in remote protein 

homology detection (Liao and Noble, 2003). We will discuss these methods in detail 

in Chapter 2. 

 

(i) Pairwise sequence comparison algorithms which identify similarity 

region that may be the consequences of functional, structural or 

evolutionary relationships by arranging primary sequences in proteins. 

Examples of these algorithms include BALSA (Webb et al., 2002), 

NdPASA (Wang and Feng, 2005), CPSA algorithm (He and Arslan, 

2005) and INSPAL (Lee and Wang, 2006). 
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(ii) Generative models for protein families use positive examples of a 

protein family which can be trained iteratively using both positively 

labeled and unlabeled examples by pulling in close homology and 

adding them to the positive set. These models include HMMs 

(Remmert et al., 2009), Naive Bayes (Nigsch et al., 2008), Gaussian 

mixture model (Aristophanous et al., 2007) and Latent Semantic 

Analysis (LSA: Cohen et al., 2008). 

(iii) Discriminative classifiers are able to gain additional accuracy by 

modelling the difference between positive and negative examples 

explicitly, providing state-of-the-art performance with appropriate 

kernels. Examples include SVMs (Nugent and Jones, 2009), Neural 

networks (NN: Rubinsky et al., 2008), Linear Discriminant Analysis 

(LDA:  Chen et al., 2009) and conditional random fields  (CRFs: 

Lafferty, et al., 2001). 

 

 

 

 

 

1.3 Challenges in Remote Protein Homology Detection 

 

 

There are several challenges in remote protein homology detection which we 

will address in this study. Firstly, choosing multiple alignment types for protein 

remote homology detection can be tricky and challenging as there are two types of 

multiple alignments namely multiple sequence alignment and multiple structural 

alignments. Multiple structural alignments are often said to be more accurate than 

multiple sequence alignments at identifying motifs and functional residues. A study 

performed by Madera and Gough (2002) proved this statement to be true. However, a 

study by Jones and Bateman (2002) concluded that the use of structure information 

actually does not help to improve multiple alignment accuracy in homologue 

detection with pHMMs.   
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Secondly, the accuracy of domain identification, protein classification and 

reconstruction of phylogenetic history of domain families crucially depends on the 

quality of underlying multiple sequence alignments (Chakrabarti et al., 2006). 

Different method has been proposed to produce a multiple sequence alignment. 

Some of them align all sequences simultaneously while others apply a progressive 

algorithm. In progressive alignment strategy, sequences are aligned in a 

predetermined order as dictated by the guide tree in groups with other similar 

sequences together with subsequent addition of more dissimilar ones. But 

progressive alignment has its pitfalls where misalignment made at previous stages 

cannot be corrected afterwards, thus can propagates into serious alignment errors. 

Moreover, the final alignment depends strongly on the order of the sequences being 

aligned. Therefore, the challenge lies in realigning the sequences in order to correct 

misalignments between a given sequence and the rest of the profile. 

 

 

The third challenge in this study is to assess and come out with a comparative 

result on the performance between generative and discriminative classifiers, 

providing information and aid for researchers on choosing between these classifiers. 

Comparison on generative and discriminative classifiers has been a topic of 

discussion for a long time. For example, a work by Ng and Jordan (2001) compares 

logistic regression as discriminative classifier with naïve Bayes as generative 

classifier. In their work they proved that discriminative classifier works better than 

its generative counterpart. However, this is true only for a large number of training 

data. If the number of training data is limited, generative classifier can outperform 

the discriminative classifier. Due to this fact, several authors (Holub and Perona, 

2005; Bouchard and Triggs, 2004) have proposed a hybrid of generative and 

discriminative classifier approaches. However, even though their procedure is 

heuristic, it was sometimes found that the best predictive performance is only 

somewhere in between the discriminative and generative limits. 

 

 

 

 



7 

1.4 Statement of the Problems 

 

 

The remote protein homology detection problem to be studied can be 

described as follows: 

 

“Given multiple protein sequences, the challenge is to assess the best of 

different combination of multiple sequence alignments and multiple structural 

alignments with generative and discriminative classifiers in remote protein homology 

detection and at the same time reducing misalignments in order to achieve higher 

Receiver Operating Characteristics (ROC: Beck and Schultz, 1986), Precision and 

Recall values” 

 

 

This study will assists in the problem of selecting the best multiple 

alignments by comparing the performance between pHMMs and SVMs derived from 

multiple sequence alignments and multiple structural alignments. The factor that has 

to be considered in order to provide the best solution to this problem is the revelation 

of relationships between the proteins. This will lead to a more technical task that is 

analyzing the scores generated by the classifiers. Meanwhile, in order to solve the 

problem of misalignments in multiple alignments, a refinement algorithm will be 

used. To do this, iterative realignment of individual sequences with the 

predetermined conserved core that is the block model of a protein family will be 

taken as the factor which has to be considered. Misalignments resulting from the 

aligning process have to be reduced because the accuracy of our protein 

classification highly depends on the quality of the underlying alignments. 
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1.5 Objectives of the Study 

 

 

The goal of this study is to develop a computational framework to classify 

proteins into each super-families and families respectively. In order to realize this 

goal, several objectives must be achieved: 

 

(i) To study and investigates current remote protein homology detection 

methods in order to understand the processes, data and domains. 

(ii) To integrate different combinations between multiple sequence 

alignments and multiple structural alignments with pHMMs and 

SVMs in order to find the best combinations in detecting remote 

protein homology. 

(iii) To apply refining algorithm in order to reduce misalignments in 

multiple sequence alignments and multiple structural alignments. 

(iv) To analyze results using ROC, Precision and Recall in order to 

evaluate the performance of the proposed computational framework. 

(Rangwala and Karypis, 2006), (Bernardes et al., 2007), (Wistrand and 

Sonnhammer, 2005) 

 

 

 

1.6 Scope and Significance of the Study 

 

 

In this study, we limit our scope of experimental datasets to SCOP database 

version 1.73 with identity below 30% as our work considers proteins within the 

Twilight Zone where identity between amino acids sequences is a weaker indicative 

of evolutionary relationships. SCOP is a manually inspected database of protein folds 

and it is very suitable for our study because it describes structural and evolutionary 

relationships between proteins including all entries in the PDB (http://www.rcsb.org) 

database. SCOP is an excellent dataset for assessing the performance of remote 

protein homology detection methods, and it has been widely used for that purpose. 

SCOP categorizes all protein domains of known structure into a hierarchy of four 
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levels: class, fold, super family and family. The scope of our work will be at super-

family level, in which families are grouped such that a common evolutionary origin 

is not obvious from sequence identity, but in the meantime probable from an analysis 

of structure and from functional features. We believe that this level represents remote 

protein homology detection the best. Throughout our study, the sequence-based 

multiple alignment tools that will be used are limited to: CLUSTALW, T-Coffee 

(http://www.tcoffee.org/), MAFFT (http://www.ebi.ac.uk/Tools/mafft/) and Prob- 

Cons (http://probcons.stanford.edu/). On the other hand, the structural-based multiple 

alignment tools will be limited to: 3DCoffee (http://www.tcoffee.org/), MAM-

MOTH-mult (http://ub.cbm.uam.es/mammoth/mult/), MUSTANG (http://www.cs. 

mu.oz.au/~arun/mustang/) and PROMALS3D (http://prodata.swmed.edu/promals3d 

/). A refinement algorithm is applied on the output of the multiple alignment tools in 

order to reduce the misalignments. Next, the unrefined and refined multiple 

alignments are classified using pHMMs and SVMs. For pHMMs, HMMER and 

SAM are used to provide the classification. Meanwhile, SVM-Struct and SVM-Fold 

are used to provide SVMs classification. Lastly, an analysis on the performance of 

these tools which have been derived from unrefined and refined multiple alignments 

are conducted using ROC, Precision and Recall.  

 

 

Remote protein homology detection is an important yet hard problem in 

computational molecular biology. A number of tools and methods have been 

developed towards this purpose as well as to improvise it. Therefore, the significance 

of this study is that it helps in improvising remote protein homology detection by 

providing choices in selecting the best and most appropriate multiple alignments 

tools. This is due to the fact that different kinds of alignments give different results. 

Also, the usage of different multiple alignment tools will also resulted in different 

level in performance due to different methods and algorithms implemented. By 

applying a method to reduce misalignments in protein sequences, this study will also 

significantly help in preventing serious alignment errors. In this study, we will also 

compare the performance of two different types of classifier derived from multiple 

alignment tools mentioned before. We will analyze all the result from these 

classifiers thoroughly to provide better assessments for these tools, aimed also at 

providing help in choices of selection.  
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Remote protein homology detection plays a crucial part in medicine such as 

in drug design and cancer genomics as well as in biotechnology such as in the design 

of novel enzymes. Every two years starting 1994, the performances of current 

methods in this field are assessed in Critical Assessment of Techniques for Protein 

Structure Prediction (CASP: http://predictioncenter.org/), which is a community wide 

experiment for protein structure prediction held by Protein Structure Prediction 

Center, University of California. Homology modeling has been extensively used in 

structure-based drug design as discussed in detail in a review by Jacobson et al., 

(2004). Another example of using remote protein homology detection in drug design 

is the work by Caffrey et al. (2005). The main goal of their work is to compare active 

sites to obtain hints for drug design. They used homology model of Schistosoma 

japonicum cathepsin D to identify the structural differences between that protein and 

its human homolog that were responsible for differential binding of certain types of 

cathepsin D inhibitors. They used this information to design inhibitors that show 

greater specificity to the worm version of the protein. 

(Madera and Gough, 2002),(Caffrey et al., 2005),(Jacobson and Sali, 

2004),(Beck and Shultz, 1986),(Ng and Jordan, 2001),(Jones and Bateman, 2002), 

(Lafferty et al., 2001), (Chen et al., 2009), (Rubinsky et al., 2008), (Cohen et al., 

2008), (Jaakkola et al., 1999),  

 

1.7 Organization of the Thesis 

 

 

A general content description of the subsequent chapters in this thesis is 

given as follows:  

 

(i) Chapter 1 describes the challenges, current methods, problems, 

objectives, scope and significance of the study. 

(ii) In Chapter 2, the basic concepts, involved phases, and raised problem 

in remote protein homology detection are described. Exhaustive 

reviews of previous related works are also presented.  

(iii) Chapter 3 begins with a brief review of the proposed framework, 

followed by detailed descriptions of all instruments involved, such as 
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hardware and software requirements, testing and analysis as well as 

performance measurement.  

(iv) Chapter 4 focuses on assessing the performance of pHMMs and 

SVMs when two different types of multiple alignments that are 

sequence and structural based are used.  

(v) Chapter 5 describes the measuring of performances between refined 

and unrefined multiple alignments on pHMMs and SVMs. 

(vi) In Chapter 6, the conclusion of the proposed framework and the 

achieved results to date is shown. Descriptions of the contributions 

and future works of the study are also presented. 
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