CRITICAL STATE OF FLY ASH-BOTTOM ASH MIXTURE

MARWA A RAHMAN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Geotechnics)

> Faculty of Civil Engineering Universiti Technologi Malaysia

> > DECEMBER 2010

To my beloved father and mother To my beloved husband and his family To my dear brother For their never ending care and support Thank you for everything

ACKNOWLEDGEMENT

Praise to Allah, the Most Gracious and Most Merciful, Who has created the mankind with knowledge, wisdom and power.

Special thanks go to Professor Dr. Aminaton Marto for giving this opportunity to work under her supervision and for sharing her great knowledge and experience with me.

I would like to convey my deepest gratitude to all the staff of Geotechnical Laboratory, Faculty of Civil Engineering, UTM. Appreciation is also extended to all people who gave me heartfelt corporation and shared their knowledge and for giving some of their valuable time.

Finally, I am deeply and forever indebted to my husband, parents, and my brother for their love, spiritual support, and encouragement throughout my entire life. Without them I would never come up to this stage.

ABSTRACT

The burning of coal in the process of generating electricity, leads to the production of solid waste such as the fly ash and bottom ash. Numerous studies had been carried out to determine the mechanical properties of fly ash and also bottom ash. An extension of these studies is necessary in order to explore further usage of these ashes, in particular when mixed together in optimum percentage. The critical state boundary surface of the soil or material is important to identify the limit of stress imposed from various stress level and stress history. Hence, this study aimed at developing the critical state boundary surface of a mixture of 60% fly ash and 40% bottom ash by weight, is vital. The results obtained could be used as a guideline when working in the future with coal ash mixture of the same mix ratio. The samples used in this study were collected from Tanjung Bin power station in Johor, Malaysia. The fly ash-bottom ash mixture used in this study had a liquid limit of about 22% and behaved as non-plastic material. The mixture is classified as well-graded sandy silt with specific gravity of about 2.36. From the compaction test it showed that the maximum dry unit weight of this mixture is 14.54 kN/m³, achieved at 8.5% optimum water content. The critical state parameters of the mixture obtained in this study are λ = 0.032, κ = 0.013, ζ =0.035, N=1.85 and M=1.152. From the critical state parameters obtained, the critical state boundary surface of fly ash- bottom ash mixture (60:40% by weight) had been established.

ABSTRAK

Pembakaran arang batu yang digunakan di dalam proses penjanaan kuasa elektrik telah menyebabkan penghasilan sisa pepejal seperti abu terbang dan abu dasar. Pelbagai kajian telah dijalankan untuk menentukan sifat mekanikal abu terbang dan abu dasar ini. Lanjutan kepada kajian ini perlu dijalankan bagi mengkaji dengan lebih mendalam kegunaan sisa-sisa abu ini terutamanya apabila di campurkan bersama dalam peratus yang optimum. Sempadan permukaan keadaan genting bagi tanah atau bahan adalah penting bagi menentukan had kepada tegasan yang boleh dikenakan, yang mungkin bermula pada tahap dan sejarah tegasan Oleh itu, kajian ini yang dijalankan bertujuan untuk menghasilkan tertentu. sempadan permukaan keadaan genting bagi campuran abu terbang dan abu dasar pada nisbah berat 60% abu terbang dan 40% abu dasar, adalah sangat penting. Hasil keputusan daripada kajian ini boleh dijadikan sebagai panduan kepada kerja-kerja yang melibatkan campuran abu arang batu dengan nisbah campuran yang sama pada masa hadapan. Sampel kajian telah diambil dari stesen janakuasa Tanjung Bin di Johor, Malaysia. Campuran abu terbang - abu dasar yang telah digunakan didalam kajian ini mengandungi had cecair sebanyak 22% dan berkeadaan tidak plastik. Campuran ini juga diklasifikasikan sebagai kelodak berpasir bergred baik dengan nilai graviti tentu sebanyak 2.36. Hasil keputusan daripada ujian pemadatan pula menunjukkan berat unit kering maksimum bagi campuran ini adalah sebanyak 14.54 kN/m³ yang telah terhasil pada nilai kandungan air optimum sebanyak 8.5%. Parameter keadaan genting yang telah diperolehi dalam kajian ini adalah $\lambda = 0.032$, $\kappa = 0.013$, $\zeta = 0.035$, N=1.85 dan M=1.152. Daripada parameter-parameter keadaan genting yang diperolehi ini, sempadan permukaan keadaan genting bagi campuran abu terbang - abu dasar (60:40% timbangan berat) telah dapat dihasilkan.

TABLE OF CONTENT

CHAPTER

1

TITLE

PAGE

DEC	LARATION	ii		
DED	DEDICATION			
ACK	NOWLEDGEMENTS	iv		
ABS	TRACT	V		
ABS	ТRАК	vi		
TAB	TABLE OF CONTENTS			
LIST OF TABLES				
LIST OF FIGURES				
LIST OF SYMBOLS				
LIST	LIST OF APPENDICES			
INTRODUCTION				
1.1	Background of Studies	1		
1.2	Problem Statement	4		

1.3	Objectives of the Study	4
1.4	Scope of Study	5

2	LITERATURE REVIEW			
	2.1	Introd	uction	6
	2.2	Coal A	Ash	7
		2.2.1	Fly Ash	8
			2.2.1.1Class C Fly Ash	9
			2.2.1.2 Class F Fly Ash	9
		2.2.2	Use of fly ash in Highway Construction	10
			2.2.2.1Fly Ash in Concrete Mixture	10
			2.2.2.2 Fly Ash in Asphalt Pavements	11
			2.2.2.3 Fly Ash in Embankment	11
		2.2.3	Bottom Ash	13
			2.2.3.1Bottom ash in Concrete Mixture	13
			2.2.3.2Bottom Ash in Embankment	14
	2.3	Fly As	sh Bottom - Ash Mixture	14
		2.3.1	Physical Properties of Fly Ash-Bottom Ash	15
			Mixture	
			2.3.1.1 Grain Size Distribution	15
			2.3.1.2 Atterberg Limit	16
			2.3.1.3 Specific Gravity	16
		2.3.2	Compaction	17
		2.3.3	Shear Strength	18
	2.4	Use of	f Fly Ash - Bottom Ash Mixtures	19
		in Hig	shway Construction	
	2.5	Critica	al State theory	20
		2.5.1	Definition of state parameters	21
		2.5.2	The state boundary surface	22
		2.5.3	Critical Void Ratio	24
		2.5.4	Critical State Parameters of Some Types	25
			of Soil	
		2.5.5	Critical State of Fly Ash	27

METHODOLOGY

3.1	Introduction		
3.2	Testing Materials		
3.3	Fly As	sh –Bottom Ash Mixture Physical Tests	32
	3.3.1	Grain Size Distribution	32
		3.3.1.1 Sieve Analysis	33
		3.3.2.2 Hydrometer Test	33
	3.3.2	Atterberg Limit Test	34
		3.3.2.1 Liquid Limit Test-Cone	35
		Penetration Method	
		3.3.2.2 Plastic Limit Test	36
	3.3.3	Specific Gravity Test	36
3.4	Comp	action Test	37
3.5	Triaxi	al Test	38
	3.5.1	Isotropic Consolidation Test	42
	3.5.2	Consolidated–Undrained Triaxial	43
		Compression (CU) Test	
3.6	Data A	Analysis	44
RESI	ILT AN	ND DISCUSSION	45
4.1	Introd	uction	45
4.2	Physic	cal Properties Tests	46
	4.2.1	Particle Size Distribution	46
	4.2.2	Atterberg Limits	47
		4.2.2.1 Liquid Limit	47
		4.2.2.2 Plastic Limit	48
	4.2.3	Specific Gravity	48
	4.2.4	Summary of Physical Tests Results	49
4.3	Comp	action Test	50
4.4	Isotro	pic Consolidation Test	51
4.5	Triaxi	al compression Test	.54
	4.5.1	Stress Path and Critical State Line	57
	4.5.2	Critical Void Ratio	62

		4.5.3	Critical State Boundary Surface	64
5	CON	CLUSI	ONS AND RECOMMENDATIONS	66
	5.1	Concl	usions	66
	5.2	Recon	nmendations	67
REFERENC	ES			69
Appendices A	-J			72-113

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Critical state parameters of some soil types	27
3.1	Isotropic consolidation test series	42
3.2	Testing program for normally consolidated samples	43
3.3	Testing program for overconsolidated samples	44
4.1	Particle size distribution test results	46
4.2	Specific Gravity Values	49
4.3	Summary of physical tests results and soil classification	49
4.4	Results from standard (proctor) compaction test	51
4.5	The final critical state parameters	64

LIST OF FIGURES

TITLE

FIGURE NO.

PAGE

1.1	The Graphical Diagram of Coal Ash Generation	2
2.1	The top uses of CCPs in 2008	8
2.2	Grain size distribution curves of fly and	16
	bottom ash mixtures	
2.3	Compaction curves of ash mixtures	18
2.4	Critical state line and stress paths for undrained loading	21
	on normally consolidated clay	
2.5	Plots of triaxial tests results of CU and CD	23
2.6	The critical state boundary surface	24
2.7	Loading and unloading of fly-ash specimen	28
	in Oedometer test	
2.8	Stress path of normally consolidated fly-ash	29
3.1	Flow chart of Methodology	31
3.2	The sieves on the mechanical shaker	33
3.3	Cylinders for hydrometer test	34
3.4	Liquid limit test apparatus	36
3.5	Pycnometer were put in vacuum to remove the air	37
3.6	Standard compaction test apparatus	38
3.7	Triaxial Compression test on progress	39
4.1	Particle size distribution curve	47
4.2	Liquid limit test result	48
4.3	Compaction Curve for standered (proctor) test	50

4.4	Specific volumes versus mean normal effective stress	52
	from isotropic consolidation tests	
4.5	Normal consolidation line	52
4.6	Swelling line	53
4.7	Recompression line from isotropic consolidation tests	54
4.8	Consolidated undrained compression test results	55
	for normally consolidated sample	
4.9	Consolidated undrained compression test results	56
	for over consolidated sample	
4.10	Failure points for CU compression tests on isotropically	57
	consolidated specimens of all stress histories in $q - p'$ spa	ce
4.11	Failure points for CU compression tests on isotropically	59
	consolidated specimens of all stress histories in $v - p^{'}$ spa	nce
4.12	The critical state line in $v - ln p'$ space	59
4.13	Effective stress paths from CU test	60
	of normally consolidated samples in $q - p'$ space	
4.14	Effective stress paths from CU test of over consolidated	61
	samples in $q/p'_e - p'/p'_e$ space	
4.15	Effective stress paths from CU test of NC and OC	62
	samples in $q/p'_e - p'/p'_e$ space	
4.16	Critical voids ratio line from undrained triaxial tests	63
	on Tanjung Bin fly ash: bottom ash mixture	
4.17	Critical state boundary surfaces from CU test	64
	-	

LIST OF SYMBOLS

BS	-	British Standard
C.V.R	-	Critical Void Ratio
CCPs	-	Coal Combustion Products
CSL		Critical State Line
CU	-	Consolidated Undrain
Gs	-	Specific Gravity
LL	-	Liquid Limit
MCC	-	Modified Cam Clay
NCL	-	Normal Consolidation Line
OCR	-	Over Consolidation Ratio
PI	-	Plasticity Index
PL	-	Plastic Limit
RL	-	Recompression Line
SL	-	Swelling Line
USCS	-	Unified Soil Classification System
Wopt	-	Optimum Moisture Content
γd max	-	Maximum Dry Unit Weight
Δu	-	Change of Pore Water Pressure
$\sigma_{3}^{'}$	-	Effective minor principal stresses
$\sigma_{1}^{'}$	-	Effective major principal stresse
q	-	Deviator Stress
p [′]	-	Mean Normal Effective Stress
М	-	The Slope of Critical State Line on The p'-q' Plane
ν	-	Specific volume
Г	-	Intercept of Critical State Line with the v – axis

λ	-	The slope of normal consolidation line in $v - p'$ space
ф 'с	-	Critical Internal Friction Angle
ζ	-	The Slope of Recompression Line on The q-p'-Plane
Ν	-	Intercept of Normal State Line with the v – axis
k	-	The Slope of Swelling Line on The q-p'-Plane
е	-	Void Ratio
Н	-	The Slope of The Hvorslev Surface on The p'-q' Plane
%	-	Percentage
p'c	-	Effective Consolidation Stress
p'e	-	Equivalent Consolidation Pressure
В	-	Pore Pressure Coefficient

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Sieve Analysis Test	72
В	Hydrometer Test	75
С	Liquid Limit Test	81
D	Specific Gravity Test	85
E	Standard Compaction Test	87
F	Apparatus of Triaxial Compression Test	90
G	Sample Preparation	92
Н	Isotropic Consolidation Test	94
Ι	Triaxial Compression Test	96
J	Stress Path	108

CHAPTER 1

INTRODUCTION

1.1 Background

Coal-burning in the process of generating electricity, leads to the production of solid waste such as fly ash, bottom ash, boiler slag and flue gas desulphurization (FGD) materials (Vom Berg, 1998). During combustion in an electric power plant, the first step is crushed the coal, then injected into the boiler furnaces, where the coal is burned. The organic matter in the coal is burned off at once, whereas the incombustible material melting and tends to fuse together to form ash. The coarse particles of the ash is the bottom ash and boiler slag, settles at the bottom of the boiler furnace. Fine particles, is fly ash, remain suspended in the flue gas stream (Kim *et al.*, 2006). Figure 1.1 shows the procedure of generating coal ash in power plants. Electricity is one of the basic inputs required for the development of any country. In India nearly 73% of installed power generation capacity is thermal, of which about 90% is coal-based generation (Singh, 2005). In United States; over onehalf of the electricity is generated by burning coal. The large consumption of coal generates a large volume of coal ash. In the US, the coal-burning power produced last year about 70 million tons of coal more (ACAA, 2008).

Figure 1.1 The Graphical Diagram of Coal Ash Generation (EPA, 2005)

Such wastes are of the major concern for the electric power plants, because they constantly need to expand the areas of solid waste disposal and this leads to increased costs. This problem fast becomes a social problem since the expansion in disposal area may become another environmental problem. EPA(2005) mentioned that the solid wastes include (fly ash, bottom ash, boiler slag and flue gas desulfurization (FGD) have been used in civil engineering applications as structural fills, sheetrock, replacement for Portland cement and as agricultural fertilizer. Fly ash is a fine part of the coal combustion products (CCPs). It has particle sizes ranging between fine silts and fine sands. It is a light weight and self draining material compared to natural soil. Therefore, fly ash has been successfully used as a structural fill material for constructing highway embankments (Chand and Subbarao, 2007).

Bottom ash and boiler slag, are coarse with sizes varying from sand to gravel. They are composed of non-combustible particles and unburned carbon, similar to fly ash. They fall to the bottom of the furnace and are removed as non molten particles (clinkers). The type of by product produced depends on the type of furnace used to burn the coal.

There are many investigations about the properties of separated single types of ash (fly ash or bottom ash), but there are a few studies about the fly ash-bottom ash mixtures with high fly ash contents. Commonly both the production and disposal ratio of fly ash and bottom ash are approximately 80:20 by weight. Therefore, in most cases uses the same percentage of disposed ash with its high content of fly ash to increase the benefit, with less cost and time to finish the project (ACAA, 2001). However Kim *et al.* (2005) tried to analyse the mechanical properties such as compressibility, stiffness, strength, permeability and compaction to samples with different mixture ratios of fly ash and bottom ash (50%, 75%, and 100% fly ash by weight) collected from two power plants in Indiana. They found the coal ash mixture compare favourably with the granular materials. Yoon *et al.* (2009) described the construction and the instrumentation of a demonstration embankment built with an ash mixture (60:40 by weight of fly ash-bottom ash) on State Road 641, Terre Haute, Indiana, USA. They found that this ash mixture can be considered an acceptable embankment construction material.

1.2 Problem Statement

A number of studies had been carried out to determine the engineering properties of the coal ash mixture. An extension of this work is necessary in order to explore further usage of coal ash particularly when mixed together in optimum percentage. The critical state boundary surface of the soil or material is important to identify the limit of stress imposed from various stress level and stress history. Hence, the study aiming at developing a critical state boundary surface for a mixture of 60% by weight of fly ash and 40% of bottom ash is vital. The results could be used as a guideline when working with this coal ash mixture in civil engineering work.

1.3 Objective of the Study

This study is aimed at developing a critical state boundary surface of 60:40 (% by weight) of fly ash-bottom ash mixture. Hence the followings objectives had been formulated:

- 1. To determine the basic characteristics of the coal ash mixture.
- 2. To evaluate the compaction characteristics of coal ash mixture.
- 3. To determine the shear strength parameters for the compacted coal ash mixture of various over consolidation ratio at the critical state condition.
- 4. To produce a critical state boundary surface of coal ash mixture.

1.4 Scope of the Study

This study focuses on the critical state boundary surface of fly ash-bottom ash mixture for the materials taken from Tanjung Bin power plant station, Johor, Malaysia. The mixture used in this study is 60:40 % by weight of fly ash to bottom ash. This study includes determination of the basic characteristics for the coal ash mixture (particle size distribution, specific gravity and Atterberg limit), evaluation of the compaction characteristics (maximum dry density and optimum water content), and the determination of the shear strength parameters for the compacted coal ash mixture of various over consolidation ratio (OCR=1, 2.5, 4, 10) at the critical state condition.

REFERENCES

- ACAA, (2008) .Coal Combustion Product (CCP), published, Alexander, Va: American coal ash association.
- ACAA, (2001). CCP Survey Results. published ,FHWA- 2001.Va:American Coal Ash Association
- ACAA, (2003). Fly Ash Facts for Highway Engineers. FHWA-, 2003.Va :American Coal Ash Association.
- Braja, M.D. (2008). Advaced Soil Mechanics. Third Edition. Taylor and Francis.
- Britto, A. M. and Gunn, M.J. (1987). *Critical Stat Soil Mechanics Via Finite Element*. First Edition .Ellis Horwood Limited.
- Buckley, T. D. and Pflughoeft, D. F. (2007). *Standards and Practices related to the use of coal combustion products*. EERC-12-11, December 2007.pp .9.
- Butalia,T.S., and Wolfe, W.E. (2009). Beneficial Use of Coal Combustion Byproducts in the Rehabilitation of Failed Asphalt Pavements. *International Journal of Environmental Science and Engineering* 1:2 2009.
- Casagrande, A. (1938). Compaction tests and critical density investigations of cohesionless materials for erankan Falls dam. U.S. Engineer corbs. Boston Distric

- Chand, S. K. and Subbarao, (2007). Strength and slake durability of lime stabilized pond ash: *Journal of Materials in Civil Engineering*, ASCE **19** (7) (2007), pp. 601–608.
- Chun,L.B.,Sung,K.J., Sang ,K.T., and Tea,C.S. (2008) A Study on the Fundamental Properties of Concrete Incorporating Pond-Ash in Korea, Korea Institute of Construction Materials.
- Cross, D., Stephens, J. and Vollmer, J. (2006)..*Structures Applications of 100* percent Fly Ash Concrete. Montana State University
- EPA (2005) .Using coal ash in highway construction: A guide to benefits and impacts, United State Environmental Protection Agency, EPA-530 –k-05-002, April 2005.
- Kim, B., Balunaini, U. Prezzi, M. and Salgado, R (2005). Geotechnical Properties of Fly Ash Bottom Ash Mixture for use in Highway Embankments. DOI 10.1061/ (ASCE) 1090-0241(2005)131: 7(914), PP 914.
- Kim, B., Balunaini, U. Prezzi, M., and Salgado, R (2006). Determination of Ash Mixture Properties and Construction of Test Embankment. *Part A*" *FHWA/IN/JTRP*-2006/24, November 2006.
- Lindon, K. A. (2008). Using Coal Fly Ash in Road Construction. UK Quality Ash Association.pp 173-183
- Marto,. A. (1996). Critical State Of Keuper Marl Silt. Jurnal Kej.Awam Jil.9 Bil.2
- RMRC.(2008). User guidelines for byproducts and secondary use materials in pavement constructions. Coal fly ash.
- Schofield, A. and Worth, P. (1968). Critical State Soil Mechanics. First Edition. Mc Graw –Hill Publishing Company Limited.

- Singh, R.N. (2005). Need for fly ash management concern and achievement of NLC in fly ash management. *Journal of Coal Ash Institute of India*, VII, 12–22.
- Smith, I. (2006). Elements of Soil Mechanics. 8th edition. Blackwell Publishing.
- Taylor, D.W. (1948)."Fundamental of soil mechanics" Wiley, new yourk.
- Vom Berg, W.(1998). Utilization of fly ash in Europe. Proc. of Int. Conf. on Fly ash Disposal and Utilization ,vol. I, Central Board of Irrigation and Power, New Delhi, India (1998), pp. 8–14.
- Waseem, M., Prashant A., Chandra, S. (2004). Single Element Test Predictions for Stress-Strain Behavior Of Panki Fly-ASH. Department of Civil Engineering, Indian Institute of Technology Kanpur, India-208016

Whitlow, R. (2001). Basic Soil Mechanics. Fourth edition. pearson Education Ltd.

Yoon, S., Balunaini, U., Yildirim, I.Z., Prezzi, M., and Siddiki, N. Z (2009).
Construction of an Embankment with a Fly and Bottom Ash Mixture. *Journal of Materials in Civil Engineering* : DOI 10.1061/ (ASCE) 0899-1561(2009)21:6(271)