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ABSTRACT – 3D object reconstruction is frequent used in 
various fields such as product design, engineering, medical and 
artistic applications. Numerous reconstruction techniques and 
software were introduced and developed. However, the purpose of 
this paper is to fully integrate an adaptive artificial neural network 
(ANN) based method in reconstructing and representing 3D 
objects. This study explores the ability of neural networks in 
learning through experience when reconstructing an object by 
estimating it’s z-coordinate. Neural networks’ capability in 
representing most classes of 3D objects used in computer graphics 
is also proven. Simple affined transformation is applied on 
different objects using this approach and compared with the real 
objects. The results show that neural network is a promising 
approach for reconstruction and representation of 3D objects. 
 
KEYWORDS – Reconstruction, representation, back 
propagation, multilayer feed-forward neural networks, affined 
transformation, third order polynomial, object space. 
 
 
1 INTRODUCTION 
 

3D reconstruction has turned out to be an essential need 
in areas as diverse as medical imaging and artistic applications, 
product design, reverse engineering and rapid prototyping, among 
others. The manual creation of 3D models is time consuming and 
therefore cost expensive. For that reason, techniques are under 
investigation, which allow the automatic reconstruction of 3D 
objects. Those techniques can be subdivided into two kinds of 
methods, active and passive [Wolfgang Niem and Jochen 
Wingbermuhle 1997]. The disadvantage of the active methods 
(e.g. structured light, laser scanner, laser range maps, and medical 
magnetic resonance) is that the reconstruction process can turn out 
to be a high budget project. Therefore, the presented approach 
belongs to the passive methods which requires less equipment and 
can be applied more generally.  
 

Traditional 3D reconstruction methods do not perform 
well in two senses: 1) they cannot handle the highly complex 
cases found in nature (e.g. human organs or microscopic images 
of tissue), and 2) they do not put the surface data in a form which 
is compact and fit for simulation, visualization or navigation.  

 
 
 
 
 
 
 
 
 
 
 
 
 

In this paper, the multilayer feed-forward neural network 
reconstruction technique is an initial study on the ability of neural 
networks in reconstruction and thus only objects with moderate 
complexity are tested. Besides, 3D object representation using 
neural network is exact, accurate and compact at the same time. 
The above statement is proven by experiments and examples in 
this study. 
 

Generally, the whole reconstruction procedure consists 
of the following steps: image data acquisition whether is 2D or 3D 

 registration and integration algorithm  surface fitting through 
surface representation method  display [Vit Zyka and Radim 
Sara 1997; Inge Soderkvist 1999]. However, in this study, we 
modify the flow as shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 

 
Figure 1: A Proposed 3D Object Reconstruction 
 
Data is taken from 3D object file and not from the 

image. The process of training and learning using back 
propagation neural network is used to estimate the coordinate z 
object (depth object) in the reconstruction process. On the other 
hand, 3D coordinates of simple objects have become the inputs 
for the function in multilayer feed-forward neural network, and 
produces output that indicates either a point in an object space 
belongs to the object or not after training, learning and output 
generation [Emmanouil Piperakis and Itsuo Kumazawa 2001]. 
After representation process, 3D object is displayed using affined 
transformations. Finally, the object is compared with the original 
object from 3D file to prove its accuracy and efficiency using 
neural network. 
 
 
2 OBJECTIVES  
 

This paper is to prove that multilayer feed-forward 
neural networks is capable of reconstruction and representing 
most classes of 3D objects used in computer graphics. Back-
propagation method is used for training multilayer feed-forward 
neural networks. Objects generated by neural network in both 
reconstruction and representation process are displayed in a 
window created using OpenGL. If the result shows that the 
similarity of generated object and original object is very high, 
then it is proved that 3D object reconstruction and representation 
can depend completely on neural network, and at the same time 
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increase the accuracy of object generated with less time 
consuming. 
 
 
3 VARIOUS TYPES OF 3D OBJECT 

RECONSTRUCTION  
 

There are five different cases of 3D reconstruction 
[Anders Heyden 1995]. The first case is where the images are 
taken with uncalibrated camera, making it possible to reconstruct 
the object up to projective transformations. Second, reconstruction 
from calibrated cameras, making it possible to reconstruct the 
object up to similarity transformations, is presented. Third, the 
algebraic properties of the multilinear functions and the ideals 
generated by them are investigated. The forth case uses Euclidean 
reconstruction technique when some information of the cameras 
are given. The final case is reconstruction of one image of an 
object or line drawing, which is known to be piecewise planar.  
 

There are quite a number of reports and papers that 
described the methods for 3D reconstruction from multiple view 
images. However, all these approaches are not suitable for line 
drawing analysis and single view image. Literature of computer 
vision shows techniques for extraction of spatial information from 
images such as shading, lighting, shadowing, perspective, stereo 
and others. However, in this paper, none of the above is discussed 
because inputs data are taken from 3D Studio Max file. 

 
This paper proposed a reconstruction technique using 

multilayer feed-forward neural network. Below are the advantages 
of 3D reconstruction using neural network:  
(a) Neural networks with back-propagation technique are 

able to estimate the depth (z) of an object with higher 
accuracy than other methods. It also means that neural 
networks are able to reconstruct object from 2D image 
to 3D after training.  

 
(b) This type of reconstruction is able to produce more 

points of an object or surface. Therefore neural network 
is able to reconstruct more complex object with 
smoother surface.  

 
(c) Even with scattered or unorganized data of an object is 

provided, neural networks are able to regenerate the 
object when outliers are removed and the smoothness of 
the surface is maintained.  

 
 
4 DISCUSSIONS ON 3D OBJECT  

REPRESENTATION  
 

The representation of 3D objects is a well research area 
of Computer Graphics. The ability to manipulate the shape of an 
existing object depends greatly on the representation. The 
following are some of the most common and important methods 
of representation [Emmanouil Piperakis and Itsuo Kumazawa 
2001]. 
 

First, representation of polygonal objects is 
approximated by a net of mesh or planar polygonal facets. 
Second, bi-cubic parametric patches are ‘curved quadrilaterals’. 
This representation is similar to the polygon mesh, except for the 
fact that the individual polygons have been replaced by curved 

surfaces. Constructive solid geometry (CSG) is another method of 
exact representation to within certain rigid shape limits. CSG 
method is a volumetric representation; elementary volumes or 
primitives represent the shapes. Spatial subdivision techniques 
mean dividing the object space into elementary cubes, known as 
voxels, and labeling each voxel as empty or as containing part of 
an object. Another two types of representation are implicit and 
explicit representation. An implicit function is, for example: x2 + 
y2 + z2 = r2 which is the definition of a sphere. Explicit 
representation is the graph of a function z = f(x, y).  

 
The main comparisons and distinguishing factors 

between the above existing methods are: a) accuracy vs. data size, 
b) continuity vs. discrete representation and c) surface vs. 
volumetric [Emmanouil Piperakis and Itsuo Kumazawa 2001]. 

 
By using voxels and polygon meshes, the number of 

representational elements per object is likely to be high if 
accuracy is to be achieved. However, the complexity of the 
representation is low. On the contrary, in the case of bi-cubic 
patches, the complexity of representation is higher. But, the 
number of elements is seemed to be much lower in most contexts. 
As far as rendering is concerned, it is therefore more efficient to 
represent a shape with many simple elements, like polygons or 
voxels. This is better than represents it with far fewer and more 
accurate but at the same time more complicated elements, such as 
bi-cubic parametric patches. When increasing the polygonal 
resolution, hence the precision of the representation is increased at 
the same time. Nevertheless, the rendering cost is higher than 
usual. 

 
A continuous representation is more accurate. The CSG 

representation is a combination from both discrete and continuous 
function. On the other hand, the object space is labeled according 
to object occupancy, greatly reduces the overall cost of rendering 
if we use volume representation. 

 
Combining the above information, a new implicit 

function for both continuous and discrete volumetric 
representation is introduced. This kind of representation is exact, 
accurate and compact. Only a few of elements are needed to show 
an object representation is achieving accuracy better than that of 
bi-cubic patches. This paper has proven that neural network is 
able to represent any real-world or manually created objects with 
the concept of one function per 3D object.  
 
 
5 ARTIFICIAL MULTILAYER NEURAL 

NETWORKS 
 

Artificial neural network is biologically inspired model, 
based on the functions and structure of biological neurons. A 
neural network consists of numerous computational elements 
(neurons or nodes), highly interconnected to each other. A weight 
is associated to every connection. Normally nodes are arranged 
into layers. A multilayer perceptron is a feedforward neural 
network with one or more hidden layers. Typically, the network 
consists of an input layer of source neurons, at least one hidden 
layer of computational neurons. During a training procedure input 
vectors are presented to the input layer with or without specifying 
the desired output. According to these differences neural networks 
can be classified as supervised or unsupervised (self-organizing). 
Networks can also be classified according to the input values 
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(binary or continuous). The learning procedure contains three 
main steps: the presentation of the input sample, the calculation of 
the output and the modification of the weights by specified 
training rules. These steps are repeated several times, until the 
network is trained [Miklos Hoffmann and Lajos Varady 1998]. A 
multilayer perceptron with two hidden layers is shown in Figure 2 
[Michael Negnevitsky 2002]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Multilayer perceptron with two hidden layers 

 
5.1 BACK-PROPAGATION TECHNIQUE 
 

Back-propagation is, by far, the most commonly used 
method for training multilayer feedforward networks [Emmanouil 
Piperakis and Itsuo Kumazawa 2001]. The term back-propagation 
refers to two different concepts. First, it describes a method for 
calculating the derivatives of the network training error with 
respect to the weights, by use of a clever application of the 
derivative chain-rule. Second, it describes a training algorithm, 
equivalent to gradient descent optimization which uses the 
derivatives from the first part, to adjust the weights in order to 
minimize the error. 
 

Before back-propagation, most networks used 
nondifferentiable hard-limiting binary nonlinearities such as step 
functions, and there were no well knows general methods for 
training multilayer networks. The breakthrough was perhaps not 
so much the application of the chain-rule, but the demonstration 
that layered networks of differentiable nonlinearities could 
perform useful, nontrivial calculations and that they offer 
attractive features such as quick response, fault tolerance and the 
ability to “learn” from examples, as well as some ability to 
generalize beyond the training data.     
 
 
6 METHODOLOGY 
 
6.1 DATA ACQUISITION 
 

Data is obtained from 3D Studio Max file (.3ds file). 
Object in .3ds file is represented using triangular meshes. This is 
due to the statement ‘glBegin (GL_TRIANGLES)’ in the program 
to load 3D object from .3ds file. Number of objects is determined 
to get the vertices value. The entire vertices x, y, z and the vertex 
indices of triangular faces are extracted from .3ds file and 
organized into triangular form based on the format of .3ds file by 
Jim Pitts (1994).  
 

Besides extraction of surface points, the vertex normal 
value for each point is also very important. In the data acquisition 

process, the magnitude and vector of each point is calculated after 
running several functions in the program. Basically, face normals 
are first calculated, and then the average of all the normals around 
each vertex is taken.  This can produce a better approximation for 
that vertex.  
 
6.2 3D RECONSTRUCTION 
 

In this phase, z value is estimated using vertices x and y 
with the aid of multilayer neural network. Object is divided into 
few parts before the z values are generated. As comparison, 
another method for 3D reconstruction which is 3rd order 
polynomial method is introduced. The object generated by neural 
network is compared with original object and also object 
generated using third order polynomial method. 

 
 
6.2.1 3rd ORDER POLYNOMIAL METHOD  
 
 Before the actual test, an initial experiment is conducted 
to get a better understanding of object reconstruction. 3rd order 
polynomial method is used in this experiment to estimate the z 
values for each vertex of a polygon. Below is the equation of 3rd 
order polynomial: 
 

Z = a0 + a1x + a2y + a3x2 + a4y2 + a5xy + a6x3 + a7y3 + a8x2y + 
a9xy2,                                                                     (1) 

where,  

a0 … a9: coefficient values 

z, x, y: vertices object which is z-value, x-value and y-value. 

Procedure to calculate coefficient value a0 until a9 is: 

l = AŶ,                                                                   (2)

where, 

 

     A =                                          , Ŷ =        ,l=   

      
 

Ŷ = (ATA)-1 ATl . 
Inverse metrics for metrics 10 x 10 is obtained using 

Gauss-Jordan Method.  
 
 Results of the study have proved that the 3rd order 
polynomial is able to calculate the coefficient of equation to 
estimate the z values. Besides, the z values for points which are 
not found in the input file can be estimated too. Among the 
disadvantages of this method are extremely high deviation and the 
training data must be the object itself. 
 

 

6.2.2 BACK PROPAGATION ALGORITHM FOR 
FUNCTION APPROXIMATION 

 
In a back-propagation neural network, the learning 

algorithm has two phases. First, a training input pattern is 
presented to the network input layer. The network then propagates 
the input pattern from layer to layer until the output pattern is 

1 x1 y1 
1 x2 y2 
: : : 
1 xn yn 

a0 
a1  
: 
an 

z0 
z1 
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zn 
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generated by the output layer. If this pattern is different from the 
desired output, an error is calculated and then propagated 
backwards through the network from the output layer to the input 
layer. The weights are modified as the error is propagated 
[Michael Negnevitsky 2002]. 

 
As with any other neural network, a back-propagation 

one is determined by the connections between neurons (the 
network’s architecture), the activation function used by the 
neurons, and the learning algorithm (or the learning law) that 
specifies the procedure for adjusting weights. 
 

Below is the back-propagation training algorithm: 
Step 1: Initialization 

Set all the weights and threshold levels of the network 
to random numbers uniformly distributed inside a small 
range (Haykin, 1994): 

 




+




−

ii FF
4.2,4.2  ,  (3) 

where Fi is the total number of inputs of neuron i in the 
network. The weight initialization is done on a neuron-
by-neuron basis. 

Step 2:  Activation 
Activate the back-propagation neural network by 
applying inputs x1 (p), x2 (p)… xn (p) and desired outputs 
yd,1(p),yd,2(p), … , yd,n(p). P is the iteration. 
(a) Calculate the actual outputs of the neurons in 

the hidden layer:  
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(b) Calculate the actual outputs of the neurons in 

the output layer : 
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where m is the number of inputs of neuron k 
in the output layer and w is the weight. 

Step 3: Weight Training 
Update the weights in the back-propagation network 
propagating backward the errors associated with output 
neurons. 
(a) Calculate the error gradient for the neurons in 

the output layer : 
( ) ( ) ( )[ ] ( )pepypyp kkkk ×−×= 1δ  

where 
( ) ( ) ( )pypype kkdk −= ,   

Calculate the weight corrections: 
( ) ( ) ( )ppypw kjjk δα −×=∆  

 Update the weights as the output neurons: 
( ) ( ) ( )pwpwpw jkjkjk ∆+=+1   

(b) Calculate the error gradient for the neurons in 
the hidden layer: 

 

( ) ( ) ( )[ ] ( ) ( )pwppypyp jk

l

k
kjjj ∑

=

××−×=
1

1 δδ

Calculate the weight corrections: 

( ) ( ) ( )ppxpw jiij δα −×=∆  

Update the weights at the hidden neurons: 
( ) ( ) ( )pwpwpw ijijij ∆+=+1  

     
Step 4: Iteration 

Increase iteration p by one, go back to Step 2 and repeat 
the process until the selected error criterion is satisfied. 
 

6.2.3 Training and Output Generation 
  

After the training process, a weight file which contains 
weight, architecture and parameters of the networks is created. 
Following are the inputs and outputs for the networks in both 
training and output generation process. 
 
 X and y coordinates of a clockwise Cartesian system 
are used as inputs for the network. For simplicity, the 3D object is 
scaled so that they belong to the domain of about [-15, 15].  
 
 Meanwhile, z coordinates of original 3D object are 
generated as network output. The entire z values is normalized to 
the domain of [0,1] because the output of neural network is 
always between 0 to 1. The object is separated into two parts 
according to z values before normalize. After training, the z 
values are denormalized again.   
  
 
6.3 3D OBJECT REPRESENTATION 
 

Object in .3ds file is represented in triangular meshes, 
which is also considered as one type of the object representation 
method. However, after the z values are estimated using only the 
x and y values, the object is reconstructed again from polygonal 
representation type to neural network representation. Below are 
the functions needed for neural network representation 
[Emmanouil Piperakis and Itsuo Kumazawa 2001]: 
 
Error Function: 
 The error function measures the cost of differences 
between the network outputs and the desired values. The sum-of-
squares error function (SSE) is a common choice. 

 ( )2∑∑ −=
p i

pipiSSE ydE  (13) 

  
where, 

 P in the above equation indexes the patterns in the 
training set, i indexes the output nodes, and dpi and ypi  are, 
respectively, the target and actual network output for the ith output 
node on the pth  pattern.  
 

The mean-squared-error is defined as: 

 SSEMSE E
NP

E ×
×

=
1

  (14) 
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Sigmoid Function: 
 Sigmoid function, being a bounded, monotonic and 
differentiable function is a standard activation function for back-
propagation networks (Figure 3).  

 
Figure 3: Sigmoid Function 

 
To compute its first derivative an approximation is made using: 

( ) ( )
( ) ( ) ( )( )σσσσ

σ
σ

,1,,'
exp1

1,

xfxfxf
x

xf

−×−=
×−−

=
 (15) 

    
Finally, the weights are updated using equation (18), where ŋ is 
the learning rate parameter. 

 
1)( ipipii fyd ×−−=δ    (16) 

 

( )∑ ××=
k

kkiii wf δδ 1   (17) 

ioldnew ww δη ×−=    (18) 
  
The procedure is repeated until the EMSE is sufficiently small, or a 
predefined number of iteration is reached.  
 
 
6.3.1 Network Inputs  
  

X, y and z coordinates of a clockwise Cartesian system 
are the inputs for the network. For purpose of simplicity and 
generality, we normalize the values of the coordinates to the 
domain of [-1, 1], meaning that x, y, z ε [-1, 1] [Emmanouil 
Piperakis and Itsuo Kumazawa 2001]. This normalization, resizes 
the 3D object to fit inside a cube of edge length equal to 2, is 
placed in a specific location of 3D space, surrounding the 
beginning of the axes in all directions with distance 1. It also has a 
positive effect on the training procedure. This cube is the Object 
Space, meaning at a space within which the 3D object is 
described. 
 
 
6.3.2 Network Outputs 
  

We only have neuron for the network’s output, which is 
whether the point is part of the object or not. Due to the properties 
of the sigmoid function for each neuron is not Boolean value, 
contrary, they lie in [0, 1] range. To convert these values into 
Boolean values, either “yes” (1) or “no” (0), an edge threshold 
value, let’s say is 0.5 is defined. All received values greater than 
this edge threshold value is denoted as Boolean “yes” and the rest 
as “no”. Whenever the “yes” value is received, then we can know 
that the input point with coordinates x, y, z belongs to the 3D 
object. 

6.4 DISPLAY AND AFFINED 
TRANSFORMATION 

 
Simple affined transformation is used in order to prove 

that modeling process of a 3D object can be conducted with the 
aid of neural network. Moreover, this stage is aimed to observe 
the shape of the 3D object for comparison. Rotation function is 
called with statement 'glRotate( )' at x, y and z-axis. Meanwhile, 
translation and scaling processes also carried out using function 
'glTranslate()' and 'glScale( )' respectively. Subsequently, the 
objects are displayed using vertices display function in OpenGL. 

 
 

7 Results Obtained 
 
7.1 Data Acquisition 

 
There are seven data files created ; two files for points 

inside the object, two files for points outside the object, one file 
for vertex normals for all points, another file for vertex indices of 
entire triangular faces and the last file is for the exact points of the 
object.  

 
 

7.2 3D Reconstruction 
 

During the reconstruction process, we found that the 3rd 
Order Polynomial method is unable to estimate the z-value for 
surface object with more than 20 points if only unorganized data 
of an object is given. The calculated z-values are far more 
different from the original z-values. Hence, inaccurate output 
produced. Therefore, we separate out object into 12 and 20 points 
during reconstruction process using 3rd Order Polynomial method. 

  
During experiments, we found that neural network is 

impossible to recognize and estimate z-value if there is more than 
one output z-value for the same vertex x and vertex y. In 
conjunction to it, we separate the object into two parts for 
reconstruction purpose. Next, these two parts are processed 
separately.  

 
The parameters of the networks are shown in table 1. 
 

Table 1: Parameter value of networks 
 

PARAMETER VALUE 
Hidden Layer 1 
Node for Hidden Layer 20 
Momentum Rate 0.01 
Learning Rate 0.9 
Iteration 50000 

 
The outputs are shown in three ways which are the 

neural network reconstruction method, 3rd order polynomial with 
12 points and  3rd order polynomial with 20 points. Figure 4-6 
below shows the results from the mentioned method.  

 
Figure 4 to figure 6 showed the results of reconstruction 

which used every point in an object for training and output 
generation. The results proved that object (B) generated by neural 
network is more accurrate than object generated using 3rd Order 
Polynomial (C and D).  
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Figure 4 : Sphere after reconstruction 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 : Cartoon hand after reconstruction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 : Rocket after reconstruction 

Figure 4-6 :  
A=Original object 
B=Object generated by Neural Network 
C=Object generated by 3rd Order Polynomial (12 Points) 
D=Object generated by 3rd Order Polynomial (20 Points) 

 
Outputs above are created from original object, where 

every point in the original object are trained. Every z-value of the 
object is estimated during output generation process. However, 
neural network has its advantage as it can estimate other z-value 
of the points belongs to the object even only some points of the 
original object are given. To prove this statement, some points of 
the object which can show the object shape are used during the 
training process. The process of output generation will estimate 
the z-value for all the points which only consists of x and y 
coordinates. Figure 7-10 are some of the examples that show both 
the input object for training (A) and output object produced by 
neural networks (B).   
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7 : Rocket after reconstruction 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8 : Sphere after reconstruction 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9 : Torus after reconstruction 
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Figure 10 : Cartoon hand after reconstruction 
 

Figure 7-10 :  
A=Object with fewer points for training 
B=Object generated by Neural Network 
 
 
7.3 3D Representation 
 
7.3.1 Training 

 
In the experiments, we use neural network architecture 

with only 3 layers – one input, one hidden and one output layer. 
The output layer always has one node. The input layer have 6 
nodes, which are the coordinate values x, y, z, x2, y2 and z2. All 
the values are normalized so that x, y, z ∈  [-1, 1]. We found that 
during our experiment the values from 16 to 22 hidden layer 
nodes are sufficient even for objects of higher complexity and 
curvature. Meanwhile, other parameters we used are the same as 
in 3D reconstruction.  

 
Training a network by using surface points is 

inadequate so extra points are required to convert from a surface 
representation to a volumetric form. Therefore, by using a 
heuristic approach, we use normal values of the surface points to 
create 6 to 8 extra points of surfaces.  A distance d is defined and 
the number of extra surfaces of points is chosen. Suppose that P 
(px, py, pz) is a surface point and N (nx, ny, nz) is its normal value 
[Emmanouil Piperakis and Itsuo Kumazawa 2001]. Then the new 
points P1, P2, P3 and P4 are calculated using the following 
equations: 
 
 P1 (px + d * nx, py + d * ny, pz + d * nz)  
 P2 (px + 2* d * nx, py + 2 * d * ny, pz + 2 * d * nz) 
 P3 (px – d * nx, py – d * ny, pz + d * nz) 
 P4 (px – 2* d * nx, py – 2 * d * ny, pz – 2* d * nz),  
                              (19) 
 where d is distance,  

P1 , P2, P3 and P4 are new points for extra surfaces,  
px,py and pz are surface points, 
nx,ny and nz are normal values. 
 

 For each point P on the surface of the object, the 
expected value for the training procedure is set to 0.5. For the 
outside points P1 and P2, the expected value is set to 0.0 and for 
the inside ones P3 and P4, the expected value is set to 1.0. 
 
 
 

7.3.2 Output Generation 
 

 The training result is tested in the specific object space 
which ranges from -1 to 1, with a predefined step. The visual 
result is displayed using a 3D window to draw points when the 
networks output value is greater than the edge threshold value, 
0.5. Simple affine transformations are applied on those objects. 
The results of neural network representation are shown in 
figure 11-14. The original objects represented by triangular 
meshes are already shown in reconstruction part (figure 4-6). 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 11: Torus represented using neural network 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Cat represented using neural network 
 

 
 
 

Figure 13: Mushroom represented using neural network 
 
 
 

 

 
  A B 
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Figure 14: Cartoon hand represented using neural network 
 
 

8 Comparison between Original Object and 
Generated Object 

 
The objects generated using the 3rd order polynomial 

and neural network methods are compared with original objects in 
reconstruction process. Error or deviation of the reconstructed 
objects, which implement 3rd order polynomial, is compared with 
the error appeared for the objects reconstructed by neural 
network. However, the networks’ ability to generalize and 
represent the object more precisely than the 3D objects used in 
training can only be evaluated visually. 
 

Three tables are drawn to show the differences between 
original z-values and estimated z-values using three criterions 
which are sum, average and standard deviation .  Table 2-4 shows 
the calculated values as comparison. The result proves that 3D 
reconstruction using neural network is more accurate and compact 
than using the 3rd order polynomial. Besides, the 3rd order 
polynomial method is unable to generate object with more than 20 
points once.  

 
Table 2: Comparison between original object and object generated 

by neural networks. 
 

Object Total 
Point 

Standard 
Deviation 

Sum of 
Differences 

Average of 
Differences 

Sphere 266 0.0745 25.6415 0.0964 
Torus 309 0.2342 59.9357 0.1939 
Mushroom 226 1.0345 172.6624 0.7639 
Hand 307 0.3703 113.6136 0.3701 
Rocket 260 0.6933 238.5729 0.9176 

 
Table 3: Comparison between original object and object generated 

by 3rd Order Polynomial (12 points). 
 

Object Total 
Point 

Standard 
Deviation 

Sum of 
Differences 

Average of 
Differences 

Sphere 266 0.3460 25.2382 0.0949 
Torus 309 0.7935 88.6878 0.2870 
Mushroom 226 0.9532 115.0811 0.5092 
Hand 307 0.7173 98.7630 0.3217 
Rocket 260 2.0355 339.9537 1.2959 

 
 
 
 

Table 4: Comparison between original object and object generated 
by 3rd Order Polynomial (20 points). 

 
Object Total 

Point 
Standard 
Deviation 

Sum of 
Differences 

Average of 
Differences 

Sphere 266 0.4451 51.1655 0.1924 
Torus 309 0.8813 156.1833 0.5054 
Mushroom 226 2.9712 375.0419 1.6595 
Hand 307 0.6278 222.3982 0.7244 
Rocket 260 1.0960 230.7018 0.8873 

 
 

9 Conclusion 
 

The reconstruction of 3D objects in 3D graphics 
systems using neural networks is an interesting subject for 
research. The applications of neural network representation are 
many, such as: Computer Vision and Error Detection based on 
neural network matching, Generation of 3D data for computer 
aided design, Databases of 3D objects for fast querying and 
finally 3D reconstruction. The goal of this paper is to prove that 
the process of reconstruction and representation of 3D object can 
depend completely on multilayer feed-forward neural network. 
The results show that object reconstructed by neural network is 
more accurate than object generated by 3rd order polynomial, 
while object represented by neural network is more exact, 
accurate and compact at the same time. Thus, the goal of this 
paper is achieved and this will be a basic step for a series of new 
ideas that should be explored in future.  
 

On the other hand, research on reconstruction of 3D 
object is beneficial and is capable of bringing plenty of 
advantages for human being especially in medical realm. 
Conversion of images from 2D to 3D has facilitated the diagnosis 
process for doctors. Furthermore, viruses and tomography, which 
are complex objects, would also necessitate the reconstruction 
with estimation in order to simplify the declaration and 
recognition processes of researchers. 
 

In relation to that, further research on 3D object 
reconstruction with the aid of neural network especially in 
medical field is highly recognized and expected as one the 
continuous effort of this project in the field of reverse 
engineering. 
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