
Copyright © 2004 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

© 2004 ACM 1-58113-883-0/04/0006 $5.00

Data
Acquisition

Neural
Network

Reconstruction

Neural
Network 3D

Object
Representation

Display and Affined
Transformation of

Object

Compare with
Original Object

3D Object Reconstruction and Representation Using Neural Networks

Lim Wen Peng1 and Siti Mariyam Shamsuddin2
Department of Graphics and Multimedia,

Faculty of Computer Science and Information System, University Technology of Malaysia
wen_peng@yahoo.com1, mariyam@fsksm.utm.my2

ABSTRACT – 3D object reconstruction is frequent used in
various fields such as product design, engineering, medical and
artistic applications. Numerous reconstruction techniques and
software were introduced and developed. However, the purpose of
this paper is to fully integrate an adaptive artificial neural network
(ANN) based method in reconstructing and representing 3D
objects. This study explores the ability of neural networks in
learning through experience when reconstructing an object by
estimating it’s z-coordinate. Neural networks’ capability in
representing most classes of 3D objects used in computer graphics
is also proven. Simple affined transformation is applied on
different objects using this approach and compared with the real
objects. The results show that neural network is a promising
approach for reconstruction and representation of 3D objects.

KEYWORDS – Reconstruction, representation, back
propagation, multilayer feed-forward neural networks, affined
transformation, third order polynomial, object space.

1 INTRODUCTION

3D reconstruction has turned out to be an essential need
in areas as diverse as medical imaging and artistic applications,
product design, reverse engineering and rapid prototyping, among
others. The manual creation of 3D models is time consuming and
therefore cost expensive. For that reason, techniques are under
investigation, which allow the automatic reconstruction of 3D
objects. Those techniques can be subdivided into two kinds of
methods, active and passive [Wolfgang Niem and Jochen
Wingbermuhle 1997]. The disadvantage of the active methods
(e.g. structured light, laser scanner, laser range maps, and medical
magnetic resonance) is that the reconstruction process can turn out
to be a high budget project. Therefore, the presented approach
belongs to the passive methods which requires less equipment and
can be applied more generally.

Traditional 3D reconstruction methods do not perform
well in two senses: 1) they cannot handle the highly complex
cases found in nature (e.g. human organs or microscopic images
of tissue), and 2) they do not put the surface data in a form which
is compact and fit for simulation, visualization or navigation.

In this paper, the multilayer feed-forward neural network
reconstruction technique is an initial study on the ability of neural
networks in reconstruction and thus only objects with moderate
complexity are tested. Besides, 3D object representation using
neural network is exact, accurate and compact at the same time.
The above statement is proven by experiments and examples in
this study.

Generally, the whole reconstruction procedure consists
of the following steps: image data acquisition whether is 2D or 3D

 registration and integration algorithm surface fitting through
surface representation method display [Vit Zyka and Radim
Sara 1997; Inge Soderkvist 1999]. However, in this study, we
modify the flow as shown in Figure 1.

Figure 1: A Proposed 3D Object Reconstruction

Data is taken from 3D object file and not from the

image. The process of training and learning using back
propagation neural network is used to estimate the coordinate z
object (depth object) in the reconstruction process. On the other
hand, 3D coordinates of simple objects have become the inputs
for the function in multilayer feed-forward neural network, and
produces output that indicates either a point in an object space
belongs to the object or not after training, learning and output
generation [Emmanouil Piperakis and Itsuo Kumazawa 2001].
After representation process, 3D object is displayed using affined
transformations. Finally, the object is compared with the original
object from 3D file to prove its accuracy and efficiency using
neural network.

2 OBJECTIVES

This paper is to prove that multilayer feed-forward
neural networks is capable of reconstruction and representing
most classes of 3D objects used in computer graphics. Back-
propagation method is used for training multilayer feed-forward
neural networks. Objects generated by neural network in both
reconstruction and representation process are displayed in a
window created using OpenGL. If the result shows that the
similarity of generated object and original object is very high,
then it is proved that 3D object reconstruction and representation
can depend completely on neural network, and at the same time

139

increase the accuracy of object generated with less time
consuming.

3 VARIOUS TYPES OF 3D OBJECT

RECONSTRUCTION

There are five different cases of 3D reconstruction
[Anders Heyden 1995]. The first case is where the images are
taken with uncalibrated camera, making it possible to reconstruct
the object up to projective transformations. Second, reconstruction
from calibrated cameras, making it possible to reconstruct the
object up to similarity transformations, is presented. Third, the
algebraic properties of the multilinear functions and the ideals
generated by them are investigated. The forth case uses Euclidean
reconstruction technique when some information of the cameras
are given. The final case is reconstruction of one image of an
object or line drawing, which is known to be piecewise planar.

There are quite a number of reports and papers that
described the methods for 3D reconstruction from multiple view
images. However, all these approaches are not suitable for line
drawing analysis and single view image. Literature of computer
vision shows techniques for extraction of spatial information from
images such as shading, lighting, shadowing, perspective, stereo
and others. However, in this paper, none of the above is discussed
because inputs data are taken from 3D Studio Max file.

This paper proposed a reconstruction technique using

multilayer feed-forward neural network. Below are the advantages
of 3D reconstruction using neural network:
(a) Neural networks with back-propagation technique are

able to estimate the depth (z) of an object with higher
accuracy than other methods. It also means that neural
networks are able to reconstruct object from 2D image
to 3D after training.

(b) This type of reconstruction is able to produce more

points of an object or surface. Therefore neural network
is able to reconstruct more complex object with
smoother surface.

(c) Even with scattered or unorganized data of an object is

provided, neural networks are able to regenerate the
object when outliers are removed and the smoothness of
the surface is maintained.

4 DISCUSSIONS ON 3D OBJECT

REPRESENTATION

The representation of 3D objects is a well research area
of Computer Graphics. The ability to manipulate the shape of an
existing object depends greatly on the representation. The
following are some of the most common and important methods
of representation [Emmanouil Piperakis and Itsuo Kumazawa
2001].

First, representation of polygonal objects is
approximated by a net of mesh or planar polygonal facets.
Second, bi-cubic parametric patches are ‘curved quadrilaterals’.
This representation is similar to the polygon mesh, except for the
fact that the individual polygons have been replaced by curved

surfaces. Constructive solid geometry (CSG) is another method of
exact representation to within certain rigid shape limits. CSG
method is a volumetric representation; elementary volumes or
primitives represent the shapes. Spatial subdivision techniques
mean dividing the object space into elementary cubes, known as
voxels, and labeling each voxel as empty or as containing part of
an object. Another two types of representation are implicit and
explicit representation. An implicit function is, for example: x2 +
y2 + z2 = r2 which is the definition of a sphere. Explicit
representation is the graph of a function z = f(x, y).

The main comparisons and distinguishing factors

between the above existing methods are: a) accuracy vs. data size,
b) continuity vs. discrete representation and c) surface vs.
volumetric [Emmanouil Piperakis and Itsuo Kumazawa 2001].

By using voxels and polygon meshes, the number of

representational elements per object is likely to be high if
accuracy is to be achieved. However, the complexity of the
representation is low. On the contrary, in the case of bi-cubic
patches, the complexity of representation is higher. But, the
number of elements is seemed to be much lower in most contexts.
As far as rendering is concerned, it is therefore more efficient to
represent a shape with many simple elements, like polygons or
voxels. This is better than represents it with far fewer and more
accurate but at the same time more complicated elements, such as
bi-cubic parametric patches. When increasing the polygonal
resolution, hence the precision of the representation is increased at
the same time. Nevertheless, the rendering cost is higher than
usual.

A continuous representation is more accurate. The CSG

representation is a combination from both discrete and continuous
function. On the other hand, the object space is labeled according
to object occupancy, greatly reduces the overall cost of rendering
if we use volume representation.

Combining the above information, a new implicit

function for both continuous and discrete volumetric
representation is introduced. This kind of representation is exact,
accurate and compact. Only a few of elements are needed to show
an object representation is achieving accuracy better than that of
bi-cubic patches. This paper has proven that neural network is
able to represent any real-world or manually created objects with
the concept of one function per 3D object.

5 ARTIFICIAL MULTILAYER NEURAL

NETWORKS

Artificial neural network is biologically inspired model,
based on the functions and structure of biological neurons. A
neural network consists of numerous computational elements
(neurons or nodes), highly interconnected to each other. A weight
is associated to every connection. Normally nodes are arranged
into layers. A multilayer perceptron is a feedforward neural
network with one or more hidden layers. Typically, the network
consists of an input layer of source neurons, at least one hidden
layer of computational neurons. During a training procedure input
vectors are presented to the input layer with or without specifying
the desired output. According to these differences neural networks
can be classified as supervised or unsupervised (self-organizing).
Networks can also be classified according to the input values

140

Output
Layer

Second
Hidden
Layer

First
Hidden
Layer

Input
Layer

Input
Signal

Output
Signal

(binary or continuous). The learning procedure contains three
main steps: the presentation of the input sample, the calculation of
the output and the modification of the weights by specified
training rules. These steps are repeated several times, until the
network is trained [Miklos Hoffmann and Lajos Varady 1998]. A
multilayer perceptron with two hidden layers is shown in Figure 2
[Michael Negnevitsky 2002].

Figure 2: Multilayer perceptron with two hidden layers

5.1 BACK-PROPAGATION TECHNIQUE

Back-propagation is, by far, the most commonly used
method for training multilayer feedforward networks [Emmanouil
Piperakis and Itsuo Kumazawa 2001]. The term back-propagation
refers to two different concepts. First, it describes a method for
calculating the derivatives of the network training error with
respect to the weights, by use of a clever application of the
derivative chain-rule. Second, it describes a training algorithm,
equivalent to gradient descent optimization which uses the
derivatives from the first part, to adjust the weights in order to
minimize the error.

Before back-propagation, most networks used
nondifferentiable hard-limiting binary nonlinearities such as step
functions, and there were no well knows general methods for
training multilayer networks. The breakthrough was perhaps not
so much the application of the chain-rule, but the demonstration
that layered networks of differentiable nonlinearities could
perform useful, nontrivial calculations and that they offer
attractive features such as quick response, fault tolerance and the
ability to “learn” from examples, as well as some ability to
generalize beyond the training data.

6 METHODOLOGY

6.1 DATA ACQUISITION

Data is obtained from 3D Studio Max file (.3ds file).
Object in .3ds file is represented using triangular meshes. This is
due to the statement ‘glBegin (GL_TRIANGLES)’ in the program
to load 3D object from .3ds file. Number of objects is determined
to get the vertices value. The entire vertices x, y, z and the vertex
indices of triangular faces are extracted from .3ds file and
organized into triangular form based on the format of .3ds file by
Jim Pitts (1994).

Besides extraction of surface points, the vertex normal
value for each point is also very important. In the data acquisition

process, the magnitude and vector of each point is calculated after
running several functions in the program. Basically, face normals
are first calculated, and then the average of all the normals around
each vertex is taken. This can produce a better approximation for
that vertex.

6.2 3D RECONSTRUCTION

In this phase, z value is estimated using vertices x and y
with the aid of multilayer neural network. Object is divided into
few parts before the z values are generated. As comparison,
another method for 3D reconstruction which is 3rd order
polynomial method is introduced. The object generated by neural
network is compared with original object and also object
generated using third order polynomial method.

6.2.1 3rd ORDER POLYNOMIAL METHOD

 Before the actual test, an initial experiment is conducted
to get a better understanding of object reconstruction. 3rd order
polynomial method is used in this experiment to estimate the z
values for each vertex of a polygon. Below is the equation of 3rd
order polynomial:

Z = a0 + a1x + a2y + a3x2 + a4y2 + a5xy + a6x3 + a7y3 + a8x2y +
a9xy2, (1)

where,

a0 … a9: coefficient values

z, x, y: vertices object which is z-value, x-value and y-value.

Procedure to calculate coefficient value a0 until a9 is:

l = AŶ, (2)

where,

 A = , Ŷ = ,l=

Ŷ = (ATA)-1 ATl .
Inverse metrics for metrics 10 x 10 is obtained using

Gauss-Jordan Method.

 Results of the study have proved that the 3rd order
polynomial is able to calculate the coefficient of equation to
estimate the z values. Besides, the z values for points which are
not found in the input file can be estimated too. Among the
disadvantages of this method are extremely high deviation and the
training data must be the object itself.

6.2.2 BACK PROPAGATION ALGORITHM FOR
FUNCTION APPROXIMATION

In a back-propagation neural network, the learning

algorithm has two phases. First, a training input pattern is
presented to the network input layer. The network then propagates
the input pattern from layer to layer until the output pattern is

1 x1 y1
1 x2 y2
: : :
1 xn yn

a0
a1
:
an

z0
z1
:
zn

141

generated by the output layer. If this pattern is different from the
desired output, an error is calculated and then propagated
backwards through the network from the output layer to the input
layer. The weights are modified as the error is propagated
[Michael Negnevitsky 2002].

As with any other neural network, a back-propagation

one is determined by the connections between neurons (the
network’s architecture), the activation function used by the
neurons, and the learning algorithm (or the learning law) that
specifies the procedure for adjusting weights.

Below is the back-propagation training algorithm:
Step 1: Initialization

Set all the weights and threshold levels of the network
to random numbers uniformly distributed inside a small
range (Haykin, 1994):





+




−

ii FF
4.2,4.2 , (3)

where Fi is the total number of inputs of neuron i in the
network. The weight initialization is done on a neuron-
by-neuron basis.

Step 2: Activation
Activate the back-propagation neural network by
applying inputs x1 (p), x2 (p)… xn (p) and desired outputs
yd,1(p),yd,2(p), … , yd,n(p). P is the iteration.
(a) Calculate the actual outputs of the neurons in

the hidden layer:

() () 



−




+= ∑

=
j

n

i
ijij pwpxsigmoidpy θ)(

1

(b) Calculate the actual outputs of the neurons in

the output layer :

 () ()





−




+= ∑

=
k

n

j
jkjkk pwpxsigmoidpy θ)(

1

where m is the number of inputs of neuron k
in the output layer and w is the weight.

Step 3: Weight Training
Update the weights in the back-propagation network
propagating backward the errors associated with output
neurons.
(a) Calculate the error gradient for the neurons in

the output layer :
() () ()[] ()pepypyp kkkk ×−×= 1δ

where
() () ()pypype kkdk −= ,

Calculate the weight corrections:
() () ()ppypw kjjk δα −×=∆

 Update the weights as the output neurons:
() () ()pwpwpw jkjkjk ∆+=+1

(b) Calculate the error gradient for the neurons in
the hidden layer:

() () ()[] () ()pwppypyp jk

l

k
kjjj ∑

=

××−×=
1

1 δδ

Calculate the weight corrections:

() () ()ppxpw jiij δα −×=∆

Update the weights at the hidden neurons:
() () ()pwpwpw ijijij ∆+=+1

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and repeat
the process until the selected error criterion is satisfied.

6.2.3 Training and Output Generation

After the training process, a weight file which contains
weight, architecture and parameters of the networks is created.
Following are the inputs and outputs for the networks in both
training and output generation process.

 X and y coordinates of a clockwise Cartesian system
are used as inputs for the network. For simplicity, the 3D object is
scaled so that they belong to the domain of about [-15, 15].

 Meanwhile, z coordinates of original 3D object are
generated as network output. The entire z values is normalized to
the domain of [0,1] because the output of neural network is
always between 0 to 1. The object is separated into two parts
according to z values before normalize. After training, the z
values are denormalized again.

6.3 3D OBJECT REPRESENTATION

Object in .3ds file is represented in triangular meshes,
which is also considered as one type of the object representation
method. However, after the z values are estimated using only the
x and y values, the object is reconstructed again from polygonal
representation type to neural network representation. Below are
the functions needed for neural network representation
[Emmanouil Piperakis and Itsuo Kumazawa 2001]:

Error Function:
 The error function measures the cost of differences
between the network outputs and the desired values. The sum-of-
squares error function (SSE) is a common choice.

 ()2∑∑ −=
p i

pipiSSE ydE (13)

where,

 P in the above equation indexes the patterns in the
training set, i indexes the output nodes, and dpi and ypi are,
respectively, the target and actual network output for the ith output
node on the pth pattern.

The mean-squared-error is defined as:

 SSEMSE E
NP

E ×
×

=
1

 (14)

(9)

(12)

(4)

(5)

(6)

(7)

(8)

(10)

(11)

142

Sigmoid Function:
 Sigmoid function, being a bounded, monotonic and
differentiable function is a standard activation function for back-
propagation networks (Figure 3).

Figure 3: Sigmoid Function

To compute its first derivative an approximation is made using:

() ()
() () ()()σσσσ

σ
σ

,1,,'
exp1

1,

xfxfxf
x

xf

−×−=
×−−

=
 (15)

Finally, the weights are updated using equation (18), where ŋ is
the learning rate parameter.

1)(ipipii fyd ×−−=δ (16)

()∑ ××=
k

kkiii wf δδ 1 (17)

ioldnew ww δη ×−= (18)

The procedure is repeated until the EMSE is sufficiently small, or a
predefined number of iteration is reached.

6.3.1 Network Inputs

X, y and z coordinates of a clockwise Cartesian system
are the inputs for the network. For purpose of simplicity and
generality, we normalize the values of the coordinates to the
domain of [-1, 1], meaning that x, y, z ε [-1, 1] [Emmanouil
Piperakis and Itsuo Kumazawa 2001]. This normalization, resizes
the 3D object to fit inside a cube of edge length equal to 2, is
placed in a specific location of 3D space, surrounding the
beginning of the axes in all directions with distance 1. It also has a
positive effect on the training procedure. This cube is the Object
Space, meaning at a space within which the 3D object is
described.

6.3.2 Network Outputs

We only have neuron for the network’s output, which is
whether the point is part of the object or not. Due to the properties
of the sigmoid function for each neuron is not Boolean value,
contrary, they lie in [0, 1] range. To convert these values into
Boolean values, either “yes” (1) or “no” (0), an edge threshold
value, let’s say is 0.5 is defined. All received values greater than
this edge threshold value is denoted as Boolean “yes” and the rest
as “no”. Whenever the “yes” value is received, then we can know
that the input point with coordinates x, y, z belongs to the 3D
object.

6.4 DISPLAY AND AFFINED
TRANSFORMATION

Simple affined transformation is used in order to prove

that modeling process of a 3D object can be conducted with the
aid of neural network. Moreover, this stage is aimed to observe
the shape of the 3D object for comparison. Rotation function is
called with statement 'glRotate()' at x, y and z-axis. Meanwhile,
translation and scaling processes also carried out using function
'glTranslate()' and 'glScale()' respectively. Subsequently, the
objects are displayed using vertices display function in OpenGL.

7 Results Obtained

7.1 Data Acquisition

There are seven data files created ; two files for points

inside the object, two files for points outside the object, one file
for vertex normals for all points, another file for vertex indices of
entire triangular faces and the last file is for the exact points of the
object.

7.2 3D Reconstruction

During the reconstruction process, we found that the 3rd
Order Polynomial method is unable to estimate the z-value for
surface object with more than 20 points if only unorganized data
of an object is given. The calculated z-values are far more
different from the original z-values. Hence, inaccurate output
produced. Therefore, we separate out object into 12 and 20 points
during reconstruction process using 3rd Order Polynomial method.

During experiments, we found that neural network is

impossible to recognize and estimate z-value if there is more than
one output z-value for the same vertex x and vertex y. In
conjunction to it, we separate the object into two parts for
reconstruction purpose. Next, these two parts are processed
separately.

The parameters of the networks are shown in table 1.

Table 1: Parameter value of networks

PARAMETER VALUE
Hidden Layer 1
Node for Hidden Layer 20
Momentum Rate 0.01
Learning Rate 0.9
Iteration 50000

The outputs are shown in three ways which are the

neural network reconstruction method, 3rd order polynomial with
12 points and 3rd order polynomial with 20 points. Figure 4-6
below shows the results from the mentioned method.

Figure 4 to figure 6 showed the results of reconstruction

which used every point in an object for training and output
generation. The results proved that object (B) generated by neural
network is more accurrate than object generated using 3rd Order
Polynomial (C and D).

143

Figure 4 : Sphere after reconstruction

Figure 5 : Cartoon hand after reconstruction

Figure 6 : Rocket after reconstruction

Figure 4-6 :
A=Original object
B=Object generated by Neural Network
C=Object generated by 3rd Order Polynomial (12 Points)
D=Object generated by 3rd Order Polynomial (20 Points)

Outputs above are created from original object, where

every point in the original object are trained. Every z-value of the
object is estimated during output generation process. However,
neural network has its advantage as it can estimate other z-value
of the points belongs to the object even only some points of the
original object are given. To prove this statement, some points of
the object which can show the object shape are used during the
training process. The process of output generation will estimate
the z-value for all the points which only consists of x and y
coordinates. Figure 7-10 are some of the examples that show both
the input object for training (A) and output object produced by
neural networks (B).

Figure 7 : Rocket after reconstruction

Figure 8 : Sphere after reconstruction

Figure 9 : Torus after reconstruction

A B

C D

A B

C D

C D

A B

A

A

A

B

B

B

144

Figure 10 : Cartoon hand after reconstruction

Figure 7-10 :
A=Object with fewer points for training
B=Object generated by Neural Network

7.3 3D Representation

7.3.1 Training

In the experiments, we use neural network architecture

with only 3 layers – one input, one hidden and one output layer.
The output layer always has one node. The input layer have 6
nodes, which are the coordinate values x, y, z, x2, y2 and z2. All
the values are normalized so that x, y, z ∈ [-1, 1]. We found that
during our experiment the values from 16 to 22 hidden layer
nodes are sufficient even for objects of higher complexity and
curvature. Meanwhile, other parameters we used are the same as
in 3D reconstruction.

Training a network by using surface points is

inadequate so extra points are required to convert from a surface
representation to a volumetric form. Therefore, by using a
heuristic approach, we use normal values of the surface points to
create 6 to 8 extra points of surfaces. A distance d is defined and
the number of extra surfaces of points is chosen. Suppose that P
(px, py, pz) is a surface point and N (nx, ny, nz) is its normal value
[Emmanouil Piperakis and Itsuo Kumazawa 2001]. Then the new
points P1, P2, P3 and P4 are calculated using the following
equations:

 P1 (px + d * nx, py + d * ny, pz + d * nz)
 P2 (px + 2* d * nx, py + 2 * d * ny, pz + 2 * d * nz)
 P3 (px – d * nx, py – d * ny, pz + d * nz)
 P4 (px – 2* d * nx, py – 2 * d * ny, pz – 2* d * nz),
 (19)
 where d is distance,

P1 , P2, P3 and P4 are new points for extra surfaces,
px,py and pz are surface points,
nx,ny and nz are normal values.

 For each point P on the surface of the object, the
expected value for the training procedure is set to 0.5. For the
outside points P1 and P2, the expected value is set to 0.0 and for
the inside ones P3 and P4, the expected value is set to 1.0.

7.3.2 Output Generation

 The training result is tested in the specific object space
which ranges from -1 to 1, with a predefined step. The visual
result is displayed using a 3D window to draw points when the
networks output value is greater than the edge threshold value,
0.5. Simple affine transformations are applied on those objects.
The results of neural network representation are shown in
figure 11-14. The original objects represented by triangular
meshes are already shown in reconstruction part (figure 4-6).

Figure 11: Torus represented using neural network

Figure 12: Cat represented using neural network

Figure 13: Mushroom represented using neural network

 A B

145

Figure 14: Cartoon hand represented using neural network

8 Comparison between Original Object and
Generated Object

The objects generated using the 3rd order polynomial

and neural network methods are compared with original objects in
reconstruction process. Error or deviation of the reconstructed
objects, which implement 3rd order polynomial, is compared with
the error appeared for the objects reconstructed by neural
network. However, the networks’ ability to generalize and
represent the object more precisely than the 3D objects used in
training can only be evaluated visually.

Three tables are drawn to show the differences between
original z-values and estimated z-values using three criterions
which are sum, average and standard deviation . Table 2-4 shows
the calculated values as comparison. The result proves that 3D
reconstruction using neural network is more accurate and compact
than using the 3rd order polynomial. Besides, the 3rd order
polynomial method is unable to generate object with more than 20
points once.

Table 2: Comparison between original object and object generated

by neural networks.

Object Total
Point

Standard
Deviation

Sum of
Differences

Average of
Differences

Sphere 266 0.0745 25.6415 0.0964
Torus 309 0.2342 59.9357 0.1939
Mushroom 226 1.0345 172.6624 0.7639
Hand 307 0.3703 113.6136 0.3701
Rocket 260 0.6933 238.5729 0.9176

Table 3: Comparison between original object and object generated

by 3rd Order Polynomial (12 points).

Object Total
Point

Standard
Deviation

Sum of
Differences

Average of
Differences

Sphere 266 0.3460 25.2382 0.0949
Torus 309 0.7935 88.6878 0.2870
Mushroom 226 0.9532 115.0811 0.5092
Hand 307 0.7173 98.7630 0.3217
Rocket 260 2.0355 339.9537 1.2959

Table 4: Comparison between original object and object generated
by 3rd Order Polynomial (20 points).

Object Total

Point
Standard
Deviation

Sum of
Differences

Average of
Differences

Sphere 266 0.4451 51.1655 0.1924
Torus 309 0.8813 156.1833 0.5054
Mushroom 226 2.9712 375.0419 1.6595
Hand 307 0.6278 222.3982 0.7244
Rocket 260 1.0960 230.7018 0.8873

9 Conclusion

The reconstruction of 3D objects in 3D graphics
systems using neural networks is an interesting subject for
research. The applications of neural network representation are
many, such as: Computer Vision and Error Detection based on
neural network matching, Generation of 3D data for computer
aided design, Databases of 3D objects for fast querying and
finally 3D reconstruction. The goal of this paper is to prove that
the process of reconstruction and representation of 3D object can
depend completely on multilayer feed-forward neural network.
The results show that object reconstructed by neural network is
more accurate than object generated by 3rd order polynomial,
while object represented by neural network is more exact,
accurate and compact at the same time. Thus, the goal of this
paper is achieved and this will be a basic step for a series of new
ideas that should be explored in future.

On the other hand, research on reconstruction of 3D
object is beneficial and is capable of bringing plenty of
advantages for human being especially in medical realm.
Conversion of images from 2D to 3D has facilitated the diagnosis
process for doctors. Furthermore, viruses and tomography, which
are complex objects, would also necessitate the reconstruction
with estimation in order to simplify the declaration and
recognition processes of researchers.

In relation to that, further research on 3D object
reconstruction with the aid of neural network especially in
medical field is highly recognized and expected as one the
continuous effort of this project in the field of reverse
engineering.

Acknowledgements

The authors are heartiestly appreciate Ministry of
Science and Technology(MOSTE) for the IRPA grant and
Research Management Center(RMC), University of Technology
Malaysia for the support in making this project a success.

References

MICHAEL JUSCHKE. 1996. True Colour Holography. Deg Thesis,
Department of Electrical and Electronic Engineering: University of
Western Australia.

146

WOLFGANG NIEM, JOCHEN WINGBERMUHLE. 1997. Automatic
Reconstruction of 3D Objects Using a Mobile Monoscopic Camera. In
Proceedings of the International Conference on Recent Advances in 3D
Imaging and Modelling",Ottawa, Canada

VIT ZYKA, RADIM SARA. 1997. Scale Model Refinement For 3D
Reconstruction. Center of Machine Perception: Czech Technical
University.

RUIZ, OSCAR EDUARDO, CADAVID, CARLOS ALBERTO,
MIGUEL. 2001. Evaluation of 2D Shape Likeness for Surface
Reconstruction. XIII International Congress on Graphics Engineering.

MICHAEL NEGNEVITSKY. 2002. Artificial Intelligence. A Guide to
Intelligent Systems. Pearson Education Limited 2002, England, 164-178.

YING WU. 2001. An Introduction to ECE510 Computer Vision.
Electrical and Computer Engineering: Northwestern University, Evanston.

INGE SODERKVIST. 1999. Introductory Overview of Surface
Reconstruction Methods.” Department of Mathematics: Lulea University,
Sweden.

EMMANOUIL PIPERAKIS, ITSUO KUMAZAWA. 2001. Affine
Transformations of 3D Objects Represented with Neural Networks. 3-D
Digital Imaging and Modeling,Proceedings. 213-223.

HOD LIPSON, MOSHE SHPITALNI. 2001. Correlation-Based
Reconstruction of a 3D Object from a Single Freehand Sketch. Cornell
University, University of Michigan, USA.

VOLKER KRUGER, GERALD SOMMER. 2000. Gabor Wavelet
Networks for Object Representation and Face Recognition. Kiel,
Germany.

GARY BRADSKI, STEPHEN GROSSBERG. 1995. Fast Learning
VIEWNET Architectures for Recognizing 3D Objects from Multiple 2D
Views. Neural Networks Special Issue on Automatic Target Recognition.

YOSHIHIRO KAWAI, TOSHIO UESHIBA, TAKASHI YOSHIMI,
MASAKI OSHIMA. 1992 Reconstruction of 3D Objects by Integration of
Multiple Range Data. Japan.

JOSE GASPAR, ETIENNE GROSSMANN, JOSE SANTOS-VICTOR.
2001. INTERACTIVE RECONSTRUCTION FROM AN
OMNIDIRECTIONAL IMAGE. 9th International Symposium on
Intelligent Robotic Systems.

ANDERS HEYDEN. 1995. Geometry and Algebra of Multiple Projective
Transformations. Dept of Mathematics, Lund University, Sweden.

MIKLOS HOFFMANN, LAJOS VARADY. 1998. Free-form Surfaces
for Scattered Data by Neural Networks. Journal for Geometry and
Graphics. Vol.2. 1-6.

JOARDER KAMRUZZAMAN, S.M.AZIZ. 2002. A Note on Activation
Function in Multilayer Feedforward Learning. Monash University,
University of South Australia, Australia.

CS. SZEPESVARI, A. LORINCZ. 1994. Self-Organized Learning of 3
Dimensions. Hungary.

TOHRU NITTA. 1994. Generalization Ability of the Three-Dimensional
Back-Propagation Network. Ibaraki, Japan.

AC EVANS, NA THACKER, JEW MAYHEW. 1993. A Practical View
Based 3D Object Recognition System. University of Sheffield.

RICHARD S. YOON, DON S. BORRETT, HON C. KWAN. 1995.
Three-Dimensional Object Recognition Using a Recurrent Attractor
Neural Network. IEEE-EMBC and CMBEC Theme 2: Imaging.

147

