ABSTRACT

The performance of precast concrete frames depends on the behaviour of connection. The configuration of connections between beam-to-column affects the constructability, stability, strength, flexibility and residual force in the structure. In addition, connections play a key role in the dissipation of energy and redistribution of loads. This paper describes the comparative study on testing between rigid and precast beam-to-column connections to obtain the important characteristics of the connections such as the load-displacement and moment-rotation relationship. The objective of the study is to propose a beam-to-column connection. In this study, three specimens comprised two precast concrete beam-to-column connection using hollow steel section and one rigid beam-to-column connection were considered. The behaviour of load displacement, moment rotation relationships and type of failure in connections are also investigated. The result indicates that the precast connection using hollow steel section provides very minimum moment resistance and hence the connection can be best model as pinned.

ABSTRAK

Keupayaan kerangka konkrit pra-tuang adalah bergantung kepada sifat sambungannya. Kaedah sambungan rasuk kepada tiang akan mempengaruhi kebolehbinaan, kestabilan, kekukuhan, kebolehlenturan dan kebolehtahanan daya dalam sesuatu struktur. Tambahan pula, sambungan memainkan peranan penting dalam pengagihan beban. Kajian ini menerangkan perbandingan ujian di antara sambungan rasuk kepada tiang konkrit kekal dan pra-tuang untuk memperolehi sifat-sifat penting sambungan tersebut seperti hubungan beban-lenturan dan putaran-momen lentur. Objektif kajian ini adalah untuk mencadangkan sambungan rasuk kepada tiang menggunakan "hollow steel section" pada kerangka konkrit pra-tuang dan untuk menentukan secara eksperimen rintangan momen dan putaran sambungan rasuk kepada tiang. Dalam kajian ini sebanyak tiga spesimen dipertimbangkan di mana dua daripadanya adalah spesimen rasuk kepada tiang konkrit pra-tuang menggunakan sambungan "hollow steel section" dan satu spesimen sambungan rasuk kepada tiang kekal. Sifat hubungan beban-lenturan, putaran-momen lentur dan bentuk kegagalan turut dikaji. Kajian mendapati sambungan pra-tuang menggunakan "hollow steel section" menghasilkan rintangan momen yang minimum dan ianya boleh dimodelkan sebagai "pinned'.

CONTENTS

CHAPTER	TITI	LE	PAGE
	TITI	LE	i
	DEC	LARATION	ii
	DED	DICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS'	TRACT	V
	ABS	TRAK	vi
	CON	TENTS	vii
	LIST	Γ OF TABLES	Х
	LIST	FOF FIGURES	xi
	LIST	Γ OF ABBREVIATIONS	xiv
CHAPTER 1		INTRODUCTION	1
	1.1	Introduction	1
	1.2	Statement of Problem	2
	1.3	Objective of the Study	3
	1.4	Scope of Study	3
	1.5	Significant of the Study	4
			-
CHAPTER 2		LIIEKAIUKE KEVIEW	5
	2.1	Introduction	5
			vii

	2.2	Types	of Precast Frame	6
	2.3	Precas	t Concrete Connections	10
		2.3.1	Simple Beam-to-Column Connection in	
			Precast Concrete Structures	11
			2.3.1.1 Open Column Connection – Beam	
			Support on Corbel	11
			2.3.1.2 Hidden Connections at Column Face	13
			2.3.1.2.1 Steel Billet	13
			2.3.1.2.2 Cleat Connector	15
			2.3.1.2.3 Welded Plate Connector	16
			2.3.1.2.4 Sliding Plate	17
	2.4	Conne	ction Design Criteria	19
	2.5	Colum	n Insert Design	20
	2.6	Load-l	Displacement Relationships	22
	2.7	Mome	nt-Rotation Relationships	23
CHAPTER 3		RESE	ARCH METHODOLOGY	25
	3.1	Introdu	uction	25
	3.2	Resear	ch Design and Procedure	25
	3.3	Materi	als Used to Form the Specimens	36
		3.3.1	Concrete	36
			3.3.1.1 Cube Test	37
			3.3.1.2 Slump Test	38
		3.3.2	Reinforcement	38
		3.3.3	Formwork	39
		3.3.4	Steel Connectors	41
	3.4	Experi	mental Setup and Procedures	41
CHAPTER 4	ļ	RESU	LTS AND ANALYSIS	47
	4.1	Introdu	uction	47 viii

	4.1.1	Moment-Rotation Calculation Method	48
4.2	Specin	men 1 (S-R)	49
	4.2.1	Load-Displacement Relationship	49
	4.2.2	Moment-Rotation Relationship	50
	4.2.3	Failure Mechanisms	51
4.3	Specin	men 2 (S-P1)	53
	4.3.1	Load-Displacement Relationship	53
	4.3.2	Moment-Rotation Relationship	54
	4.3.3	Failure Mechanisms	55
4.4	Specin	men 3 (S-P2)	57
	4.4.1	Load-Displacement Relationship	57
	4.4.2	Moment-Rotation Relationship	58
	4.4.3	Failure Mechanisms	58

CHAPTER 5 DISCUSSIONS 60

5.1	Introduction	60
5.2	Load-Displacement Relationship	60
5.3	Moment-Rotation Relationship	64
5.4	Failure Mode	66

ix

CHAPTER 6	CONCLUSIONS	69
6.1	Introduction	69
6.2	Conclusion	70
6.3	Suggestion for Future Study	71
	REFERENCES	72
	APPENDIX	74

LIST OF TABLES

TABLE NO. TITLE

PAGE

5.1	Comparison of deflection between rigid and precast specimen	62
5.2	Summary of failure for each specimen	66

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1 (a)	The frame wall	7
2.1 (b)	The frame wall	7
2.2 (a)	The portal frame	8
2.2 (b)	The portal frame	8
2.3 (a)	The skeletal structure	9
2.3 (b)	The skeletal structure	9
2.4 (a)	Typical figure of corbels and nibs connection	12
2.4 (b)	Beam-to-column connection using corbels and nib	s 12
2.5 (a)	Beam-to-column connection using steel section	14
2.5 (b)	Beam-to-column connection using steel section	14
2.5 (c)	Beam-to-column connection using steel section	14
2.6 (a)	Beam-to-column connection with cleat connector	15
2.6 (b)	Beam-to-column connection with cleat connector	16
2.7 (a)	Beam-to-column connection using	
	solid section with welded plate connector	17
2.7 (b)	Beam-to-column connection using	
	solid section with welded plate connector	17
2.8 (a)	Beam-to-column connection with sliding plate	18
2.8 (b)	Beam-to-column connection with sliding plate	18
2.9	Basic principle for design of column inserts	21
2.10	Typical load-displacement curve	23
2.11	Typical moment-rotation curve	24
3.1	Elevation view of monolithic specimen (S-R)	27
3.2	Front view of monolithic specimen (S-R)	27
3.3	Plan view of monolithic specimen (S-R)	28
3.4	Perspective view of monolithic specimen (S-R)	28

3.5	Photo of monolithic specimen (S-R)	29
3.6	Photo of reinforcement connection for	
	monolithic specimen (S-R)	29
3.7	Elevation view of precast specimen (S-P1)	30
3.8	Front view of precast specimen (S-P1)	30
3.9	Plan view of precast specimen (S-P1)	31
3.10	Perspective view of precast specimen (S-P1)	31
3.11	Photo of preparation for precast specimen (S-P1)	32
3.12	Photo of column insert for precast specimen (S-P1)	32
3.13	Elevation view of precast specimen (S-P2)	33
3.14	Front view of precast specimen (S-P2)	33
3.15	Plan view of precast specimen (S-P2)	34
3.16	Perspective view of precast specimen (S-P2)	34
3.17	Photo of preparation for precast specimen (S-P2)	35
3.18	Photo of column insert for precast specimen (S-P2)	35
3.19	Photo of concreting work	36
3.20	Photo of completed specimen	37
3.21	Photo of cube test sample	37
3.22	Photo of compression test	38
3.23	Photo of reinforcement for all specimen	39
3.24	Photo of reinforcement preparation	39
3.25	Photo of formwork preparation for monolithic	
	specimen	40
3.26	Photo of completed formwork	40
3.27	Photo of steel connectors	41
3.28	Typical experimental setup	42
3.29	Photo of experimental setup for monolithic	
	specimen (S-R)	43
3.30	Photo of experimental setup for precast	
	specimen (S-P1)	43
3.31	Photo of experimental setup for precast	
	specimen (S-P2)	44

xii

3.32	Photo of load cell	44
3.33	Photo of LVDT	45
3.34	Photo of inclinometer	45
3.35	Photo of inclinometer	46
3.36	Photo of data logger	46
4.1	Location of testing equipment	48
4.2	Moment-rotation calculation method	49
4.3	Load-displacement curve of S-R	50
4.4	Moment-rotation curves of S-R	51
4.5	Failure mode of specimen S-R (right side)	52
4.6	Failure mode of specimen S-R (left side)	52
4.7	Failure mode of specimen S-R (top of beam)	53
4.8	Load-displacement curve of S-P1	54
4.9	Moment-rotation curves of S-P1	55
4.10	Failure mode of S-P1	56
4.11	Failure mode of S-P1 (splitting crack)	56
4.12	Load-displacement curves of S-P2	57
4.13	Moment-rotation curves of S-P2	58
4.14	Failure mode of S-P2 (right side)	59
4.15	Failure mode of S-P2 (left side)	60
5.1	Load-displacement relationship	63
5.2	Moment-rotation curve	65
5.3	Failure mechanism at connection part of	
	precast beam	68
6.1	Providing horizontal U-bars at bolt sleeve	
	in precast beam	71

LIST OF ABBREVIATIONS

%	- percentage
0	- degree
As	- area of tension steel reinforcement
av	- level arm distance to shear force
b	- breadth of section
d	- effective depth of section to tension steel
fcu	- characteristic compressive strength of concrete
fy	- ultimate yield stress of steel
h	- depth of section
kg	- kilograms
kN	- kilo Newton
kNm	- kilo Newton meter
m	- meter
М	- bending moment
m3	- meter cubes
milirad	- miliradian
mm	- millimeter
N/mm2	- Newton per millimeter square
Nu	- horizontal force
φ	- rotation
rad	- radian
V	-shear force
V	- shear stress
Vc	- design concrete shear stress
Vu	- gravity load

Δ	- deflection
Δu	- ultimate deflection
Δy	- initial yield deflection
μm	- micrometer
φu	- ultimate rotation
фу	- initial yield rotation
π	- "pi", mathematical constant equal to 3.141592654
Φ	- diameter

CHAPTER 1

INTRODUCTION

1.1 Introduction

Precast concrete is one of the elements being associated with IBS constructions. The use of precast concrete multi-storey framed buildings is now widely regarded as an economic, structurally sound and architecturally versatile form of construction. It combines the benefits of very rapid construction and high quality materials with the advantaged of production line economy and quality assurance. Design is carried out to the concrete industry and yet the knowledge remains essentially within the precast concrete industry itself.

The advantages of precast construction are inherent in the precast beam-tocolumn connections, as these are jointed connection as apposed to cast-in-situ emulation type connection. This study to investigate the behaviour of precast beamto-column connection using hollow steel section by conducting experimental tests that will show that the performance of this connection is as good as conventional cast-in-place connection.

Connection design is one of the most important considerations for the successful construction of precast reinforced concrete structures (Loo and Yao, 1995). This is because the structural performance of precast concrete systems depends on the connection behaviour. Connection can be rigid (continuous design),

semi-rigid (semi-continuous design) and simple (simple design). These three terms indicate the degree of moment to be transferred between members. The rigid connection and simple connection transfer full moment and zero moment between members. The degree of moment transfer for semi-rigid connection stands between rigid and simple connection.

In this study, experimental tests were conducted to assess the behaviour and performance of the beam-to-column connection by studying the load-displacement relationship, moment-rotation relationship and types of failure in the connections.

The significance of precast structures has gained further recognition through the launching of Industrialized Building System (IBS) in Malaysia. To date, precast concrete components in our country is supplied by several companies such as Associated Structural Concrete Sdn. Bhd. (ACPI), Hume Concrete Marketing Sdn. Bhd., IJM Building System Sdn. Bhd., Setia Precast Sdn. Bhd., Sunway Precast Industries Sdn. Bhd., Eastern Pretech (M) Sdn. Bhd., Baktian Sdn. Bhd., Zenbes Sdn. Bhd., Integrated Brickworks Sdn. Bhd., Multi Usage (Holding) Sdn. Bhd. and PJD Concrete Sdn. Bhd. (CIDB, 2004).

1.2 Statement of Problem

In Malaysia, the industrialised building system had started forty years ago but until today it is still experimenting with various prefabricated method. Recently, The Government of Malaysia encourages the use of IBS especially in new government office building projects. For the start, the government insist that the office building shall have at least 70% IBS components. To make the IBS industry materialised, research has to be carried out to standardise the IBS components especially the beams and column. This will make IBS more marketable. According to Elliot (1996), some 24 tests have been conducted using welded plate and concrete corbel, however, the section connectors and stiffened cleat types have not widely carried out. Although the Pre-stressed Concrete Institute (PCI) manuals contain descriptions of typical beam-to-column connections fulfilling many functions, the published test results are available for only a few of them (Loo and Yao, 1995).

Thus, the main statement of problem is as follows;

 Lack of experimental data and analytical proof accounts for the ductile connection details for beam-to-column connection in precast structure. In addition, reliable connection behaviour can only be properly assessed by laboratory testing or proven performance.

1.3 Objective of the Study

The objectives of the study are as follows:

- i) To propose a beam-to-column connection using hollow steel section for precast concrete frames.
- ii) To determine experimentally the moment resistance and rotation of the proposed beam-to-column connection.

1.4 Scope of Study

The scope of this study is limited to simple beam-to-column connections in rigid and precast concrete frames. The precast beams, columns and steel section for this testing were designed using BS 8110:1997. According to BS 8110: Part 1: 1997

REFERENCES

- Ahmad Baharuddin Abd Rahman and Wahid Omar (2007) Industrialised Building Systems in Malaysia Construction Industry Development Board (CIDB Malaysia). 1st edition.
- Bruggeling A.S.G. and Huyghe G.F. (1991). "Prefabrication with Concrete." Rotterham: A.A. Balkema.
- CIDB (2004). "IBS Publication: Catalogue of Precast Concrete Components for Building Works 2004/2005." Available: <u>http://www.cidb.gov.my/</u>
- 4) Dolan C.W., Stanton J.F. and Anderson R.G.(1987). "Moment Resistance Connections and Simple Connections." PCI Journal 1987, V32 No.2, 64-74.
- Dolan C.W, Nilson A.H and Darwin D, (2004). "Design of Concrete Structures". Thirteenth Edition.
- Elliott, K.S. (1996). *Multi-Storey Precast Concrete Framed Structures*. Oxford: Blackwell Science Ltd.
- 7) Loo Y.C. and Yao B.Z (1995). "Static and Repeated Load Tests on Precast Concrete Beam-to-Column.
- Macgregor J.G. (1992). "Reinforced Concrete Mechanics and Design." United State: Prentice-Hall.
- Park R. and Paulay T. (1975). "*Reinforced Concrete Structures*." New York: John Wiley & Sons.

- 10) Precast/Prestressed Concrete Institute (1999). *PCI Design Handbook Precast and Prestressed Concret*. Chicago, Illinois: PCI.
- Saeed, M (2003). "Finite Element Analysis Theory and Application with ANSYS." New Jersey : Pearson Education, Inc, 2.
- 12) Waddell, J.J (1974). "Precast Concrete: Handling and Erection." Detroit, Michigan: American Concrete Institute (ACI)