MOBILE APPLICATION PROTOTYPE FOR ON-SITE INFORMATION MANAGEMENT IN CONSTRUCTION INDUSTRY

Mehdi Nourbakhsh

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > DECEMBER 2010

This dissertation is dedicated to my family, for their full support over the years it has taken to finish this important chapter of my life. This is also dedicated to my wife, Samaneh, who has been a wonderful counselor and given me moral support whenever I needed it. You are the most precious things I have in this world. I love you all.

ACKNOWLEDGEMENT

I would like to express heartfelt thanks to a number of people who have supported and made this research possible. First, I would like to thank my supervisor, Associated Professor Dr. Rosli Mohamad Zin, for his passionate assistance and concern. With his invaluable advice and superb directions, I have successfully completed this research. It is indeed a true honor and privilege to be able to work under the supervision of such a dedicated and enthusiastic lecturer.

Second, I would also like to thank my co-supervisor, Assistant Professor Dr. Javier Irizarry from the Georgia Institute of Technology, for his commitment, support, patience, and invaluable guidance throughout the process of carrying out the research work. I consider myself very fortunate in being able to work with such a very considerate and encouraging professor as he. Without his offering to accomplish this research, I would not have been able to finish my study.

I would like to express my gratitude to Samaneh, my wife and also my best classmate, for her continued support and encouragement. She has always shown her support through in-depth discussions about various research problems.

Last, but not least, I would like to express my heartfelt gratitude to my family members and friends for their utmost support and motivation throughout this research work. I give my thanks to them all.

ABSTRACT

The construction industry is information intensive. Although the amount of information has increased over the past years, the number of advanced information technology applications used to collect, access, and use this information has not grown accordingly. For instance, current commercial information technology applications are very specific and lack simplicity and functionality. This study developed a mobile application that can be used to improve information management during construction projects. To achieve this aim, the information required to properly design the mobile application was collected by distributing an online questionnaire among construction professionals. Then 10 critical on-site information artifacts, considered important from the perspective of consultants and contractors, were selected for prototype development. A server-based application was tested in a laboratory by construction management students at Universiti Teknologi Malaysia (UTM). The test results demonstrate that the application is well designed and user friendly.

ABSTRAK

Industri pembinaan merupakan industri yang mengandungi jumlah maklumat yang intensif. Walaupun jumlah maklumat telah meningkat selama beberapa tahun kebelakangan ini, penerapan teknologi maklumat canggih untuk mengumpul, mengakses dan memanfaatkan maklumat belum berkembang dengan pesat. Sebagai contoh, aplikasi komersil teknologi maklumat terkini adalah sangat khusus, merumitkan dan tidak mengandungi fungsi yang banyak. Penyelidikan ini bertujuan untuk mengembangkan aplikasi mudah alih yang boleh digunakan untuk meningkatkan keberkesanan pengurusan maklumat dalam projek pembinaan. Untuk mencapai tujuan ini, maklumat yang diperlukan untuk aplikasi mudah alih dikumpulkan dengan menyebarkan soalan di laman web kepada kalangan profesional industri pembinaan. Seterusnya, 10 jenis maklumat yang dianggap penting dari perspektif perunding dan kontraktor telah dipilih untuk membangunkan prototaip mudah alih tersebut. Sebuah aplikasi berasaskan pengkalan data komputer dibangunkan berdasarkan konsep pengurusan maklumat. Aplikasi mudah alih ini telah diuji di makmal oleh mahasiswa pengurusan pembinaan di Universiti Teknologi Malaysia (UTM). Keputusan ujian menunjukkan bahawa aplikasi tersebut telah direkabentuk dengan baik dan ia adalah mudah untuk digunakan.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE	
	DECLARATION	ii	
	DEDICATION	iii	
	ACKNOWLEDGEMENT	iv	
	ABTRACT	V	
	ABSTRAK	vi	
	TABLE OF CONTENTS	vii	
	LIST OF TABLES	Х	
	LIST OF FIGURES	xii	
	LIST OF ABBREVIATIONS	xiv	
	LIST OF APPENDICES	XV	
1	INTRODUCTION	1	
	1.1 Background of the study	1	
	1.2 Statement of the Problem	2	
	1.3 Aim and Objectives of the Study	4	
	1.4 Scope of the Study	4	
	1.5 Methodology	5	
2	LITERATURE REVIEW	7	
	2.1 Background	7	
	2.2 Communication Needs in Construction	8	
	2.3 Information Needs in Construction	9	
	2.4 Information Technology and Automation in	13	
	Construction		
	2.4.1 Benefits of IT in Construction	16	

2.4.2 Barriers of IT in Construction	18
2.5 Enterprise Content Management	21
2.6 Developed Mobile Application Systems for	22
Managing On-site Information Flow	
2.7 Literature Summary	25
RESEARCH METHODOLOGY	26
3.1 Background	26
3.2 Research Process	26
3.2.1 Stage 1: Problem Discovery	27
3.2.2 Stage 2: Data Collection	28
3.2.3 Stage 3: Data Analysis	32
3.2.3.1 Kolmogorov-Smirnov Test	33
3.2.3.2 One Sample T-Test	33
3.2.3.3 Cronbach's Alpha Reliability	33
Coefficient	
3.2.3.4 Kruskal-Wallis Test	34
3.2.3.5 Mann-Whitney Test	34
3.2.4 Stage 4: Prototype Development	34
3.2.4.1 Design Conceptualization	35
3.2.4.2 Design Phase	36
3.2.4.3 Development Phase	38
3.2.4.4 Test Phase	39
3.2.5 Stage 5: Prototype Evaluation	39
3.2.6 Stage 6: Conclusion and Recommendation	41
ANALYSIS AND RESULTS	42
4.1 Background	42
4.2 Analysis and Results of Exploratory Phase	42
4.2.1 Statistical Tests	43
4.2.1.1 Kolmogorov-Smirnov Test	43
4.2.1.2 One Sample T-Test	43
4.2.1.3 Cronbach's Alpha Reliability	43
Coefficient	

4.2.2 Finding from Respondents Profile	45	
4.2.2.1 Years of Experience		
4.2.2.2 Respondent's Location		
4.2.2.3 Size of the Construction Compar	nies 49	
4.2.2.4 Capturing on-site information	50	
4.2.2.5 Owning information management	nt 51	
4.2.2.6 Information Management System	n 53	
Needs		
4.2.2.7 Information Management Tools	55	
4.2.3 Finding from Mobile Information	56	
Requirements		
4.2.3.1 Difference Between Information	59	
Needs of contractor and consulta	nt	
4.2.3.2 Information Needs of the Different		
Countries		
4.3 Analysis and Results of Application		
Development Phase		
4.3.1 Results of the Design Conceptualizat	ion 65	
4.3.2 Results of the Design Phase	65	
4.3.3 Results of the Development Phase	68	
4.4 Analysis and Results of the Testing Phase	72	
4.4.1 Results of the Performance Test	72	

5	CONCLUSION AND RECOMMENDATIONS	81
	5.1 Conclusion	81
	5.2 Recommendations	83
REFERF	ENCES	84
APPEND	DIX A	89
APPEND	DIX B	94

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Mean significance of industry-level barriers (Stewart et al.,	20
	2004)	
2.2	Mean significance of industry-level barriers (Henderson	20
	and Ruikar, 2010)	
2.3	Developed Mobile Application Systems for on-site	24
	Information Management	
4.1	Cronbach's Alpha Reliability Test	44
4.2	Respondents' Years of Experience	46
4.3	Size of the Construction Companies	49
4.4	On-site Information Capturing	50
4.5	On-site Information Capturing based on Countries' Level	51
	of Development	
4.6	Owning Information Management System	51
4.7	Owning Information Management System based on	52
	Countries' Level of Development	
4.8	Information Management System Needs	53
4.9	Information Management System Needs based on	54
	Countries' Level of Development	
4.10	Information Management System Needs based on Countries' Level of Development and Size of the Companies	54
4.11	On-site Information Management Tools	55
4.12	Information Ranking Using Mean Value based on	56
	Contractor's Responses	
4.13	Information ranking Using Mean Value based on	58
	Consultant's Responses	
4.14	Mann-Whitney Test Results based on Mean Rank	60

4.15	Result of Kruskal-Wallis Test	62
4.16	Final Selected Information	64
4.17	Tester's Background Information	72
4.18	Result of Task Performance Test	73

LIST OF FIGURE

FIGURE NO	D. TITLE	PAGE
1.1	Methodology of the study	6
2.1	On site Personnel information needs (Tenah 1986)	10
2.2	Site Records (Scott and Assadi 1999)	11
2.3	Classification of the job site information (de la Graza and	12
	Howitt 1998)	
2.4	Information Technology Development adopted from	14
	Faigen and Fridman(2004)	
2.5	Islands of Automation in Architecture, Construction and	15
	Engineering, Adopted from Hannus (2004)	
2.7	Benefits of IT for on-site information Management adopted	18
	from (Bowden et al., 2006)	
2.8	Enterprise Content Management Concept (Smartech, 2010)	17
3.1	Research Methodology	27
3.2	Survey Screen Shot at First Part	28
3.3	Star Rating System for Likert-type Scale	29
3.4	Internet Protocol Restriction	30
3.5	Email Address Finder Software	31
3.6	Email Address Checking (Hill_International_Inc)	32
3.7	Mobile application prototype development process adopted from Fox and Sheldon (2008)	35
3.8	An Accident Form collected from Shiya Sdn. Bhd. (Adopted from Safety, Health and Environmental Plan Shiya Sdn. Bhd.)	37
3.9	Electronic Form of an Accident Report Based on Real Construction Form	38
4.1	Respondents' Years of Experience	46
4.2	Participants' Countries	48

4.3	Level of Developments of the Participants' Countries	48
4.4	Size of the Construction Companies	49
4.5	On-site Information Capturing	50
4.6	Owning Information Management System	52
4.7	Information Management System Needs	53
4.8	On-site Information Management Tools	55
4.9	The Network Diagram of the CMA	66
4.10	Application Fields Collected from Construction Forms	67
4.11	Construction Mobile Application (CMA)	68
4.12	Architecture of the CMA	69
4.13	Conceptual Framework of the CMA	71
4.14	Performance Test Result	73
4.15	Testers' Required Assistance	74
4.16	It was easy to learn to use the CMA.	75
4.17	I need to learn a lot of things before I could get going with	75
	this system.	
4.18	Experience with other mobile services (or products) made	76
	it easier to operate this service.	
4.19	It is easy to move from one part of a task to the next with	76
	the CMA.	
4.20	It is very confident using the CMA.	77
4.21	I would imagine that most people would learn to use this	77
	system very quickly.	
4.22	I can complete my work tasks quickly by using CMA.	78
4.23	The CMA responds quickly to my actions.	78
4.24	I would recommend the CMA for others doing the same	79
	work.	
4.25	Using the CMA in performing the work tasks is pleasing.	79

LIST OF ABBREVIATIONS

ICT	-	Information and Communication Technology
IT	-	Information Technology
WWW	-	World Wide Web
PC	-	Personal Computer
PDA	-	Personal Digital Assistant
3G	-	3rd Generation of Developments in Wireless
		Technology
WLAN	-	Wireless Local Area Network
GPRS	-	General Packet Radio Service
CAD	-	Computer-aided Design
SA	-	Situation Awareness
SPSS	-	Statistical Package for Social Science
SDLC	-	System Design Life Cycle
ECM	-	Enterprise Content Management
CLT	-	Central Limit Theorem
CMA	-	Construction Mobile Application
CTMC	-	Construction Technology and Management Centre

TABLE OF APPENDICES

APPENDIX	TITLE	PAGE
A	Questionnaire on Mobile Application Information	89
	Requirement	
В	Questionnaire on Usability Test	94

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Information and communication technology (ICT) has made a significant contribution to the construction industry. It supports traditional tasks, improves the communication barriers, speeds up processes, and manages information. Unfortunately, the construction industry remains behind other industries and it is still in the early phase of adopting modern Internet technology. (Klinc et al., 2010; Shen et al., 2010). Most construction companies, for instance, rely on manual processes and traditional communication tools such as emails, faxes, and phones (Dave et al., 2010). A survey conducted on small- to medium-sized construction companies in Taiwan reveals that almost all respondents used e-mail as both an internal and an external communication tool (Chien and Barthorpe, 2010). Thus, there is no centralized repository for all project data among those companies. Such a repository can be used as a form of communication between the project participants and for the integration of project information. This issue has been discussed for two decades, yet the problem still exists in the construction industry. (Dave et al., 2010).

Construction industry is labor-intensive. Various construction personnel require large amounts of information. This information ranges from drawings, which are produced in the design stage, to different project reports, which are prepared during the construction stage. Information is obtained from all stages until the end of the project. Thus, the fusion and management of construction information are crucial due to the diversity and intensity of the information. (Chen and Kamara, 2008a; Soibelman et al., 2008). This is a real challenge in construction projects, and is a primary step in productivity improvement.(Bjork, 2003).

On-site information management is critically important because it is the fundamental element of successful project management (Tsai, 2009). Information and communication technology (ICT) tools are used in construction industry for accurate and efficient information management. They are commonly available in administration offices or on-site offices.

Because carrying a PC or even a laptop is inconvenient for construction managers, in particular when they are climbing up and down in a construction site, all information regarding construction projects such as project progress records, site diaries, daily reports, and so on are recorded in the site office. Thus, recording the information will be postponed until the construction managers come to the site office. Therefore, there is a gap between the observation and recording of the information that causes loss and mismanagement of the information in conventional methods.

1.2 Statement of the Problem

The amount of information in construction projects is abundant. In addition, this information is unstructured and very complex due to the participation of

different parties. Applying inefficient means for communicating project information is a factor that causes two-thirds of construction problems. As such, streamlining onsite information flow seems both necessary and important (Dawood et al., 2002).

Although, the development of the information technology (IT) gives the construction industry a powerful potential to increase the efficiency and effectiveness of the information exchange (Chen and Kamara, 2005), the IT application for collecting, accessing, and using of the information has not grown properly (Irizarry and Gill, 2009). For instance, there are plenty of commercial products for IT application, but they are very specific, lack of simplicity and functionality (Forcada et al., 2007).

Current information and communication technology support has been extended to site offices. The advances in affordable mobile devices, increases in wireless network transfer speeds, and improvements in mobile application performance provide a profound potential for enhancing on-site information management (Chen and Kamara, 2008b)(Chen and Kamara, 2008b). Chen and Kamara, 2008b). Consequently, developing a simple and functional mobile application, which can benefit the construction industry by streamlining on-site information flow, is crucial. Consequently, developing a simple and functional mobile application which can benefit the construction industry by streamlining onsite information flow is crucial. The application can be used in medium- and largesize construction projects where the management of on-site information has a significant influence on achieving project objectives.

1.3 Aim and Objectives of the Study

The aim of this study is to develop a mobile application that can be used for improving information management in construction projects.

The objectives of this study are:

- i. To investigate the information requirements of a mobile application that can be broadly used in the construction industry.
- ii. To develop a prototype for a mobile application based on current demands of construction professionals.
- iii. To evaluate the usability of the prototype based on usability test techniques.

1.4 Scope of the Study

In order to achieve the objective of this research, this project will adhere to the following scope:

- i. The questionnaire is distributed among contractors and consultants.
- ii. Since the objective of the study is to address the viability of developing a mobile application system in construction projects, the elaboration of the onsite information and investigation of the sub information remains outside the focus of this study.

- iii. The usability test is performed in a laboratory.
- iv. Top 10 critical information is considered for developing the mobile application.

1.5 Methodology

Figure 1.1 shows the research methodology that was adopted for achieving the objective of the study. The methodology of this study has four main stages including identifying the problem, the literature review and identifying the aim and objective of the study. At the end of stage two, the data collection is completed, and all required data are ready for analysis. Stage three starts with data analysis and continues with prototype development. The usability test is performed in stage four. The appropriate conclusion has been made at the end.

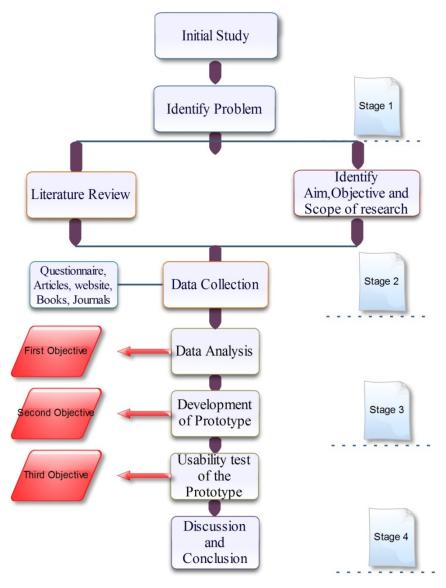


Figure 1.1: Methodology of the study