BUILDING INFORMATION MODELING IN LOCAL CONSTRUCTION INDUSTRY

HAMMAD DABO BABA MA091165

A Project Report Submitted in Partial Fulfillment of the Requirements for the award of the degree of Master of Science (Construction Management)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > December, 2010

Dedicated to

My beloved children, Farouq, Amatullahi, Amaturrahman, Mahmood and Hafsah for your endurance and care.

ACKNOWLEDGEMENT

I will begin with thanking my creator, Allah S.W.T for giving me strength health and inspiration to complete this work. It is verily a great pleasure to have successfully completed this study. Alhamdulillah.

I would also like to extend my sincere appreciation to my project supervisor Professor Dr. Muhammad Zaimi Bin Abdul Majid for his guidance and advice and invaluable assistance and encouragement. Certainly, without his support, interest and patience with me this project would not have been reached this stage.

Special thanks go to Dr. Garba Ibrahim, the Provost, College of Education Azare, for his moral supports and to the college Management for my sponsorship to this study. This will remain in my memory to the last minute of my life.

Moreover, I must knowledge the constant support and encouragement I received from my blood brothers Srgt Baba Hammad of Nigerian Army and Bello Hammad as well as colleagues and friends whom I accord respect such as Aliyu Garba Rishi, Engr. Musa Babayo Yahaya, Engr. Mamud Abubakar and Bello Yusf Idi.

Finally, I will like to express my unending gratitude to my family for their support and patience though this hard time of study abroad. I wish to thank you all.

ABSTRACT

Building Information Modeling (BIM) is a new emerging approach to design, construction, and facility management in which a digital representation of the building process is being created to facilitate the exchange and interoperability of information in digital format. Despite the advantages derived from this paradigm, local construction industry is reluctant to deploy the technology in its service delivery. The objectives of the study include identifying the level of BIM tools utilization, identifying the barriers and strategies for the implementation of Building information modeling (BIM) in the local construction industry. Structured questionnaires were administered to 100 key players in the field of Architecture and Engineering randomly selected from within Kuala Lumpur region. Twenty Nine (29) respondents have appropriately answered and duly retuned the questionnaire. Data collected was analyzed using Analysis of Variance (ANOVA) and the hypotheses ware tested using t-test at 0.5% level of confidence. The study found that, BIM is been accepted by a substantial number of construction professional (Architects and Engineers). However, majority are still using AutoCAD in their design services. Moreover there is high correlation in terms of BIM Usage among Architects and Engineers but there is no correlation in the means responses of Architects and Engineers on the barriers to BIM implementation. In conclusion, the study has identified several strategies for Building Information modeling to be implemented and utilized in construction service delivery.

ABSTRAK

Building Information Modeling (BIM) adalah suatu pendekatan muncul baru untuk desain, pembinaan, dan pengurusan kemudahan di mana perwakilan digital dari proses pembangunan sedang dibuat untuk memudahkan pertukaran dan Interoperabilitas maklumat dalam format digital. Walaupun keuntungan yang diperolehi daripada paradigma ini, industri pembinaan tempatan enggan untuk menggunakan teknologi dalam penyediaan perkhidmatan tersebut. Tujuan kajian ini termasuk mengenalpasti tahap penggunaan alat BIM, mengenalpasti halangan dan strategi untuk pelaksanaan pemodelan maklumat Bangunan (BIM) dalam industri pembinaan tempatan. kuesioner terstruktur yang diberikan kepada 100 pemain kunci di bidang Teknik Arsitektur dan dipilih secara rawak dari dalam kawasan Kuala Lumpur. Dua puluh Sembilan (29) responden yang menjawab tepat dan telah kembali lagi kuesioner. Data yang dikumpul dianalisis menggunakan Analisis Varians (ANOVA) dan ware hipotesis diuji dengan menggunakan t-test pada tahap 0,5% dari kepercayaan. Kajian ini mendapati bahawa, BIM ini telah diterima oleh sejumlah besar pembinaan profesional (Arkitek dan Jurutera). Namun, majoriti masih menggunakan AutoCAD jasa desain mereka. Apalagi ada korelasi yang tinggi dalam hal BIM Global antara Arkitek dan Jurutera tetapi tidak ada korelasi dalam bererti tanggapan dari Arkitek dan Jurutera pada hambatan pelaksanaan BIM.Sebagai kesimpulan, kajian telah mengenalpasti beberapa strategi untuk pemodelan Maklumat Gedung untuk dilaksanakan dan digunakan dalam penyediaan perkhidmatan pembinaan.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	Х

1 INTRODUCTION

1.1	Background of the study	1
1.2	Problem Statements	2
1.3	Aims and Objectives	3
1.4	Research Questions	4
1.5	Research Hypothesis	4
1.6	Scope of the Study	5
1.7	Significance of the study	5
1.8	Summary of the Chapters	7

2 LITERATURE REVIEW

2.1	Introduc	ction	9
2.2	The Cor	ncept of BIM	9
	2.2.1	Definition of BIM According Vendors	12
	2.2.3	Development of BIM	14
	2.2.3.1	Parametric Library	16
	2.2.3.2	The Capabilities of Parametric Modeling	17
		in design	
	2.2.4	Potential Building Modeling Tools	17
	2.2.4.1	AutoCAD Based Application	18
	2.2.4.2	Autodesk Revit	19
	2.2.4.3	Tekla	20
	2.2.4.5	ArchiCAD	21
	2.2.4.6	Bentley System	22
	2.2.4.7	Google Sketch up	23
	2.2.4.8	Navisworks	24
2.3	Phases t	o Integrate in Construction life cycle	
	2.3.1	Conceptual Phase Model	25
	2.3.1.1	Site Planning and Site utilization	26
	2.3.1.2	Space Planning	26
	2.3.1.3	Environmental Analysis	27
	2.3.2	Design Phase Model	27
	2.3.2.1	Analysis and Simulation	29
	2.3.2.2	Design Visualization	29
	2.3.2.3	Integration of Contractors and supplier	30
		Model	
	2.3.2.4	General Information attribution	31
2.3.3	Constru	ction Phase Model	31
	2.3.3.1	Design Assistance & Constructability	31
	2.3.3.2	Scheduling and Sequencing	31
	2.3.3.3	Cost Estimating	32

	2.3.3.4	System Coordination	32
	2.3.3.5	Layout and Fieldwork	32
	2.3.3.6	Clash detection	32
	2.3.3.7	Prefabrication	33
	2.3.3.8	Process simulation in building	33
		Construction	
2.3.4	Manage	Maintenance Phase Model	35
	2.3.4.1	Model updating	35
	2.3.4.2	Behavior simulation	36
	2.3.4.3	Auto Alert	37
	2.3.4.4	Project Visualization	37
	2.3.4.5	Value intelligence	38
2.4.0	Implem	entation of BIM	41
	2.4.1.1	Barriers to BIM in construction Industry	41
	2.4.1.2	Interoperability	43
	2.4.1.3	Client demand	45
	2.4.1.4	Legal Issues	46
	2.4.1.5	Issues of training and learning	47
	2.4.1.6	Summary	47

3 METHODOLOGY

3.1	Introdu	iction	48
3.2	Resear	ch Methodology	48
	3.2.1	Literature Review	49
	3.2.2	Study Population and Sample	49
3.3	Instrun	nent for Data Collection	49
	3.3.1	Questionnaire Survey Design	50
3.4	Metho	d of Data Analysis	52
	3.4.1	Frequency Analysis	52
	3.4.2	Average Index	52
	3.6.3	Correlation Coefficient	54
	3.6.4	Hypothesis Testing	55
3.5	Summa	ary	55

Introduction 56 4.1.2 **Respondents Area of Expertise** 56 4.1.3 **Respondents Qualification** 57 4.1.4 Respondents' Firms 59 4.1.4 Respondents' Years of Experience 60 **BIM** Tools utilization 4.2.0 Introduction 62 4.2.1 62 Autodesk AutoCAD 4.2.2 Autodesk 3D MAX 63 4.2.3 63 Tekla Structures 4.2.4 Autodesk Revit MEP 64 4.2.5 Autodesk Revit Architecture 64 4.2.6 Autodesk Revit Structure 65 4.2.7 ArchiCAD 65 4.2.8 **Bentley Microstation** 66 4.2.9 **Bentley Structures** 66 4.2.10 Bentley HVAC 67 4.2.11 IntelliCAD 67 4.2.12 Google Sketch up 68 4.2.13 Nemetschek Vector Works 68 4.2.14 69 TuborCAD 4.2.15 69 Navisworks 4.2.16 Analysis of findings on BIM tools 70 utilization 4.2.17 Comparism of BIM tools usage between 71 Architects and Engineers

4.2.18 Correlation Testing of Hypothesis 73 4.2.29 Decision and Inference 75

4.3 Barriers to BIM utilization and implementation xii

DATA PRESENTATION, ANALYSIS AND FINDINGS

4

4.1

4.2.

4.3.0	Introduction	77
4.3.1	BIM learning Difficulty	77
4.3.2	Lack of legal backing from authority	78
4.3.3	Interoperability issues	78
4.3.4	Lack of skillful operators	79
4.3.5	Lack of request by client	80
4.3.6	Lack of request by other team members	80
4.3.7	Higher price of software	81
4.3.8	Non availability of parametric library	82
4.3.9	Long duration of model development	82
4.3.10	Readiness for organizational change	83
4.3.11	Analysis of Findings on barriers to BIM	84
	implementation	
Strategi	es for BIM implementation	
4.4.1	Introduction	86
4.4.2	Interoperability efforts	88
4.4.3	Development of local parametric libraries	88
4.4.4	Provision of Legal Backing	89
4.4.5	Development of web portal	90
4.4.6	Training and retraining	91
4.4.7	Managing cultural change	92
4.4.8	Summary	92

4.4

5

SUMMARY, CONCLUSION AND RECOMMENDATIONS5.1Introduction935.2Conclusion935.3Recommendations to AEC Professionals955.4Recommendation For Further Study96

REFERENCES	97
APPENDIX	101

LIST OF TABLE

TABLE NO TITLE

PAGE

2.1	Differences between traditional 2D Construction processes versus model Based process.	13
2.2	BIM Implementation Phases and BIM Product Matrix	38
3.1	Classification of the Rating Scales in Section B	52
3.2	Classification of the Rating Scales in Section C	52
3.3	Classification of the Rating Scales in Section D	52
4.1	Distribution of Respondents According Area of Expertise	55
4.2	Distribution of Respondents According to Qualification	56
4.3	Names of firms that have responded to the study	58
4.4	Years of experience of the respondents	59
4.2.1	Autodesk AutoCAD	61
4.2.2	Autodesk 3D MAX	62
4.2.3	Tekla Structures	62
4.2.4	Autodesk Revit MEP	63

4.2.5	Autodesk Revit Architecture	63
4.2.6	Autodesk Revit Structure	64
4.2.7	ArchiCAD	64
4.2.8	Bentley Microstation	65
4.2.9	Bentley Structures	65
4.2.10	Bently HVAC	66
4.2.11	IntelliCAD	66
4.2.12	Google sketch up	67
4.2.13	Nemetschek Vector Works	67
4.2.14	TuborCAD	68
4.2.15	Navisworks	67
4.2.16	Frequency of BIM Software usage in Local Construction Industry	69
4.2.17	Summary output	72
4.3.1	Difficulty in learning BIM Tools	74
4.3.2	Lack of legal backing from Authority	75
4.3.3	Problems of interoperability	75
4.3.4	Lack of skilled BIM Software operators	76
4.3.5	Lack of request by client	77
4.3.6	Lack request by other team members	77
4.3.7	High price of software	78
4.3.8	Non availability of parametric library	79

4.3.9	Longer to develop a model	79
4.3.10	Redness for Organizational Change	80
4.3.11	Average index of response on Barriers to implementation of Building Information Modeling	81
	(BIM)	

LIST OF FIGURES

FIGURE NO TITLE

PAGE

1.1	Flowchart diagram of the research process	6
2.1	Islands of Automation in construction	10
2.2	BIM integrated BIM Model	12
2.3	Development of BIM from 70s to date	16
2.4	A screen shot of AutoCAD Architecture model Windows	18
2.5	A screenshot of Autodesk Revit 3D Window	20
2.6	A screenshot of Google sketch up interface	23
2.7	Schematic diagram of integrated design process	28
2.8	Screen shot of various windows of BIM tools	30
2.9	3D geometric capabilities of BIM in Mechanical, Electrical and Plumbing (MEP) coordination	35
2.10	BIM Implementation Model	41
2.11	Stages of Interoperability	43
2.12	Interoperability model between various software	44
2.13	Interrelationship between technology, people and process in technology implementation	45
3.3	Rating scale of questionnaire responses	50
4.1	Respondents area of specialization	56
4.2	Respondents Qualification	57

xvii

4.3	Percentage of Respondents per Firm	58
4.4	Respondents' years of experience	60
4.5	Design software usage frequencies	71
4.6	Model for strategic implementation of Building Information Modeling	84
4.7	Proposed National BIM server	88

LIST OF ABBREVIATION

3D	-	Three Dimensional
ADT	-	Architectural Desktop
AEC	-	Architecture, Engineering and Construction
AECON	-	Architecture, Engineering, Construction and
		Operation
AIA	-	American Institute of Architects
AGC	-	America General Contractors
BEM	-	Building Element Model
BIM	-	Building Information Modeling
BMP	-	Bitmap formatted image
CAD	-	Computer Aided Design
CAM	-	Computer Aided Manufacturing
CIM	-	Computer Information Manufacturing
DGN	-	Microstation Design File
DWF	-	Autodesk Web Design Format
DWG	-	AutoCAD and Open Design Format
DXF	-	Drawing Interchange File Format
GDL	-	Geometric Description Language
gbXML	-	Green Building Extensible Language
IFC	-	Industry Foundation Classes
JPG	-	Joint Photographic Experts Group
MEP	-	Mechanical Electrical and Plumbing
NBIMS	-	National Building Information Modeling Standards
RVT	-	Revit File Format
STEP	-	Standard for the Exchange of Product model data

CHAPTER 1

INTRODUCTION

1.0 Introduction

The study focuses on Building Information Modeling in local construction industries in addition; the study seeks to identify the reasons behind slow implementation of this solution in construction industry. In this chapter, a brief overview of the study is presented. The chapter covers background, statement of the problem, aims and objective, research question, hypothesis, scope, significance and finally summarized the summary of the chapters.

1.1 Background

There was an eminent research effort on enabling and advancing information technology to enhance work efficiency and collaboration among Architecture, Construction and Engineering (ACE) stakeholders by providing mechanism infrastructure to deliver pertinent information required for decision making in a timely manner. According to Estaman et al 2005, Halfawy and Froese 2001, such an technologies, and should facilitate information interchange between members of the project team and across stages in the project lifecycle from construction to inspection to maintenance. Khoury and Kamar 2009 suggested that the central kernel of this communications infrastructure should be inhabited by a shared construction project model in the form of integrated product models and project database, these resulted to Building Information Modeling (BIM).

Building information modeling (BIM), is a modeling technology and associated set of processes to produce, communicate and analyze building models (Estamsn et al 2008), is seen as an enabler that may help the building industry to improve its productivity. Yet, although BIM has been on the market for a number of years, it has not been adopted industry – wide to its full capacity. As of 2009 approximately half of industry representatives do not use any BIM software on projects in the U.S (McGrawHill 2009).

1.2 Statement of the Problems

The slow adoption of the BIM in the industry has been caused by several technical and human barriers, these barriers can be categorized as internal or external. In internal use of BIM, the main barriers are cost and human issues, mainly the learning of new tools and processes. The learning process is significantly more expensive than the actual costs of hardware and software. In the same vein, Kivineimi et al (2008) posited that, high investment cost and the constant need to upgrade hardware and software are seen as two major obstacles for firms. Moreover, the unclear balance between the benefits and the costs and the fear that the actual benefit go to another participants in the projects. Another internal barrier is fear of lacking of features and flexibility of the modeling tools. Meanwhile, the external barriers as described by Williams (2007) include legal aspect of implementing BIM which have been an area of concern to many owners, A&Es (Architects and Engineers), general contractors and sub-contractors. Issues related to model

ownership and responsibility for model accuracy as well as concerns about the responsibility of cost of producing and managing the model, top the list of perceived legal obstacle to embracing the BIM process.

Meanwhile, technical Issues related mainly to lack of sufficient and reliable interoperability between software applications – are significant obstacles, although perhaps not fully recognized by the industry yet, since most companies have no experience of the use of shared BIM in the saying of Kiviniemi et al (2008).

In general the industry lacks agreement and common practice concerning how to use integrated BIM, although in Nordic Countries the willingness to share BIM data seems to be higher than elsewhere as advanced by Newton et al (2009). There are claims that, the slow adoption of BIM in construction industry is attributed to lack of awareness, technical complexity, and absence of interoperability between various software that are been used in generating the Model. However, the degree and variance of this factors has not been identified. Therefore there is need for research to identify degree

1.3 Aims and Objective of the study

The aim of the study is to identify barriers to strategic implementation of Building Information Modeling (BIM) within industry in Malaysia while the objectives are:

- 1. To identify the level of BIM tools utilization and implementation at the design phase in local construction industry.
- 2. To identify the barriers to utilization and implementation of Building Information Modeling (BIM) in Architectural and Engineering design.
- 3. To identify strategies that will enhance effective BIM implementation in local construction industry.

1.4 Research Questions

- 1. What is the utilization level of BIM Tools in local construction industry?
- **2.** What is the relation between Engineers and Architect in in terms of utilization of BIM tools in local construction industry?
- **3.** What are the possible strategies that will enhance effective implementation of BIM tools in local Construction Industry?

1.5 Research Hypothesis

The study will be guided with the following hypotheses;

- Ho There is no significant correlation between Architects and Engineers in terms utilization and adoption of building Information Modeling (BIM) in local construction industry
- H₁ There is a significant correlation between Architects and Engineers in terms utilization and adoption of building Information Modeling (BIM) in local construction industry

1.6 Scope of the Study

The study is limited to implementation of building information modeling (BIM) at design phase, data collection is from Architectural Engineering and Construction firms in Malaysia only. Moreover, the study is limited to a sample of 100 respondents from selected AEC firms located within Kuala Lumpur region. Kuala Lumpur region was selected due to its high level of technology awareness and high concentration of construction firms.

1.7 Significance of the Study

The study will contribute to the pool of knowledge in various facet of academic and professional perspective. Academically, the study will generate a statistical data that will show the current status of Building Information Modeling (BIM) and the significance of competence in the implementation of BIM in Malaysia as well as the perception of this new technology among practitioners in Architecture, Engineering and Construction industry. Meanwhile, to professional's circle, the study propose strategies for the implementation of BIM to harness the numerous benefits of technology.

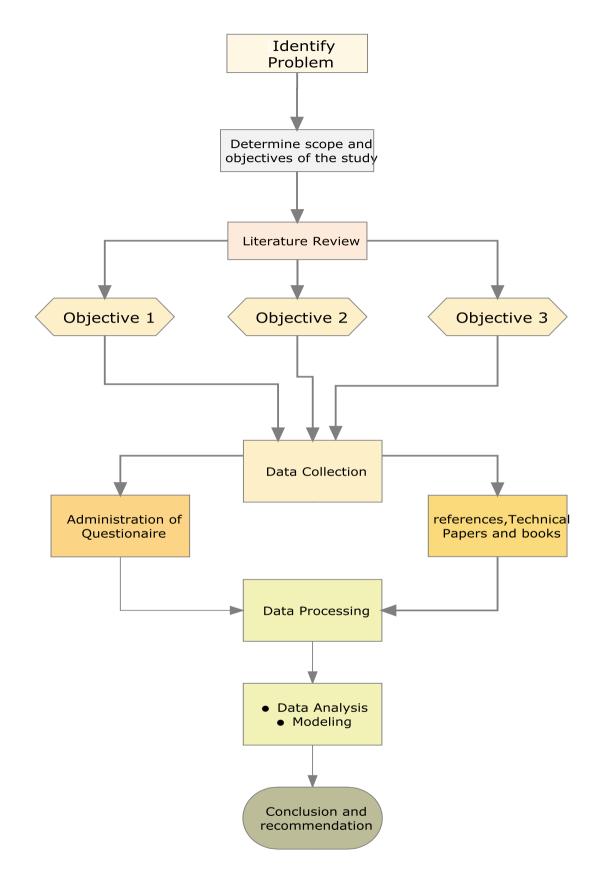


Figure 1.1 Flowchart diagram of the research process

1.8 Summary of the chapters

This works has been logically structured to five (5) chapters and below is the summary of each chapter in the study as follows:

1. Chapter 1: Introduction

The first chapter of the study is a background of the study and it comprise of introduction, background, statement of the problems, aims and objectives, research questions, research hypothesis, scope of the study, significance of the study, research methodology and the chapters organization.

2. Chapter 2 Literature Review

This chapter is based on literature reviews on the related topics related to the study. The literature reviews are from books, journals articles, conference papers and periodicals. The topics in this chapter include the concept of Building Information Modeling (BIM), the phases to integrate in construction life cycle and Barriers to BIM implementation.

3. Chapter 3 : Research Methodology

This chapter covers the main topics on how the study was conducted; the subheadings are introduction, methodology, literature review, instruments for data collection, study samples, method of data analysis and the summery of the chapter.

4. Chapter 4: Data Presentation and Analysis

This chapter present results of the study and discusses the finding in a logical manner. It treated each question individually and later present the summary of the result. Moreover, finding on each objective has been clearly outlined. Finally the hypothesis was also tested at 0.05 level of significance using correlation coefficient.

5. Chapter 5: Summary and Conclusion.

This is the last chapter of this project report; it covers the conclusion of the entire project report based on the answers to the research questions, it also advance recommendations for further studies.