Universiti Teknologi Malaysia Institutional Repository

Improving performance of radial basis function network based with particle swarm optimization

Shamsuddin, Siti Mariyam and Qasem, Sultan Noman (2009) Improving performance of radial basis function network based with particle swarm optimization. In: IEEE Congress on Evolutionary Computation, 2009, Trondheim, Norway.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1109/CEC.2009.4983342


In conventional RBF Network structure, different layers perform different tasks. Hence, it is useful to split the optimization process of hidden layer and output layer of the network accordingly. This study proposes hybrid learning of RBF Network with Particle Swarm Optimization (PSO) for better convergence, error rates and classification results. The hybrid learning of RBF Network involves two phases. The first phase is a structure identification, in which unsupervised learning is exploited to determine the RBF centers and widths. This is done by executing different algorithms such as k-mean clustering and standard derivation respectively. The second phase is parameters estimation, in which supervised learning is implemented to establish the connections weights between the hidden layer and the output layer. This is done by performing different algorithms such as Least Mean Squares (LMS) and gradient based methods. The incorporation of PSO in hybrid learning of RBF Network is accomplished by optimizing the centers, the widths and the weights of RBF Network. The results for training, testing and validation of five datasets (XOR, Balloon, Cancer, Iris and Ionosphere) illustrate the effectiveness of PSO in enhancing RBF Network learning compared to conventional Backpropogation.

Item Type:Conference or Workshop Item (Paper)
Subjects:Q Science > QA Mathematics > QA75 Electronic computers. Computer science
Divisions:Computer Science and Information System (Formerly known)
ID Code:15295
Deposited By: Mrs Liza Porijo
Deposited On:22 Sep 2011 09:49
Last Modified:22 Sep 2011 09:49

Repository Staff Only: item control page